Bionanotechnology

Connecting theory with real-life applications, this is the first ever textbook to equip students with a comprehensive knowledge of all the key concepts in bionanotechnology. By bridging the interdisciplinary gap from which bionanotechnology emerged, it provides a systematic introduction to the subject, accessible to students from a wide variety of backgrounds. Topics range from nanomaterial preparation, properties and biofunctionalisation, and analytical methods used in bionanotechnology, to bioinspired and DNA nanotechnology, and applications in biosensing, medicine and tissue engineering. Throughout the book, features such as ‘Back to Basics’ and ‘Research Report’ boxes enable students to build a strong theoretical knowledge and to link this to practical applications and up-to-date research. With over 200 detailed, full-colour illustrations and more than 100 end-of-chapter problems, this is an essential guide to bionanotechnology for any student or researcher exploring this exciting, fast-developing and interdisciplinary field.

Ljiljana Fruk is a reader in BioNano Engineering in the Department of Chemical Engineering and Biotechnology, University of Cambridge. She has taught bionanotechnology in Germany and the UK, both at undergraduate and postgraduate level. Her group works on the design of enzyme-like catalysts, hybrid biopolymers for applications in sensing and optoelectronics, as well as drug nanocarriers for senescent cells and hard-to-treat cancers. A fellow of the Royal Society of Chemistry and council member of the Cambridge Philosophical Society, Dr Fruk is also a science populariser and co-editor of the book Molecular Aesthetics (with Peter Weibel, 2013).

Antonina Kerbs is a scientific team coordinator at Miltenyi Biotec, Germany. Before joining Miltenyi in 2019, she was a postdoctoral researcher in Dr Fruk’s group in the Department of Chemical Engineering and Biotechnology, University of Cambridge, where she worked on the preparation and biofunctionalisation of nanoparticles, and the designing of biosensing devices.
Bionanotechnology
Concepts and Applications

Ljiljana Fruk
University of Cambridge

Antonina Kerbs
Miltenyi Biotec, Germany
Contents

Preface xiii

1 Nanomaterials: Principles and Properties 1

1.1 Bionanotechnology: Concept and History 1
1.2 Nanomaterials in Bionanotechnology 2
1.3 Nanosized vs Bulk Materials 4
 In Numbers 1.1 How Many Atoms Are There in a Nanoparticle? 5
 Back to Basics 1.1 Density of States of a Solid 7
 In Numbers 1.2 At What Diameter Does a Gold Nanoparticle Achieve Quantum Confinement at 25 °C? 9
 Back to Basics 1.2 Surface Plasmon 10
1.4 The Ratio of Surface Atoms to Volume 13
1.5 Surface Energy 15
 Back to Basics 1.3 Crystal Facets and Their Surface Energy 17
1.6 Strategies to Reduce Surface Energy 18
 Back to Basics 1.4 Laws of Thermodynamics and the Gibbs Energy 18
1.7 Principles of Nanomaterial Synthesis 20
 Back to Basics 1.5 Colloids 22
 Back to Basics 1.6 Oxidation and Reduction Reactions 23
1.8 Nano(crystal) Growth 25
1.9 Ostwald Ripening and Coalescence 28
 Back to Basics 1.7 Van der Waals and Coulomb Interactions 30
1.10 Nuclei Formation and the Control of the Nanoparticle Shape 31
 Back to Basics 1.8 Clusters and Magic Numbers: Case of Noble Metals 33
 Key Concepts 35
 Problems 37
 Further Reading 38
 References 38

2 Nanomaterials: Preparation Strategies 40

2.1 Bottom-Up and Top-Down Strategies 43
 Back to Basics 2.1 Top-Down Method: Lithography 44
2.2 Preparation of Metallic Nanostructures 45
 2.2.1 Use of Strong Reducing Agents: A Case of Gold Nanoparticles 47
 2.2.2 Use of Mild Reducing Agents: A Case of Platinum Nanoparticles 48
 2.2.3 Micelle-Guided Reduction 49
Contents

2.2.4 Polyols and Surface Capping Agents for Shape Control 50
2.2.5 Metallic Nanoparticles: A Brief Overview of Other Methods 53

2.3 Preparation of Metal Oxide Nanomaterials 55
 Back to Basics 2.2 Sol–Gel Processing 55
 2.3.1 Hydrolysis of Alkoxide Precursors 56
 2.3.2 Hydrolysis of Inorganic or Organic Metal Salts 58
 Back to Basics 2.3 Types of Magnetism 59
 2.3.3 High-Temperature Non-Hydrolytic Methods 60

2.4 Synthesis of Quantum Dots 61
 Research Report 2.1 Quantum Dots for Improved Antibiotic Activity 63

2.5 Preparation of Carbon Nanomaterials 64
 2.5.1 Synthesis of Fullerene 65
 2.5.2 Carbon Nanotubes and Graphene 66
 Research Report 2.2 Activity of Neurons Restored by Carbon Nanotubes 69
 2.5.3 Preparation of Carbon Nanodiamonds 71
 Research Report 2.3 Carbon Nanodiamonds As Cell Thermometers 73

2.6 Preparation of Polymeric Nanoparticles 74
 Back to Basics 2.4 Polymer Synthesis 74
 Research Report 2.4 Biocompatible Polymer for Drug Formulation 76

2.7 Preparation of Porous Nanomaterials 77
 Research Report 2.5 Mesoporous Silica for Bone Regeneration 78
 Back to Basics 2.5 Hydrogels 80

2.8 Biosynthesis of Nanomaterials 81
 Key Concepts 84
 Problems 85
 Further Reading 86
 References 87

3 Biomolecules and Scales of Biological Systems 91

3.1 Cell Compartments 92
 Back to Basics 3.1 Prokaryotic vs Eukaryotic Cells 94

3.2 Carbohydrates 97
 Back to Basics 3.2 Isomers and Molecular Mirror Images 97
 Back to Basics 3.3 It Is an ATP World 99
 Back to Basics 3.4 Nanocellulose 101

3.3 Lipids 102

3.4 Nucleic Acids 104
 Back to Basics 3.5 Nucleic Acid Glossary 105
 3.4.1 Deoxyribonucleic Acid 107
 3.4.2 Ribonucleic Acid 109
3.5 From DNA to Protein: Central Dogma of Molecular Biology

Back to Basics 3.6 Ribosomes: True Biological Machines

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 From DNA to Protein: Central Dogma of Molecular Biology</td>
<td>110</td>
</tr>
<tr>
<td>Back to Basics 3.6 Ribosomes: True Biological Machines</td>
<td>112</td>
</tr>
</tbody>
</table>

3.6 Proteins

Back to Basics 3.7 Secondary Protein Structure Motifs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Proteins</td>
<td>113</td>
</tr>
<tr>
<td>Back to Basics 3.7 Secondary Protein Structure Motifs</td>
<td>113</td>
</tr>
</tbody>
</table>

3.7 Proteins in Bionanotechnology: Interfacing Proteins

Research Report 3.1 Antibodies in Cancer Therapy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7 Proteins in Bionanotechnology: Interfacing Proteins</td>
<td>118</td>
</tr>
<tr>
<td>3.7.1 Streptavidin</td>
<td>118</td>
</tr>
<tr>
<td>3.7.2 Antibodies and Nanobodies</td>
<td>119</td>
</tr>
<tr>
<td>Research Report 3.1 Antibodies in Cancer Therapy</td>
<td>120</td>
</tr>
</tbody>
</table>

3.8 Proteins in Bionanotechnology: Labelling Proteins/Protein Tags

Back to Basics 3.9 Recombinant DNA and Fusion Proteins

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8 Proteins in Bionanotechnology: Labelling Proteins/Protein Tags</td>
<td>113</td>
</tr>
<tr>
<td>3.8.1 Fluorescent Proteins</td>
<td>123</td>
</tr>
<tr>
<td>3.8.2 Protein Tags</td>
<td>124</td>
</tr>
</tbody>
</table>

3.9 Proteins in Bionanotechnology: Enzymes

Research Report 3.2 Cofactor Exchange and Reconstitution

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9 Proteins in Bionanotechnology: Enzymes</td>
<td>127</td>
</tr>
<tr>
<td>Back to Basics 3.10 Six Enzyme Families</td>
<td>127</td>
</tr>
<tr>
<td>Research Report 3.2 Cofactor Exchange and Reconstitution</td>
<td>131</td>
</tr>
<tr>
<td>Research Report 3.3 An Enzyme Degrades Graphene</td>
<td>133</td>
</tr>
</tbody>
</table>

3.10 Proteins in Bionanotechnology: Structural Proteins

Research Report 4.3 An Enzyme Degrades Graphene

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10 Proteins in Bionanotechnology: Structural Proteins</td>
<td>133</td>
</tr>
<tr>
<td>Key Concepts</td>
<td>137</td>
</tr>
<tr>
<td>Problems</td>
<td>138</td>
</tr>
<tr>
<td>Further Reading</td>
<td>139</td>
</tr>
<tr>
<td>References</td>
<td>140</td>
</tr>
</tbody>
</table>

4 (Bio)functionalisation of Nanomaterials

Research Report 4.2 Improving Stability of Lipase Enzyme

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (Bio)functionalisation of Nanomaterials</td>
<td>143</td>
</tr>
<tr>
<td>4.1 Self-Assembly</td>
<td>144</td>
</tr>
<tr>
<td>Back to Basics 4.1 Concept of Self-Assembly throughout History</td>
<td>144</td>
</tr>
<tr>
<td>Back to Basics 4.2 Stochastic Processes</td>
<td>145</td>
</tr>
<tr>
<td>Research Report 4.1 Enzyme-Instructed Self-Assembly</td>
<td>149</td>
</tr>
<tr>
<td>4.2 Modification of the Nanomaterial Surface</td>
<td>152</td>
</tr>
<tr>
<td>4.2.1 Self-Assembled Monolayers</td>
<td>152</td>
</tr>
<tr>
<td>Research Report 4.2 Gold–Thiol Self-Assembled Monolayers</td>
<td>153</td>
</tr>
<tr>
<td>4.2.2 Surface-Binding Groups</td>
<td>155</td>
</tr>
<tr>
<td>Research Report 4.3 Catechol–Titanium Dioxide Charge Transfer Complex</td>
<td>157</td>
</tr>
<tr>
<td>4.2.3 The Space Between: The Spacer</td>
<td>159</td>
</tr>
<tr>
<td>Back to Basics 4.3 Kupffer Cells</td>
<td>160</td>
</tr>
<tr>
<td>4.2.4 Functional Groups</td>
<td>162</td>
</tr>
<tr>
<td>4.3 Non-Covalent Biofunctionalisation Strategies</td>
<td>163</td>
</tr>
<tr>
<td>4.3.1 Physical Adsorption</td>
<td>163</td>
</tr>
<tr>
<td>Research Report 4.4 Improving Stability of Lipase Enzyme</td>
<td>165</td>
</tr>
<tr>
<td>4.3.2 DNA-Directed Functionalisation</td>
<td>166</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
www.cambridge.org
Contents

4.3.3 DNA Aptamers

4.4 (Bio)functionalisation Using Proteins and Protein Tags

4.4.1 Streptavidin–Biotin Interaction

4.4.2 Antibody–Antigen Interactions

4.4.3 Protein Tags

Back to Basics 4.5 SNAP, CLIP and Halo Tags for Protein Conjugation

4.5 Covalent Biofunctionalisation Strategies

Back to Basics 4.6 Click Chemistry

5 Analytical Methods in Bionanotechnology

5.1 Assessing the Morphology of Nanostructures

Back to Basics 5.1 A Short History of Electron Microscopy

5.1.1 Electron Beam

5.1.2 Transmission Electron Microscopy

In Numbers 5.1 Electronvolts

Back to Basics 5.2 Cryogenic Electron Microscopy

5.1.3 Scanning Electron Microscopy

5.1.4 X-ray Diffraction

5.1.5 Small Angle X-ray Scattering

5.2 Composition and Surface Properties of Nanostructures

5.2.1 Energy Dispersive X-ray Analysis

5.2.2 X-ray Photoelectron Spectroscopy

5.2.3 Auger Electron Spectroscopy

5.2.4 Time of Flight Secondary Ion Mass Spectrometry

5.2.5 Scanning Tunnelling Microscopy

5.2.6 Atomic Force Microscopy

Research Report 5.1 Chemical Bond Formation Explored by AFM

5.3 Exploring Physiochemical Properties on the Nanoscale

5.3.1 Molecular Spectroscopy

Back to Basics 5.3 The Jablonski Diagram Explained

References
5.3.2 Ultraviolet–Visible Spectroscopy

In Numbers 5.2 Determining the Concentration of Functionalised Silver Nanoparticles

5.3.3 Fluorescence: Spectroscopy and Microscopy

Back to Basics 5.4 Lasers

Back to Basics 5.5 Types of Fluorescence Microscopy

5.3.4 Vibrational Spectroscopy: Infrared Spectroscopy

Back to Basics 5.6 Fourier Transform IR

5.3.5 Raman Spectroscopy and Surface-Enhanced Raman Scattering

Back to Basics 5.7 Tip-Enhanced Raman Spectroscopy

5.3.6 Dynamic Light Scattering

5.3.7 Zeta Potential

Back to Basics 5.8 Zeta Potential ζ

5.4 Exploring (Bio)Molecular Interactions on the Nanoscale

5.4.1 Fluorescence (Förster) Resonance Energy Transfer

Research Report 5.2 Protein Folding Studied by FRET

5.4.2 Surface Plasmon Resonance

5.4.3 Quartz Crystal Microbalance

Back to Basics 5.9 Piezoelectric Materials

Research Report 5.3 Detection of Cancer Biomarker Using SPR and QCM

Key Concepts

Problems

Further Reading

References

6 DNA Nanotechnology

6.1 Chemical Synthesis of DNA

Back to Basics 6.1 A Short History of the Chemical Synthesis of DNA

Back to Basics 6.2 A Single Cycle of the Phosphoramidite Coupling

6.2 DNA As an Immobilisation Tool

Research Report 6.1 DNA-Directed Immobilisation to Study Signalling in a Live Cell

6.3 DNA–Nanoparticle Conjugates

6.4 DNA for Material Design: DNA Hydrogels

Research Report 6.2 DNA Hydrogels

6.5 DNA Nanostructuring

6.6 DNA Origami

Back to Basics 6.3 Rolling Circle Amplification

6.7 DNA Origami: Applications

6.7.1 Origami-Guided Assembly

Contents ix
 Contents

 Research Report 6.3 DNA Origami for Studying Chemical Reactions at the Single Molecule Level 279
 6.7.2 DNA Origami for Drug Delivery 280
 Back to Basics 6.4 Battling Cancer: Doxorubicin 281
 6.7.3 Biosensors and Movable Devices 284
 Key Concepts 285
 Problems 286
 Further Reading 287
 References 287

 7 Bioinspired Nanotechnology 291

 7.1 Self-Assembled Peptide Nanostructures 293
 Research Report 7.1 Peptides for Drug Delivery 296

 7.2 Biomineralisation Peptides and Proteins in Nanodesign 297
 7.2.1 Nanostructures in Biomineralisation 297
 Back to Basics 7.1 Common Biominerals 297
 7.2.2 Designer Peptides for Growth of Nanostructures 302
 Research Report 7.2 Virus-Templated Lithium–Oxygen Battery 304
 7.2.3 Nanostructuring Using Biomineralisation Proteins 305

 7.3 Biotemplate-Assisted Nanodesign 309
 7.3.1 Protein Templates for Nanostructuring 310
 Research Report 7.3 Silk Fibroin for Preparation of Nanoparticles 311
 7.3.2 Nanostructure Design Using Microbial and Viral Templates 313
 Back to Basics 7.2 Structural Diversity of Viruses 315
 Research Report 7.4 Plasmonic Metamaterials from Cowpea Mosaic Virus 317

 7.4 Biomimetic Nanodesign 318
 7.4.1 Biomimetic Catalysts: Enzyme-Like Nanostructures 319
 Research Report 7.5 Peptide–Quantum Dot Hybrid As a Powerful Nanozyme 322
 7.4.2 Nanostructured Superhydrophobic Materials and Adhesive Surfaces 323
 Back to Basics 7.3 Superhydrophobicity and Surface Wetting 323
 Research Report 7.6 Frog's Toe Pad Structure As Inspiration for Surgical Graspers 327
 7.4.3 Nanostructured Colour 328
 Back to Basics 7.4 Photonic Crystals 329
 Research Report 7.7 Bioinspired Structural Colours As Actuators 333
 Key Concepts 335
 Problems 336
 Further Reading 337
 References 338
Contents

Research Report 9.3 Magnetic Nanoparticles As Contrast Agents for MRI of Cancer Tissue
391

9.4 Theranostic Nanomaterials
392

Back to Basics 9.7 Light-Induced Hyperthermia
394

9.5 Nanomaterials in Tissue Engineering
395

9.5.1 The Extracellular Matrix
397

Back to Basics 9.8 Composition of the Extracellular Matrix
397

9.5.2 Nanomaterials for Tissue Scaffold Engineering
400

Research Report 9.4 Nanopatterns Influence the Differentiation of Stem Cells
400

Back to Basics 9.9 Bone Engineering
402

9.5.3 Nanocomposite Hydrogels in Tissue Engineering
404

Back to Basics 9.10 Peptide Hydrogels
404

Research Report 9.5 Magnetically Responsive Hydrogels for Tissue Engineering and Soft Robot Design
407

9.6 Nanotoxicity and Environmental Impact of Nanomaterials
408

Research Report 9.6 Exploration of the Cellular Toxicity of Nanomaterials
410

Key Concepts
413

Problems
414

Further Reading
417

References
418

Appendix
421

Index
423
Preface

Bionanotechnology is a field at the intersection of nanotechnology and biology. It employs nanomaterials and biomolecules (and increasingly also whole organisms) to design new functional materials and devices. At the same time, it also learns from biological systems and turns what evolution has perfected over the past millennia into solutions we can apply to resolve some of the challenges we are facing now.

In simple terms, bionanotechnology is a bit of everything: there is lots of chemistry (synthesis and modification of nanomaterials), physics (rules of the nanoworld and principles of analytical methods), biology (all those proteins and microorganisms), medicine (drug delivery, diagnostics) and engineering (device and material design). However, bionanotechnology is not just a mix-and-match collection of concepts, but it has, over the past decades, continuously grown into a field with a clear identity and goals.

This textbook aims to combine the concepts and bridge the gaps between different disciplines from which bionanotechnology emerged, and give a more systematic view of the basics and application across the field. Knowing that there will be students and researchers from a wide range of disciplines reading the book, we often give broad description of a particular principle, and provide literature sources for those who want to learn more. The book begins with the an overview of basic physics and chemistry behind nanomaterial engineering, then moves onto the composition of the cell and scales of biomolecules, and continues with chapters on topics such as DNA nanotechnology, nanomaterial biofunctionalisation, bioinspired nanotechnology and nanomedicine. Throughout the book, we summarise basic concepts from different scientific fields in the form of Back to Basics boxes and highlight the latest scientific developments in
Research Reports. Important terms are highlighted in bold throughout and certain Key Concepts are gathered at the end of each chapter as a revision aid before the Problem sections. We hope that our book will be used as a reference book not only by lecturers and undergraduate students, but also postgraduates and researchers working in the field and trying to refresh their knowledge or learn basic concepts to help them in their projects. We wanted to make sure that concepts are clearly presented, and of huge help was our collaboration with an engineer and talented graphic designer Dr Nan Li from the University of Cambridge. She helped design many of the figures and provided valuable input that eased our creative process.

In the past decades, interdisciplinarity has been embraced as a more natural way to enable technological and scientific advances in various research fields. Students, however, still start by studying traditional scientific disciplines and move into more interdisciplinary areas in their final undergraduate year and postgraduate research. While working in German and UK universities, we have witnessed an increased number of undergraduates and graduates venturing into the fields only remotely related to their first degree. The bionanotechnology and chemical product design classes in Cambridge are often attended by engineers working on their biomedical devices and trying to learn some chemistry and biology, and biologists working with nanoparticles but struggling to understand how to modify the surface to prevent their aggregation. That means that a good part of the lecture is spent introducing basic terminology and concepts before moving onto the developments in bionanotechnology and recent applications and challenges. Students with physics and engineering background often struggle with the basic bionano principles, since they have not been taught organic synthesis, protein structure or genetics. The other way around, those with a background in medicine or chemistry might be challenged by instrumental design or physics behind the nanophenomena. Students are also often encouraged to consult a particular chapter written by a group of experts in an edited collection, which can be too advanced for their background or simply too difficult for them to grasp. We believe that one of the ways to resolve these challenges is to provide them with a textbook that would ease their journey through various disciplines, and combine the basic concepts with the most recent applications in the fields of drug design, biomimetics, biosensing, optoelectronics, just to name a few.

We hope that Bionanotechnology will manage to bridge some gaps between the basic scientific concepts and advanced applications, and inspire a new generation of researchers to embrace interdisciplinarity as the natural way of finding the most sustainable innovative solutions to ongoing challenges.