Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Learning and Memory

Second Edition

The first text to integrate behavioral and cognitive approaches to learning and memory, this engaging textbook emphasizes human research, reflecting the field's evolution. Learning and Memory also recognizes the vital contribution of animal research, covering all historically important studies. Written in a lively and conversational style, this second edition encourages students to think critically. One example is its exploration of the Rescorla-Wagner model, the most important theory of conditioning, now further streamlined to improve student comprehension. Another is the addition of critical-thinking questions, which encourage students to evaluate their reactions to the material they've read, and relate findings to their own lives. Research includes an emphasis on practical applications such as treatments for phobias, addictions, and autism; the arguments for and against corporal punishment; whether recovered memories and evewitness testimony should be believed; and effective techniques for studying. The text concludes with an overview of neural networks and deep learning.

David A. Lieberman was an undergraduate at Columbia University and received his Ph.D. from Brown University. He taught for four years at the University of Illinois, Champaign-Urbana, where he was twice selected as the 'most stimulating' teacher in psychology in university polls of graduating seniors. He then moved to the University of Stirling in Scotland where his course on learning received the highest student ratings of any course in psychology. He served two terms as Associate Editor of the Quarterly Journal of Experimental Psychology and was one of only two psychology members of the SERC panel – the UK equivalent of the US National Science Foundation – that awarded research grants in psychology. He is the author of *Learning and the Control of Behavior, Learning: Behavior and Cognition*, and *Learning and Memory*.

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Learning and Memory

SECOND EDITION

David A. Lieberman

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108428613 DOI: 10.1017/9781108553179

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011 Second edition 2021

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-42861-3 Hardback ISBN 978-1-108-45073-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

For Nick, Nat, and Myra, and my grandchildren Anton, Rory, and Eli

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Contents

	List of Figures	<i>page</i> xvii	
	Preface	xxi	
	Acknowledgments	XXV	
	Part I Learning	1	
1	Core Assumptions	3	
2	Classical Conditioning	38	
3	Conditioning Principles and Theories	65	
4	Conditioning Applications	103	
5	Reinforcement	118	
6	Reinforcement Applications	158	
7	Punishment	181	
8	Theories of Reinforcement	207	
	Part II Memory	235	
9	Memory: An Introduction	237	
10	Working Memory	268	
11	Long-Term Memory	308	
12	Retrieval	341	
13	Applications	378	

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

viii Contents

	Part III Neural Foundations	407
14	From Neurons to Neural Networks	409
	References	436
	Author Index	491
	Subject Index	501

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Expanded Table of Contents

	List of Figures	<i>paqe</i> xvii	
	Preface	xxi	
	Acknowledgments	XXV	
	Part I Learning	1	
1	Core Assumptions	3	
	Is Behavior Lawful?	4	
	Determinism versus Free Will	5	
	Examples of Lawful Behavior	6	
	The Feeling of Freedom	7	
	Evaluation	10	
	How Should We Discover Any Laws?	11	
	Introspection	11	
	The Experimental Method	14	
	The Nature of Scientific Progress	15	
	The Use of Animals	17	
	The Advantages	17	
	Talking Animals	19	
	Ethical Issues	23	
	Behavioral and Cognitive Approaches	24	
	Learning	25	
	Defining Learning	25	
	Habituation	26	
	Sensitization	28	
	Associative Learning	30	
	Memory	32	
	Photographic?	32	
	Conscious?	33	
	Learning and Memory	34	
	Summary	35	
	A Suggestion for Studying	36	
	Review Questions	37	

х

	Expanded Table of Contents	
2	Classical Conditioning	38
	The Associative Context	39
	Descartes	39
	The British Associationists	39
	Pavlov	40
	An Associative Analysis	41
	Controlling the Conditions	43
	A Typical Experiment	44
	Basic Phenomena	46
	Extinction	46
	Generalization and Discrimination	51
	Second-Order Conditioning	52
	Counterconditioning	53
	The Need for Control Groups	54
	Little Albert	54
	Pseudoconditioning	55
	Unpaired and Random Groups	56
	Three Useful Responses	58
	The GSR	58
	Fear	59
	Taste-Aversion Learning	61
	Summary	64
	Review Questions	64
3	Conditioning Principles and Theories	65
	Principles	65
	Contiguity, Frequency, and Intensity	65
	Challenges to Contiguity	69
	Theories	78
	Conditioning in Animals	78
	A Two-System Hypothesis	83
	An Unconscious System?	85
	The Rescorla–Wagner Model	89
	The Model	90
	The Model's Successes	94
	The Model's Limitations	98
	Evaluation	99
	Summary	100
	Review Questions	101

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Expanded Table of Contents	
----------------------------	--

xi

4	Conditioning Applications	103
-	What Behavior Can Be Conditioned?	103
	Autonomic and Skeletal Responses	103
	Emotions	107
	Applications of Conditioning	110
	Addiction	110
	Phobias	112
	Summary	116
	Review Questions	117
5	Reinforcement	118
	Thorndike's Law of Effect	119
	Are Animals Intelligent?	119
	The Law of Effect	120
	Some Controversial Issues	121
	The Reinforcer	123
	Primary Reinforcers	123
	Secondary Reinforcers	125
	Social Reinforcers	126
	Negative Reinforcers	127
	Delay of Reinforcement	129
	Research with Animals	129
	Research with Humans	131
	Schedules of Reinforcement	135
	Ratio and Interval Schedules	136
	Patterns of Responding	137
	The Partial Reinforcement Effect	139
	Choosing a Schedule	140
	A Criminally Successful Application	140
	Motivation	142
	Contrast Effects	143
	The Yerkes–Dodson Law	144
	Stimulus Control	147
	Generalization	147
	Attention	148
	Perceptual Learning	149
	Practical Applications	150
	A Preliminary Application	153
	Summary	154
	Review Questions	156

xii

	Expanded Table of Contents	
6	Reinforcement Applications	158
	Schools, Tokens, and Autism	159
	Classroom Behavior	159
	The Token Economy	161
	Autism	162
	The Problem of Maintaining Behavior	165
	The Danger of Extinction	165
	Tactics for Encouraging Maintenance	166
	Harmful Effects of Reinforcement	168
	Moral Objections	168
	Undermining Intrinsic Motivation	169
	Determinants of Undermining	170
	Evaluation	172
	Self-Control	174
	Willpower?	174
	A Behavioral Analysis	175
	Improving Your Studying	178
	Summary	179
	Review Questions	180
7	Punishment	181
	Principles of Punishment	181
	Methodological Issues	181
	Is Punishment Effective?	184
	Principles	187
	Side Effects of Punishment	192
	Fear	192
	Aggression	195
	Conclusions	198
	Alternatives to Corporal Punishment	199
	Reinforcing Good Behavior	199
	Extinction	200
	Time-Out	202
	Response Cost	203
	Summary	205
	Review Questions	206
8	Theories of Reinforcement	207
	Association or Expectation?	209
	S-R and Cognitive Theories	209

Expanded Table of Contents	xiii

Convergence	211
The Problem of Ambiguity	214
Two Systems	215
The Evolution of Two Systems	215
Automatization	215
Consensus	216
Reinforcement without Awareness?	217
Yes	218
But, Hypothetically Speaking	219
Summary	221
Choosing a Response	221
A Behavioral Analysis	222
A Rational Analysis: Expected Utility	224
An Irrational Analysis: Kahneman and Tversky	225
Evaluation	232
Summary	233
Review Questions	234

	Part II Memory	235
9	Memory: An Introduction	237
	Practice Makes Perfect	238
	Ebbinghaus's Memory	238
	The Importance of Practice	241
	It Was All Nonsense!	243
	Levels of Processing	243
	Chomsky's Grammar	246
	Motor Skills	248
	Practice	249
	Feedback	250
	Motor Programs	252
	Behaviorism and Cognition	254
	An Information-Processing Framework	255
	The Computer Analogy	256
	Two Clues to a Model of Memory	258
	The Atkinson-Shiffrin Model	260
	The Model	260
	Its Predictions	262
	Summary	266
	Review Questions	267

xiv

	Expanded Table of Contents	
10	Working Memory	268
	Sensory Memory	268
	From Features to Grandmothers	269
	Top-Down Processing	271
	Storing the Evidence	273
	Short-Term Memory	276
	Does STM Exist?	276
	Do Memories in STM Decay?	279
	Working Memory	282
	The Mental Workbench	283
	Three Components	284
	STM as Activated LTM	287
	Evaluation	289
	Consolidation	291
	Attention	295
	Narrower than We Realize	295
	Theories of Attention	299
	Evaluation	304
	Summary	305
	Review Questions	306
11	Long-Term Memory	308
	Introduction	308
	Explicit Memory	309
	Episodic and Semantic Memories	310
	Are They Really Different?	311
	Implicit Memory	314
	Perceptual Memory	314
	Procedural Memory	315
	Priming	316
	A Deeper Look at Meaning	318
	Concepts	319
	Semantic Networks	322
	Propositions	328
	Schemas	332
	A Meaningful Summary	337
	Summary	338
	Review Questions	339

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

		Expanded Table of Contents
12	Retrieval	341
	Why Do We Forget?	341
	Decay versus Interference	342
	Sources of Interference	344
	Erasure or Loss?	348
	Summary	353
	Retrieval Processes	354
	A Simple Model	354
	Retrieval Cues	355
	Encoding Specificity	359
	Cue Overload	360
	Inhibition	361
	Retrieval-Induced Forgetting	362
	Deliberate Forgetting	364
	Memory as Reconstruction	366
	Reconstructing the Past	367
	Source Confusion	369
	Revisiting the Warehouse	374
	Summary	375
	Review Questions	376
13	Applications	378
	Mnemonics	378
	The Method of Loci	379
	Why Is It Effective?	380
	Studying	384
	Practice	384
	Think!	385
	Review	387
	Eyewitness Testimony	389
	Is Eyewitness Testimony Accurate?	390
	Attention	391
	Source Confusion	391
	Emotional Intensity	392
	Improving Testimony	394
	Recovered Memories	398
	Recovered Memories Can Be Real	398
	Recovered Memories Can Be False	400
	Why Are Some Memories False?	401
	Evaluation	402
	Summary	404
	Review Questions	404

xv

	Part III Neural Foundations	407
14	From Neurons to Neural Networks	409
	The Brain and Behavior	409
	Movement	412
	Emotion	412
	Thought	414
	Personality	415
	Neural Network Models	416
	A Model	416
	Explaining Concept Learning	421
	Explaining Life, the Universe, and Everything	425
	Associative Learning	426
	Memory	426
	Deep Learning	427
	Evaluation	430
	Problems	430
	But	431
	Summary	433
	Review Questions	434
	References	436
	Author Index	491
	Subject Index	501

. .

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Figures

1.1	Four independent variables simultaneously influencing a	
	dependent variable p	<i>age</i> 14
1.2	Using the experimental method	16
1.3	Sue Savage-Rumbaugh with Kanzi and her sister, looking at	
	lexigrams	21
1.4	Habituation of a salivary response to lemon juice	27
1.5	Magnitude of the startle response of rats to successive presentations	6
	of a tone presented against a background noise	29
1.6	Varieties of associative learning	31
1.7	Coding, storage, and retrieval of an experience	33
2.1	Pavlov's view of the neural connections involved in classical	
	conditioning	42
2.2	Apparatus used in Pavlov's study of salivary conditioning in dogs	44
2.3	Salivary conditioning in dogs	45
2.4	A typical classical conditioning procedure	45
2.5	Extinction of a conditioned response	47
2.6	Spontaneous recovery of an extinguished response	47
2.7	Pavlov's view of the development of inhibitory connections during	
	extinction	49
2.8	Idealized representation of discrimination learning	52
2.9	Pseudoconditioning	57
2.10	Control groups for classical conditioning	57
2.11	Acquisition of a conditioned emotional response	61
3.1	Paradigms for four varieties of classical conditioning	66
3.2	GSR conditioning as a function of the CS–US interval during	
	training	67
3.3	An illustration of contingency	70
3.4	Water intake before and after conditioning	74
3.5	Typical responses of key-pecking during autoshaping trials	81
3.6	Top view of the apparatus used by Jenkins to study autoshaping in	
	pigeons	82
3.7	Two cortical routes to fear	85
3.8	Following conditioning, a CS can independently elicit an expectatio	n
	of shock and fear	88

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

xviii List of Figures

3.9	In Rescorla and Wagner's model, conditioning involves the formation of an association between a center in the brain representing the CS	L
	and another center representing the US	91
3.10	The relationship between V and V_{max} early and late in conditioning	91
3.11	When two stimuli, A and B, are presented together, their centers in	
	the brain both activate a center representing the AB compound	94
3.12	Fear elicited by a light and a tone following just conditioning or	
	following additional trials	97
4.1	Morphine reduces pain sensitivity, and the body compensates by	
	increasing sensitivity	105
4.2	A virtual reality headset	115
5.1	Thorndike's puzzle box	120
5.2	Changes in the latency of escape from the puzzle box over trials for	
	two of Thorndike's cats	121
5.3	A straight-alley maze	122
5.4	A rat in a Skinner box	129
5.5	Effects of delayed reinforcement on bar-pressing rats	130
5.6	A rat's task when reinforcement is delayed, from the perspective of	
	the experimenter, and the rat	131
5.7	Decrease in the value of a reward as the delay to obtaining it	
	increases	134
5.8	Percentage of homework assignments completed by Tom under	
	different delays of reinforcement	135
5.9	Partial reinforcement schedules	137
5.10	Typical cumulative response records generated by two types of	
	schedules	138
5.11	The effect of partial reinforcement on responding during	
	extinction	139
5.12	Effect of amount of reinforcement on running speed	143
5.13	If a response is reinforced, future performance of that response	
	will depend on both learning and motivation	145
5.14	Generalization	148
6.1	Effect of praise on the proportion of class time Robbie devoted to	
	studying	160
6.2	Effects of three different reinforcement techniques	167
7.1	The effect of shock intensity on responses during extinction	185
7.2	The frequency of self-destructive behavior before and after	
	punishment	186
7.3	The effect of punishment intensity and explanations on a child's	
	obedience to instructions	194

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

xix

7.4	Extinction of a child's tantrum behavior	201
7.5	The percentage of her mother's instructions that Morgan followed	203
7.6	The rate of aggressive behavior per hour exhibited by Randy	204
8.1	The proportion of responses directed to one alternative in a	
	two-choice procedure, as a function of the proportion of reinforcers	
	earned by it	223
8.2	Two possible systems in decision making	230
9.1	Ebbinghaus's memory	240
9.2	Retention of Spanish vocabulary learned in high school	242
9.3	The hierarchical structure of a typical sentence	247
9.4	Performance on a pursuit rotor task as a function of the number	
	and spacing of trials	249
9.5	A student's improvement in tennis serving under standard and	
	behavioral coaching	251
9.6	Theories of motor control	253
9.7	Short-term memory	259
9.8	A simplified outline of the Atkinson-Shiffrin model	262
9.9	A typical serial position curve	264
9.10	The probability of recalling a word in a list of 20 words, together	
	with the number of times the word was rehearsed	265
10.1	A simplified outline of the visual system, illustrating how a large	
	number of neurons at one level converge on a single neuron at the	
	next level	269
10.2	Top-down mechanisms in visual perception	271
10.3	Procedure used by Sperling	274
10.4	Sensory memory	275
10.5	Serial position curves when words are recalled immediately or only	
	after a delay of 30 seconds	280
10.6	Waugh and Norman's probe-digit procedure	281
10.7	The effect of maintaining a 6 digit number in short-term memory	
	on memorizing a list of words	283
10.8	The three components of working memory proposed by Baddeley	
	and Hitch	284
10.9	STS as active memory	288
10.10	Retrograde amnesia gradient for patient PZ	292
10.11	Forgetting as a function of how often an item is recalled during	
	the period from acquisition to the final test	294
10.12	Change blindness	297
10.13	Chunking	298
10.14	A simplified version of Broadbent's filter theory	300

ΧХ

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

List of Figures

10.15	One possible integration of current theories of memory	304
11.1	One possible division of long-term memory	309
11.2	Processing a word	310
11.3	Memory in amnesics and normal control subjects	317
11.4	Collins and Quillian's semantic network model	323
11.5	Average time to verify sentences as a function of semantic	
	relationships	325
11.6	A simplified version of the Collins and Loftus semantic	
	network model	327
11.7	A graphic representation of two propositions	329
11.8	Droodles	334
12.1	The number of nonsense syllables recalled after intervals spent	
	either awake or asleep	343
12.2	Proactive interference	346
12.3	Release from PI	348
12.4	Memory for classmates' names over 48 years	351
12.5	The effect of number of retrieval cues on recall	352
12.6	The role of retrieval cues in memory	355
12.7	State-dependent learning	358
12.8	Cue overload	361
12.9	Retrieval-induced forgetting	363
12.10	The think/no think paradigm	365
13.1	Multiple retrieval cues aid recall	381
13.2	Mnemonic systems capitalize on existing links	382
13.3	The benefits of testing versus studying	388
14.1	A simplified version of the knee-jerk reflex	410
14.2	The synaptic gap	411
14.3	A simulation of the dense interconnections between neurons in	
	the brain	417
14.4	Neural connections in a network	419
14.5	A very simple (and imaginary) animal, with 4 receptors in its eye	
	and 4 neurons in its brain	423
14.6	A simplified representation of the McClelland and	
	Rumelhart model	424
14.7	Hidden units	427
14.8	Two images similar to the test photos used by Xu et al.	428
14.9	Rat neurons flying a jet plane	430

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Preface

Several goals guided me in writing this text. Briefly, I wanted it to be *stimulating and enjoyable*.

Stimulating

One of my fundamental goals was to present ideas in a way that would be intellectually stimulating. All textbook authors face the problem of how to balance the need for broad coverage against the dangers of superficiality – of losing students in a forest of facts. My own bias is to lean toward depth rather than breadth: I think students gain more from a deeper understanding of fundamental ideas than from a superficial familiarity with a much larger set of facts.

The experimental method: To encourage this understanding, the first chapter provides an in-depth introduction to the experimental method. Subsequent chapters build on this foundation by analyzing the logic of key experiments, exploring how the use of control groups allows the elimination of alternative explanations.

Theories: I have taken a similar approach to theories, concentrating on a small number so that students can really understand them. One example comes in the section on conditioning, where I focus on the Rescorla–Wagner model. Another comes in the final chapter, which is entirely devoted to neural network models, exploring their potential to explain behavior ranging from classical conditioning in slugs to language learning in humans. By introducing the assumptions of these models gradually and clearly, I've tried to show how theories can be used not only to explain known phenomena but to generate powerful and sometimes surprising predictions.

Understanding these models requires effort, but:

1 I think they will prove two of the most important theories in the history of psychology. The Rescorla–Wagner model, for example, is almost universally regarded as the single most important theory of conditioning ever proposed; with a few simple assumptions (once you understand them), it can explain a remarkable range of phenemona, and it makes predictions that at first seem impossible but turn out to be right. Even if students don't understand every single aspect, they can emerge with renewed respect – and, for some, excitement – over the power of theories, and of psychology.

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

xxii Preface

- 2 For this edition, I've further simplified the discussion of the Rescorla–Wagner model by reducing the number of equations. Reviewers have been enthusiastic. One wrote "This section is EXCELLENT! Frankly, I think this might be one of the better expositions of the topic that I've seen." Another said "I love the re-write. Clean, clear and much more digestible for an undergraduate course." And a third, "the presentation of the Rescorla–Wagner model is excellent."
- 3 There will still be courses where these sections aren't appropriate, and both can be omitted without damaging understanding of other sections. To make this easier, I've moved the Rescorla–Wagner model to the end of the chapter on theories of conditioning, and similarly discussion of neural networks comes at the end of the final chapter.

Enjoyable

No matter how stimulating ideas may be in principle, they will not have this effect in practice unless readers understand them and find them interesting. I have tried very hard, therefore, to present ideas clearly and, where possible, entertainingly. I hope reading the text will feel more like participating in an enjoyable conversation than listening to a formal lecture.

Applications: One way to make ideas come alive is to explore their practical implications, and I have tried to do this throughout the text. Students sometimes find research on learning boring because of an understandable disinclination to believe that experiments on rats can shed much light on human behavior, and similar problems can arise in seeing the value of memorizing nonsense syllables or paired associates. It is not enough for teachers and textbooks to assert that laboratory research is relevant: This relevance has to be demonstrated.

I have done this by interweaving material on laboratory research and practical applications in every chapter. The chapters on classical conditioning, for example, discuss the role of conditioning in phobias and drug cravings, and how conditioning principles have been used to treat them. Similarly, the chapters on reinforcement look at applications such as Lovaas's stunningly effective treatment for autism, and whether reinforcement undermines intrinsic motivation.

The chapters on memory continue this emphasis. Applications covered include techniques for improving studying, the accuracy of eyewitness testimony, and the painful issue of whether recovered memories of childhood abuse should be believed.

Human research: A related feature of the text is its emphasis on human research. This does not mean ignoring animal research. Especially for conditioning, animal research has provided the foundation for our understanding – and is also where I spent most of my career – and all important animal research is covered. However,

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Preface

xxiii

my goal has not been to present a thorough picture of how rats and pigeons learn, but wherever possible to introduce principles through human research, and then explore how these principles have been practically applied.

Students enjoy this research, and it also provides a crucial test of whether the principles developed in animal laboratories apply to people. Sometimes human research confirms findings from animals, sometimes it points us in important new directions. As one example of my synthesis of the two areas, I think this may be the only text that, in considering how reinforcement influences our behavior, discusses both animal research on the matching law and Kahneman and Tversky's research on heuristics.

Aids to Studying

To help readers absorb the sometimes challenging material in each chapter, I have provided Summaries at the end. In addition, each chapter contains Review Questions and Critical Thinking questions designed to encourage students to think more deeply about the material. There are also two sections – in the introductory chapter and then again in Chapter 13 on applications – summarizing the most effective techniques for studying.

Changes from the First Edition

Every section of the text has been updated, but some of the more substantial revisions include:

- Discussion of the **Rescorla–Wagner model** has been simplified by reducing the number of equations. I've also moved it to the end of the chapter on theories of conditioning, to make it easier for instructors to omit it.
- Major changes to the final chapter on **neural network models**. The chapter now begins with a discussion of how the brain controls every aspect of our behavior. It then discusses the neural processes involved, and how these neurons are connected in networks. The final section now incorporates extensive material on the astonishing successes of the most recent version of neural network models, **deep learning**.
- Theories of reinforcement: The discussion of heuristics has been reorganized; there is also a new section on the matching law.
- **Classical conditioning**: A substantially revised discussion of what behaviors can be conditioned.
- Motor learning: A major new section in Chapter 8.

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

xxiv

Preface

- Memory systems: Chapter 10 has been revised to make the relationship between different memory systems clearer.
- Habituation: A new section.
- **Critical thinking questions:** Most chapters now include critical thinking questions, designed to encourage students to think more deeply about the issues raised, and to relate them to their own lives.

Cambridge University Press 978-1-108-42861-3 — Learning and Memory David A. Lieberman Frontmatter <u>More Information</u>

Acknowledgments

I want to express my appreciation to all the staff at Cambridge University Press, and in particular to Dave Repetto, Melissa Shivers, Lisa Pinto, and Frances Brown. They understood what I was trying to do, and were supportive at every step along the way. Authors' egos can be fragile; I'm grateful for their tact and encouragement.

I'm also grateful to the reviewers, and in particular to John Pearce, whose comments were exceptionally insightful and helpful. Thank you all.

Finally, I want to again acknowledge the help of my wife Myra. I will always be grateful for her patience, love, and support.