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Introduction and Constructions

Let us begin with an informal example. By informal, we mean that we will use

terms intuitively, as opposed to formally defining every term we use. Let us

consider the symmetries of the cube. This is the usual cube or, if you prefer

to have one in your hand, a six-sided die or a Rubik’s cube. A common theme

that we will see throughout this book, is that when considering symmetries of

a graph, it is really helpful to have a clever labeling of the vertex set. As this

is a book about symmetries of graphs, to us a clever labeling will be one that

shows us, without too much work, many of the symmetries of the graph. We

choose to label the vertices of the cube with elements of Z2 × Z2 × Z2 as in

Figure 1.1.

Notice that two vertices of the cube, as labeled in Figure 1.1, are adjacent

if and only if their labels are different in exactly one coordinate. Also, for any

face of the cube, there is a four-step rotation of the face in either the clockwise

or counter-clockwise direction that is a symmetry of the cube (and of course

the opposite face is rotated in the same fashion). As interchanging two opposite

•(1, 0, 0)

•

(1, 1, 0)

•

(1, 1, 1)

• (0, 1, 1)

•

(0, 0, 1)

•

(1, 0, 1)

•

(0, 1, 0)

•(0, 0, 0)

Figure 1.1 The 3-cube.
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2 Introduction and Constructions

faces is also a symmetry of the cube, we may map any vertex of the cube to

any other vertex of the cube. In the language we will introduce later, this is

said as “the cube is vertex-transitive.”

In general, once one knows a particular graph is vertex-transitive, a next

step in considering all of its symmetries is to think about distinguished sets

of vertices. By “distinguished,” we mean that we can tell the sets are different

somehow, under symmetry. We use the word “sets” here as vertex-transitive

graphs have no distinguished vertices. For the cube, this means that we

cannot distinguish (except by labeling) any corner of the cube from any other

corner of the cube. But notice that for every vertex v of the cube, there is a

unique vertex of distance three from v. Also, under any symmetry of a graph,

vertices at some fixed distance in the graph are at the same distance in the

graph under the symmetry. So these four pairs of vertices at distance three

are permuted amongst themselves (these are the pairs (0, 0, 0) and (1, 1, 1),

(0, 0, 1) and (1, 1, 0), (0, 1, 0) and (1, 0, 1), and (1, 0, 0) and (0, 1, 1). They

are easy to remember as the vertex at distance three to (i, j, k) is simply

(i + 1, j + 1, k + 1) with arithmetic in each coordinate performed modulo 2).

These pairs of vertices are also called antipodal vertices. This term is borrowed

from geography, where an antipodal point on the earth is the point on the earth

opposite the given point. In the language of group theory, this says that the

symmetries of the cube act on the pairs of antipodal points. We will later also

say that a pair of antipodal vertices is a block of the symmetries of the cube,

and the symmetries of the cube also permute the blocks.

A next obvious step might be to determine the symmetries of the antipodal

vertices. That is, to determine how pairs of antipodal vertices are mapped to

each other, and also if there are any symmetries, other than the identity, that

fix each pair of antipodal points. For symmetries that fix each pair of antipodal

points, consider the function that adds 1 modulo 2 in each coordinate of a

vertex; that is f : Z3
2
→ Z

3
2

given by f (i, j, k) = (i + 1, j + 1, k + 1). It is

hopefully clear that if two vertices u and v are different in one coordinate, then

f (u) and f (v) differ only in exactly the same coordinate. So f is a symmetry

of the cube different from the identity that fixes each set of antipodal points. It

turns out (we will prove this later), that there are no other such symmetries.

For symmetries of the antipodal vertices, there are four such pairs, so the

largest number of such symmetries we can encounter is all of them! That is

what we will see happens here. First, observe that no pair of antipodal points

is contained in a face of the cube. So if we take a symmetry of a face, or

square, and extend that to a symmetry of antipodal vertices (which can always

be done as there is a unique antipodal vertex not on a face for each vertex on

a face), we will have a symmetry of the cube. The symmetries of a face are
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Introduction and Constructions 3

just symmetries of the regular 4-gon, so four rotations and four reflections.

This gives eight symmetries of the cube. To obtain elements of order 3, it is

easiest to imagine that you are holding a cube between two fingers, with a

finger on each antipodal vertex. Now spin the cube 120◦! The cube does not

change, so this gives a symmetry, and this can be repeated three times. We

will see later that this is enough to obtain all symmetries of the cube, up to

products of symmetries. That is, there are other symmetries, but these other

symmetries can be obtained by successively applying symmetries we have

already described. Cheating more than a little bit, the symmetries of the pairs

of antipodal vertices is all symmetries of a set of 4 elements, so of order 24,

while there are two symmetries that fix each set of antipodal vertices. In group-

theoretic language, we have the group S4 × Z2 of order 48.

We now turn to the main topics of this chapter. Section 1.1 is mainly

concerned with the basic notation and terminology that we will use throughout

the book. As the mathematical area that concerns symmetries is group theory,

and more specifically permutation group theory, this will include terminology

regarding both group theory and graph theory, as well as some examples and

basic results.

The central goal of the rest of the chapter is to get examples of vertex-

transitive graphs. An old result of Erdős and Rényi (1963) is that almost all

graphs have a trivial automorphism group. Thus having any symmetry in

a graph is rare, and so instead of looking for graphs with symmetries, we

usually start with the symmetries, and then construct graphs that have those

symmetries. The most common such construction is a Cayley graph, the topic

of Section 1.2. We then give two ways of constructing every vertex-transitive

digraph, namely double coset digraphs and orbital digraphs in Sections 1.3

and 1.4, respectively. While these techniques are formally different, as they

both construct every vertex-transitive digraph, they should be thought of as

being in some sense “the same.” We then give the construction for the second

most common family of vertex-transitive digraphs, the metacirculant digraphs,

in Section 1.5.

One last editorial comment before we get going. You may have noticed we

are a little confused in our use of the term “graph” and “digraph.” Our main

motivation in writing this book is to introduce you to symmetries of graphs.

So why do we have digraphs? There are two simple answers. First, there are

numerous results in the literature that deal with graphs only, where the proofs

hold equally well for digraphs with such dramatic changes as replacing “graph”

with “digraph.” Hence, in many cases (but not all!), there really is no difference

between graphs and digraphs, so why not work with the more general object?

Second, there are also many times where a result is only proven for graphs, but

www.cambridge.org/9781108429061
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-42906-1 — Symmetry in Graphs
Ted Dobson , Aleksander Malnič , Dragan Marušič 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction and Constructions

in practice the result is needed for digraphs. The general philosophy is then that

we are mainly interested in graphs, but when it comes time to prove a theorem,

it is best to prove the theorem for digraphs if that is possible.

1.1 Basic Definitions

As this book is about groups acting on graphs, we begin with some of the basic

definitions and results from permutation group theory and graph theory.

We emphasize that our permutation multiplication is on the left. That is,

f g(x) = f (g(x)). Readers should be aware that sometimes in the literature

permutation multiplication is written on the right.

A permutation group is a subgroup of the symmetric group on n letters,

denoted Sn. Unless otherwise stated, we will take the n letters that Sn permutes

to be the elements of the set Zn, the integers modulo n. We denote the group

of units in Zn under multiplication by Z∗n, and note that Aut(Zn) = {x 7→

ax : a ∈ Z∗n}, the automorphism group of Zn. More generally, an action of

a group G on a set X is a function f : G × X → G, with f (g, x) written

gx, such that g(hx) = (gh)x and 1x = x for every g, h ∈ G and x ∈ X

(of course 1 is the identity element in G). We will say that G acts on X on

the left. In this text, unless otherwise stated, all groups and sets are finite, in

which case the degree of an action is |X|, the number of elements in X. A

related notion is that of a permutation representation of a group G, which

is a homomorphism φ : G → Sn for some n. A standard result in group

theory is that any action of G on X induces a homomorphism φ : G → SX

(Dummit and Foote, 2004, Proposition 4.1.1). So any action of G on X induces

a corresponding permutation representation of G. We will occasionally abuse

terminology and refer to φ(G) as a permutation representation if the action is

clear. An action of G on X is called faithful if Ker(φ) = 1, where the kernel

of the action φ of G on X is denoted Ker(φ).

Example 1.1.1 Let n be a positive integer, and define f : Zn × Zn → Zn by

f (g, x) = g+x. For g, h ∈ Zn and x ∈ Zn, g+(h+x) = (g+h)+x and 0+x = x so

that f is an action of Zn on itself. The degree of this action is |Zn| = n, and the

action is faithful as if f (g, x) = x for all x ∈ Zn, then g = 0. The corresponding

permutation representation of Zn is φ : Zn → Sn given by φ(g) is the function

defined by x 7→ g+ x (mod n). Note that φ(Zn) is the subgroup of Sn generated

by the n-cycle (0, 1, 2, . . . , n − 1), and is usually denoted (Zn)L (see Definition

1.2.12). Similarly, if H ≤ Zn is a subgroup of order m, then similar arguments

show that k : Zn × (Zn/H) → Zn × (Zn/H) given by k(g, x + H) = g + (x + H)
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1.1 Basic Definitions 5

is also an action. If m > 1 this action is not faithful, as k(h, x + H) = x + H

for every h ∈ H. The degree of this action is then n/m. The corresponding

permutation representation of Zn is δ : Zn → Sn/m given by δ(g) is the function

defined by x 7→ x + g (mod n/m), and is also isomorphic to (Zn/m)L.

Definition 1.1.2 A permutation group G ≤ Sn is transitive if whenever x, y ∈

Zn, then there exists g ∈ G such that g(x) = y.

Typically when discussing permutation groups, we will either start with a

subgroup of Sn, or will specify a group and an action of that group on a set

X that then induces a natural subgroup of SX . Similarly, a concept about a

permutation group translates into a concept about actions and vice versa, and

we will usually refrain from defining analogous concepts in each context. So

an action of G on X is transitive if for every x, y ∈ X there is a g ∈ G such that

gx = y, and the degree of a transitive permutation group G ≤ Sn is n.

Example 1.1.3 Both of the actions in Example 1.1.1 are transitive as (using

the notation from that example) if x, y ∈ Zn then f (y− x, x) = y, and k(y− x, x+

H) = y + H.

Definition 1.1.4 Let G ≤ Sn be transitive, and let the point x ∈ Zn. The

stabilizer of x in G, denoted StabG(x), is defined by StabG(x) = {g ∈ G :

g(x) = x}. That is, StabG(x) is the set of all permutations in G that map x to x.

The stabilizer of x in G is often denoted Gx, and is a subgroup of G (Exercise

1.1.5).

Recall that every permutation in Sn can be written as a product of transpo-

sitions, and that this number is always even or always odd.

Definition 1.1.5 A permutation ρ ∈ Sn is even if it can be written as a product

of an even number of transpositions, and odd if it can be written as a product

of an odd number of transpositions. The set of all even permutations in Sn is a

subgroup, called the alternating group on n letters, and is denoted An.

Also recall that a cycle of odd length is an even permutation, while a cycle

of even length is an odd permutation. For proofs of the above mentioned facts

and other information regarding the alternating group (see Dummit and Foote

(2004, Section 3.5)).

Example 1.1.6 StabSn
(n−1) = Sn−1, StabAn

(n−1) = An−1, and Stab(Zn)L
(x) =

1, x ∈ Zn.

We now turn to some basic properties of the stabilizer.
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6 Introduction and Constructions

Theorem 1.1.7 Let G ≤ Sn, x ∈ Zn, and h ∈ G. Then hStabG(x)h−1
=

StabG(h(x)). Consequently, if G is transitive, then StabG(x) is conjugate in G

to StabG(y) for every y ∈ Zn.

Proof Observe that

StabG(h(x)) = {g ∈ G : g(h(x)) = h(x)}

= {g ∈ G : h−1gh(x) = x}

= {g ∈ G : h−1gh ∈ StabG(x)}

= {g ∈ G : g ∈ hStabG(x)h−1}

= h StabG(x) h−1.

For the second statement, as G is transitive, there exists h ∈ G such that h(x) =

y. Then StabG(y) = StabG(h(x)) = h StabG(x) h−1. �

The following result is quite useful, and is sometimes called the orbit-

stabilizer theorem.

Theorem 1.1.8 Let G ≤ Sn, and x ∈ Zn. The set G(x) = {g(x) : g ∈ G}, is the

orbit of x in G. Then |G| = |G(x)| · |StabG(x)|, or equivalently, |G(x)| = [G :

StabG(x)].

Proof Define φ : G → G(x) by φ(g) = g(x). Note that φ is onto (or surjective)

by definition, and so |φ(G)| = |G(x)|. Also,

φ(g) = φ(h) if and only if g(x) = h(x)

if and only if h−1g(x) = x

if and only if h−1g ∈ StabG(x)

if and only if h−1gStabG(x) = 1 · StabG(x) (as left cosets)

if and only if h and g are in the same left coset of StabG(x).

Thus |φ(G)| is the number of left cosets of StabG(x) in G, and so |G(x)| = [G :

StabG(x)]. As all groups here are finite, [G : StabG(x)] = |G|/|StabG(x)|. �

The following application of the orbit-stabilizer theorem is originally due to

Miller (1903).

Theorem 1.1.9 Let G be a transitive group of degree n, and p a prime. The

highest power pk of p dividing n also divides the length of every orbit of a

Sylow p-subgroup of G.

Proof Let P be a Sylow p-subgroup of G, and x ∈ Zn. By the orbit-stabilizer

theorem, n = [G : StabG(x)] and [P : StabP(x)] = |P(x)|. Then,
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1.1 Basic Definitions 7

n · [StabG(x) : StabP(x)] = [G : StabG(x)] · [StabG(x) : StabP(x)]

= [G : StabP(x)]

= [G : P] · [P : StabP(x)]

= [G : P] · |P(x)|.

As gcd([G : P], p) = 1, where gcd(m, n) is the greatest common divisor of m

and n, and pk divides n, we see that pk divides |P(x)|. �

The following immediate corollary is the form of the previous result used

most often (for our purposes), and is also due to Miller.

Corollary 1.1.10 Let p be prime and k ≥ 1. A Sylow p-subgroup of a

transitive group of degree pk is transitive.

Definition 1.1.11 A permutation group G ≤ Sn is semiregular if StabG(x) =

1 for every x ∈ Zn, and G is regular if G is both semiregular and transitive.

The next result follows directly from the orbit-stabilizer theorem as if G ≤

Sn is transitive, then G only has one orbit.

Corollary 1.1.12 A transitive group is regular if and only if its order and

degree are the same.

Example 1.1.13 The group Sn is regular if and only if n ≤ 2, and An is

regular if and only if n = 1 or 3 but is semiregular for n = 2. The group (Zn)L

is regular for all positive integers n.

Solution The group Sn is regular by Corollary 1.1.12 if and only if n! = n,

which is true if and only if n ≤ 2. Also, A1 = 1 is regular, A2 = 1 is not regular,

and for n ≥ 3, the group An is transitive and so regular if and only if n!/2 = n,

which is true if and only if n = 3. Finally, (Zn)L is transitive of order n and so

regular. �

A digraph Γ is an ordered pair (V, A), where V is a nonempty set (V is the

vertex set of Γ), and A ⊆ {(u, v) : u, v ∈ V} of ordered pairs of V (A is the

arc set of Γ). An arc (u, v) of a digraph is usually thought of as being directed

from u to v. If (u, v) ∈ A(Γ) and (v, u) ∈ A(Γ), we can identify these two arcs

and consider it an edge (a loop is also considered an edge). A graph Γ is a

digraph in which (u, v) ∈ A(Γ) if and only if (v, u) ∈ A(Γ), and in this case we

think of the edges as being unordered pairs of vertices, denoted uv. The arc set

of a graph Γ is usually called the edge set of Γ and denoted by E(Γ) instead

of A(Γ). According to this definition, multiple edges (different edges with the

same endpoints) are not allowed. This is not done from any sort of dislike of

multiple edges, but more from a desire to start with the simplest definition of
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8 Introduction and Constructions

a graph, and in most, but not all, situations concerning symmetry in digraphs,

multiple edges are irrelevant. This definition does allow loops, but similarly in

this book loops are irrelevant most of the time. There are many situations, some

of which will be encountered later, where the context calls for modifications

to the definition of a graph. In sections or chapters where multiple edges are

needed, this will be stated explicitly at the beginning of the section or chapter.

In this text, all graphs are finite (so have finite vertex sets). Basic digraph and

graph terms and operations such as walks, intersection of digraphs, etc., are

defined as usual. See Bollobás (1998), for example.

As is customary, for a graph Γ we denote by NΓ(u) = {v : uv ∈ E(Γ)} the set

of neighbors in Γ of the vertex u. For a digraph Γ, we denote the outneighbors

of u by N+
Γ

(u), and the inneighbors by N−
Γ

(u). That is, N+
Γ

(u) = {v : (u, v) ∈

A(Γ)} and N−
Γ

(u) = {v : (v, u) ∈ A(Γ)}. If the graph or digraph Γ is clear, we

may simply write N+(u), etc.

Definition 1.1.14 An isomorphism between two digraphs Γ1 and Γ2, is a

bijection φ : V(Γ1)→ V(Γ2) such that (φ(u), φ(v)) ∈ A(Γ2) if and only if (u, v) ∈

A(Γ1). We write Γ1 � Γ2.

Thus an isomorphism is a one-to-one mapping of the vertex set onto the

vertex set that preserves arcs.

Any isomorphism φ between two digraphs Γ1 and Γ2 induces a natural

bijection between A(Γ1) and A(Γ2) given by (u, v) 7→ (φ(u), φ(v)). We will often

abuse notation and simply write φ(u, v) instead of (φ(u), φ(v)) for the image of

the arc (u, v) under φ.

Definition 1.1.15 Any bijection φ from V(Γ1) to a set X induces a digraph

on X isomorphic to Γ1. Namely, define a digraph Γ2 by V(Γ2) = X and

A(Γ2) = {(φ(u), φ(v)) : (u, v) ∈ A(Γ1)}. We will adopt the notational convention

of setting φ(Γ1) = Γ2.

An automorphism of a digraph is an isomorphism of a digraph with

itself. The set of all automorphisms of a digraph Γ is a group under function

composition (or permutation multiplication if you prefer – see Exercise 1.1.8),

and is called the automorphism group of Γ, denoted Aut(Γ). Of course,

Aut(Γ) also acts on the arcs of a digraph and the edges of a graph.

Definition 1.1.16 A digraph whose automorphism group is transitive on its

vertex set is called a vertex-transitive digraph, and a digraph whose automor-

phism group is transitive on its arc set is called an arc-transitive digraph. A

graph Γ is edge transitive if Aut(Γ) is transitive on its edge set E(Γ).
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1.1 Basic Definitions 9

Example 1.1.17 A complete graph Kn of order n ≥ 1 is vertex-transitive,

arc-transitive, and Aut(Γ) = Sn.

Solution As Kn has every arc, if σ ∈ Sn then σ(u, v) ∈ A(Kn) for every

pair of distinct vertices u and v. Thus Aut(Kn) = Sn (as Sn is the “largest”

permutation group on n vertices). The group Sn is certainly transitive, and also

if (u1, v1), (u2, v2) ∈ A(Sn), then there is σ ∈ Sn with σ(u1, v1) = (u2, v2). Thus

Kn is vertex-transitive and arc-transitive. �

Example 1.1.18 For n ≥ 1, define a graph Qn by V(Qn) = Zn
2

and two vertices

are adjacent if and only if they differ in exactly one coordinate. The graph Qn

is the n-dimensional hypercube or the n-cube and is vertex-transitive. The

3-cube, whose automorphism group was discussed at the beginning of this

chapter, is shown in Figure 1.1.

Solution Define τi : Z
n
2
→ Zn

2
by τi(x) adds 1 modulo 2 in the ith coordinate of

x and is the identity on the other coordinates. If e ∈ E(Qn), then τi(e) ∈ E(Qn),

as in any coordinate, adding a constant (either 0 or 1) does not change whether

the coordinates are the same or different. Thus τi ∈ Aut(Qn) for every 1 ≤

i ≤ n. Additionally, it is easy to see that any element of Zn
2

can be transformed

into any other element of Zn
2

by changing (or adding 1) coordinates of the first

that differ with the second. Thus 〈τi : 1 ≤ i ≤ n〉, the subgroup of Aut(Qn)

generated by the τi, is transitive and Qn is vertex-transitive. �

The (n + 1)-cube can be constructed from the n-cube by taking two copies

of the n-cube and joining them by a 1-factor. The vertices of one n-cube has

an additional coordinate added with a 1 in the additional coordinate, while

the vertices of the other n-cube has an additional coordinate added with a

0 in the additional coordinate. The edges of the 1-factor are then between

corresponding vertices in the two copies. That is, the edges of the 1-factor only

differ in the additional coordinate. This can be seen in Figure 1.1, where the

additional coordinate that is added is the first coordinate, and the two copies of

the 2-cube are the top and bottom faces of the cube. This construction for the

(n + 1)-cube from the n cube is often useful for induction arguments.

Example 1.1.19 The Petersen graph given in Figure 1.2 is vertex-transitive.

Solution It is easy to see that a 72◦ rotation leaves the Petersen graph

invariant, and so any vertex of the “outside” 5-cycle 0, 1, 2, 3, 4, 0 can be

mapped to any other vertex on the “outside” 5-cycle and similarly, any

vertex of the “inside” 5-cycle 0′, 1′, 2′, 3′, 4′, 0′ can be mapped to any other

vertex on the “inside” 5-cycle. It thus only remains to show that there is an
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• 0′
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2′

•
4′

•1′

•
3′
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Figure 1.2 The Petersen graph.

automorphism of the Petersen graph that interchanges the outside 5-cycle and

the inside 5-cycle. Consider the permutation (0, 0′)(1, 1′)(2, 2′)(3, 3′)(4, 4′).

Straightforward computations (which you should do!) verify that this map is

an automorphism of the Petersen graph and so the Petersen graph is vertex-

transitive. �

A word about our notation for cycles. Usually a cycle is denoted by a

sequence of vertices, say v0v1, . . . , vn−1v0. You will notice in the previous

paragraph we used the slightly nonstandard notation of v0, v1, . . . , vn−1, v0, as

when using numbers for the labels of vertices, there can often be ambiguity –

particularly if the graph has many vertices. For example, in a graph with vertex

set Z25 the cycle 01230 could be a cycle of length 4 or two different cycles of

length 3! So we will feel free to use commas between vertices in denoting

a cycle, or not if it causes no ambiguity. A similar comment holds for cycle

notation of permutations.

Before our next discussion, we will need some additional definitions.

Definition 1.1.20 Let Γ be a regular graph. The valency of Γ is the number

of edges incident with any vertex. We say Γ is cubic if it is regular of valency

3. Finally, Γ is symmetric if its automorphism group is transitive in its action

on both its vertex set and its arc set.

While in this text we are usually concerned with vertex-transitive graphs,

from the very beginning of the study of vertex-transitive graphs there has been

interest in graphs whose automorphism group also acts transitively on arcs or

other subdigraphs in graphs. Indeed, starting in 1932, Foster started compiling

what is now known as the Foster census (Foster, 1988) of cubic symmetric
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