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1 Introduction

Light can be described as a field E(
�

r , t) that varies in space and time. These variations can

be decomposed into spatial frequencies
�

κ and temporal frequencies ν respectively. That is, we

write

E(
�

r , t) =

∫∫

d
3�

κ dν E(
�

κ, ν)ei2π(�

κ ·

�

r −νt) (1.1)

E(
�

κ, ν) =

∫∫

d
3�

r dt E(
�

r , t)e−i2π(�

κ ·

�

r −νt) (1.2)

where throughout this book E(
�

κ, ν) will be called a radiant field and
�

κ = (κx,κy,κz) is

the wavevector associated with the field. Note that a distinction will be made here between a

wavevector
�

κ and an angular wavevector
�

k = 2π
�

κ, the latter being commonly found in the

literature. Because
�

κ is the Fourier conjugate variable of the position vector
�

r = (x, y, z), it

can be thought of as associated with momentum.

To each temporal frequency ν is associated a wavenumber κ (as distinct from an angular

wavenumber), defined by

κ =
n

c
ν (1.3)

where n is the index of refraction of the surrounding medium (n = 1 for free space) and c is

the speed of light in free space (c = 3.0 × 108 m/s). To each wavenumber is also associated

a free-space wavelength, defined by

λ =
n

κ
(1.4)

The use of the variables
�

κ to denote wavevector and κ to denote wavenumber is not

accidental. As we will see in Chapter 2, for propagating fields the two are linked by a

fundamental law known as the energy–momentum relation, given by

∣

∣

�

κ
∣

∣ = κ (1.5)

Written in this notation this relationship appears self-evident, but one must bear in mind that

the left-hand side represents the integration variables in Eq. 1.1 (related to momentum) while

the right-hand side comes from Eq. 1.3 (related to energy). In other words, the wavevector here

can have arbitrary direction but its magnitude is constrained to lie on a spherical shell defined
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2 Introduction

by the optical frequency ν. Off-shell components of
�

κ are possible, but these do not propagate.

Since we will only concern ourselves with propagating fields throughout this book, the notation

in Eq. 1.5 will be maintained. Equation 1.5 is perhaps the most fundamental relation in imaging

theory and stems directly from the wave equation, as will be seen in the next chapter.

1.1 COMPLEX FIELDS

Throughout this book, the field E(
�

r , t) will be treated as complex. That is, E(
�

r , t) should not be

confused with an electric field, since, by definition, an electric field is a physically measurable

quantity that must be real. Nevertheless, E(t) will serve as a representation of an electric field

Eelec(
�

r , t), such that

Eelec(
�

r , t) ∝ Re
[

E(
�

r , t)
]

(1.6)

While this relation places a constraint on Re
[

E(
�

r , t)
]

, it allows Im
[

E(
�

r , t)
]

to be chosen

arbitrarily. By general convention, this arbitrariness is removed when Im
[

E(
�

r , t)
]

is chosen

to fulfill a second condition, applied now to the radiant field and given by

E(
�

κ, ν) = 0 when ν < 0 (1.7)

This second condition implies that E(
�

r , t) is an analytic function of t. It imposes the

constraint that Re
[

E(
�

r , t)
]

and Im
[

E(
�

r , t)
]

are related by what is known as a Hilbert

transform (in t), thereby specifying E(
�

r , t) completely. While the conditions imposed by

Eqs. 1.6 and 1.7 will rarely be mentioned again throughout this book, they should nevertheless

always be kept in mind. For more information on analytic functions and Hilbert transforms, the

reader can consult [1] or [3].

The purpose of this introductory chapter is to motivate some general concepts in optical

imaging theory. In the most basic imaging applications, light from a two-dimensional (2D)

plane (called the object plane) is mapped onto another 2D plane (called the image plane)

some distance away. The goal of imaging theory is to analyze this mapping process. Because

2D planes are the starting point of imaging theory, our coordinate systems will be tailored

accordingly and we write
�

r = (
�

ρ, z), where
�

ρ lies in the 2D plane of interest. We also begin

by considering light whose time dependence contains only a single harmonic frequency ν0.

Such light is called monochromatic. The field in a 2D plane is then written in a simplified form

as E(
�

ρ), where the harmonic time dependence is implicit. Correspondingly, the general Fourier

transform relations linking a 2D field and 2D radiant field reduce to

E(
�

ρ) =

∫

d
2�

κ⊥ E(
�

κ⊥)e
i2π

�

ρ ·
�

κ§ (1.8)

E(
�

κ⊥) =

∫

d
2�

ρE(
�

ρ)e−i2π
�

κ§·
�

ρ (1.9)

where
�

κ = (
�

κ⊥,κz).
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1.2 Intensity and Radiance 3

Having established this basic formalism for complex fields, we turn now to some intuitive

notions of beam directionality and ray optics.

1.2 INTENSITY AND RADIANCE

Typical optical frequencies are on the order of ν0 > 1015 Hz, which is far too fast to be

directly measurable with detectors based on current technology. Standard detectors do not

directly measure the light field but rather the light intensity, defined by

I(
�

ρ) =
〈

E(
�

ρ)E7(
�

ρ)
〉

(1.10)

where the brackets ÿ...ÿ denote a temporal average over many temporal oscillations (this time

average will be better defined in Chapter 7). Because I(
�

ρ) is a physically measurable parameter,

it must be real. Throughout this book, I(
�

ρ) will provide a unit of reference. In particular, I(
�

ρ)
has units of power per area, or W/m2. Correspondingly, E(

�

ρ), from the relationship defined

above, must have units
:

W/m and E(�

κ§) must have units
:

Wm. Again, these units are not

those associated with the physically measurable electric field Eelec(
�

ρ) (units: V/m), and should

only be interpreted as convenient units to verify dimensional consistency.

Technically, as defined by Eq. 1.10, I(
�

ρ) should be referred to as an irradiance rather than an

intensity; however, in recent times the latter term seems to have come into favor, particularly

amongst experimentalists. This book will yield to the new jargon.

To gain an intuitive picture of light propagation from one 2D plane to another, it is often

convenient to think of light as composed of rays that transport power, as depicted in Fig. 1.1.

The rigorous connection between the notion of light rays and the description of light as complex

fields remains a difficult problem. One might be tempted to think of the direction of a light ray

Figure 1.1. Connection between wave optics and ray optics.
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4 Introduction

as linked to a wavevector
�

κ. Following this line of reasoning, one might consider inferring this

wavevector
�

κ from a Fourier transform of I(
�

ρ) =
〈

E(
�

ρ)E7(
�

ρ)
〉

. While this might have been

a good starting point, it is clearly problematic because a Fourier transform of
〈

E(
�

ρ)E7(
�

ρ)
〉

is

inherently non-local in space and does not fit our intuitive notion of light rays emanating from

specific locations with specific directions. Instead, a commonly accepted connection between

complex fields and ray optics was formulated by Walther [8] and Friberg [2], and is based on a

parameter called the radiance [7], defined by

L(
�

κ§;
�

ρ) = κ2

∫

d
2�

ρÿ
〈

E(
�

ρ + 1

2

�

ρÿ)E7(
�

ρ −
1

2

�

ρÿ)
〉

e2i2π
�

κ§·
�

ρ
ÿ

(1.11)

By construction, the radiance is a local Fourier transform (often called a Wigner function),

though not of the intensity but rather of the field autocorrelation function. The direction of

the light ray emanating from point
�

ρ is then prescribed by the value of
�

κ§ about which

L(
�

κ§;
�

ρ) is peaked. The local angle of propagation from point
�

ρ, accordingly, is defined

by (θx, θy) =
(

sin21(κ̂x/κ), sin
21(κ̂y/κ)

)

, where (κ̂x, κ̂y) corresponds to this peak. This

connection between radiance and ray direction is valid only for fields that are slowly spatially

varying on the scale of a wavelength, meaning, in effect, it is valid only for small angles, a

condition known as the paraxial limit, which will be invoked repeatedly. Indeed, the paraxial

limit has been implicitly assumed in the definition of radiance provided above.

1.3 RAY OPTICS

The notion of light rays is very convenient in that it provides a simple and intuitive description

of light propagation through basic elements of an optical imaging device. Since
�

ρ and
�

κ§ are

Fourier conjugate coordinates, we may also think of (x, y) and (n sin θx, n sin θy) as conjugate

coordinates, or, in the paraxial limit, (x, y) and (nθx, nθy). A light ray can then be described as

a vector
(

x

nθx

)

(1.12)

where, for purposes of discussion, we consider rays in the x–z plane only. This vector indicates

the position and direction of the ray at a given optical plane (plane 0). The effect of an optical

system, imaging or otherwise, is to transfer this ray to a new plane (plane 1) leading, in general,

to a change both in position and direction of the ray. A linear optical system can then be

characterized by a general transfer matrix M, such that,

(

x1

n1θx1

)

= M ·

(

x0

n0θx0

)

(1.13)

as schematically depicted in Fig. 1.2, where allowances have been made for different indices

of refraction on either side of the system. M is often referred to as an ABCD transfer matrix
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1.3 Ray Optics 5

Figure 1.2. General ABCD matrix.

because it consists of four elements. Detailed discussions of ABCD transfer matrix formalism

are provided in several optics textbooks, such as [4] and [6].

The following are a few basic results:

For propagation through an interface, then

Minterface =

(

1 0

0 1

)

(1.14)

indicating that on either side of the interface we have x1 = x0 and n1θ1 = n0θ0, the latter

being a statement of conservation of momentum along the x direction (also known as

Snell’s law).

For propagation an axial distance z through a medium of index n, then

Mpropagation =

(

1 z/n

0 1

)

(1.15)

For propagation through a thin lens of focal length f surrounded by a medium of index n, then

Mlens =

(

1 0

−n/f 1

)

(1.16)

For a system that performs perfect imaging with magnification M, then

Mimage =

(

M 0

0 1/M

)

(1.17)

Finally, for a system that exchanges the coordinates x and nθx, then

MFT =

(

0 L

−1/L 0

)

(1.18)

where the length scale L is introduced for dimensional consistency. Since x and nθx can be

thought of as Fourier conjugate coordinates, MFT can be though of as performing a perfect

Fourier transform where the coordinates are swapped, similar to Eqs. 1.8 and 1.9 (hence the

subscript FT).
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6 Introduction

Two observations can be made. First, all of the above transfer matrices satisfy the condition

det [M] = 1. This is in fact a general rule for lossless systems, resulting from the conservation

of a fundamental quantity called the étendue of the light beam. Thus, for perfect imaging

(Eq. 1.17), the magnification of the position by a factor M is necessarily accompanied by the

de-magnification of the propagation angle by a factor 1/M. A similar conclusion holds for a

perfect Fourier transform (Eq. 1.18), though applied to the crossed terms. Much more will be

said about étendue in Chapter 6.

A second observation relates to the effect of the index of refraction on propagation distances.

A distinction can be made between physical distances, such as z and f, and their associated

optical distances, such as nz and nf. For systems embedded in a medium, it is the latter that

become important.

Optical imaging systems, in general, involve the transfer of light rays through a medium

(or several media) and through lenses. We consider these transfers separately and then in

combination. For simplicity, we begin with systems surrounded by free space (n = 1). A more

general case involving unequal indices of refraction will be considered at the end of the chapter.

Propagation Through Free Space
In the simplest scenario, an arbitrary light ray starts at plane 0 and propagates an axial distance

z, leading to
(

x0 + zθx0

θx0

)

= Mpropagation ·

(

x0

θx0

)

(1.19)

In the limit where z becomes very large, we can eventually neglect the starting position of

the ray and write
(

x1

θx1

)

→

(

≈ zθx0

θx0

)

(1.20)

This limit is called the far-field or Fraunhofer limit. It is important because we find that in

this limit the position of the ray scales directly with its initial starting angle, the scaling factor

being simply z. In effect, far-field propagation can be thought of as performing a scaled Fourier

transform of the initial field by exchanging x0 with zθx0. However, this Fourier transform is

one-way since only x0 is exchanged with θx0 and not vice versa.

Propagation Through a Lens
Next, we examine the propagation of a light ray through a thin lens by taking the planes 0 and

1 to be on either side of the lens.

Referring to Eq. 1.16, we conclude that if a ray impinges upon the center of the lens at an

arbitrary angle θx0, then it exits the center of the lens undeviated. That is,

(

0

θx0

)

= Mlens ·

(

0

θx0

)

(1.21)
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1.4 Basic Transfer Properties of a Lens 7

Figure 1.3. Propagation of rays through a lens of focal length f.

Similarly, if a ray travels parallel to the optical axis but impinges upon the lens at an arbitrary

position, then it exits the lens at the same position, but deflected at an angle:

(

x0

−x0/f

)

= Mlens ·

(

x0

0

)

(1.22)

This deflection angle causes the outgoing ray to intersect the optical axis at a distance f from

the lens, independently of the initial position of the ray at the lens. In other words, a lens causes

any ray parallel to the optical axis to converge to the same focal point. Both the above properties

are illustrated in Fig. 1.3.

1.4 BASIC TRANSFER PROPERTIES OF A LENS

Finally, we derive some basic transfer properties of a lens in free space by again considering

planes 0 and 1 on either side of the lens, but this time generalizing the position of these planes

to be arbitrary distances s0 and s1, respectively, from the lens. The transfer of a light ray from

plane 0 to plane 1 is then governed by the composite matrix

MT = Mfree(s1) ·Mlens( f ) ·Mfree(s0) =

(

1 −

s1

f
s0 + s1 −

s0s1

f

−

1

f
1 −

s0

f

)

(1.23)

Two specific cases are of particular interest:
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8 Introduction

1.4.1 Fourier Transform with a Lens

In the event that s0 = s1 = f, Eq. 1.23 simplifies to

MT =

(

0 f

−1/f 0

)

(1.24)

and we recognize from Eq. 1.18 that in this specific configuration a lens performs a perfect

Fourier transform accompanied by a scaling factor f. It should be emphasized that no

Fraunhofer approximation was required to obtain this Fourier transform analogy, in contrast to

the far-field propagation result derived above (the small angle approximation, however, remains

valid). Moreover, the Fourier transform operation derived here is now two-way.

1.4.2 Imaging with a Lens

In the event that s0 and s1 satisfy a relation known as the thin-lens formula, given by

1

s0

+
1

s1

=
1

f
(1.25)

then Eq. 1.23 simplifies to

MT =

(

M 0

−1/f 1/M

)

(1.26)

where we have introduced the magnification factor

M = −

s1

s0

(1.27)

A lens performs near-perfect imaging in this specific configuration, as illustrated in Fig. 1.4.

The only defect in the imaging arises from the off-axis element −1/f that imparts an

extraneous dependence of the propagation angle at the image plane (plane 1) on the ray position

at the object plane (plane 0), as is observed by carrying out the matrix multiplication

(

x1

θx1

)

= MT ·

(

x0

θx0

)

=

(

Mx0

−x0/f + θx0/M

)

(1.28)

This extraneous dependence corresponds to a coupling between the ray direction and the ray

position at the image plane, which would be absent in the case of a perfect imaging system

described by Eq. 1.17. One consequence of such coupling is apparent in Fig. 1.4. If s1 is

increased or decreased relative to its in-focus value, not only does the image become blurred

(the rays do not converge properly), but the magnification increases or decreases as well.

Such axially dependent magnification is often problematic in microscopy applications (more on

this in Chapter 5). Imaging systems that do not exhibit this problem and where magnification

remains a constant independent of defocus are called telecentric systems. Modern microscopes

are almost always telecentric, and we will consider these in detail in subsequent chapters. In the
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1.4 Basic Transfer Properties of a Lens 9

Figure 1.4. Imaging with a lens of focal length f.

meantime, we only note that the limit of telecentricity can be approached with a single lens

when |x0| ÿ |θx0f/M|, in which case Eq. 1.28 simplifies to

(

x1

θx1

)

³

(

Mx0

j θx0/M

)

(1.29)

Optical planes connected by an imaging operation are called conjugate planes, whereas those

connected by a Fourier transform operation are called Fourier planes. We will make use of this

terminology throughout this book.

Axial Magni�cation
Though we have considered only transverse imaging magnifications so far, we can readily

derive an axial imaging magnification from the thin lens formula. For small axial displace-

ments, this axial magnification is defined by

Mz =
ds1

ds0

(1.30)

Taking the derivative of both sides of Eq. 1.25 with respect to s0, we find

Mz = 2

(

s1

s0

)2

= 2M2 (1.31)

1.4.3 Thick Lens

The transfer matrix Mlens (Eq. 1.16) is applicable to thin lenses only, so thin that a ray

traversing the lens incurs only a negligible lateral displacement. In practice, however, a lens

always possesses a finite thickness. In many cases it can even comprise several optical elements

and be quite thick indeed, an example being a microscope objective. Nevertheless, even a thick

lens, if properly designed, possesses a well-defined focal length. This focal length is defined

not from the center of the lens but rather from what is known as a principal plane, as illustrated

in Fig. 1.5.
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10 Introduction

Figure 1.5. Principal planes of a thick lens of focal length f.

An important property of lenses in general is that they obey a principle of optical reciprocity

wherein if a collimated bundle of rays parallel to the optical axis is focused to a point when inci-

dent from one side of the lens, then it is focused to another point when incident from the oppo-

site side. In the case of a thin lens, these points are located a distance f from either side of the

lens. In the case of a thick lens, however, they are located distances f from the associated prin-

cipal planes of the lens, as illustrated in Fig. 1.5. The difference between thin and thick lenses

is that for a thin lens the principal planes are merged into a single plane located exactly at the

lens plane, whereas for a thick lens they are displaced from one another. This displacement can

be quite large, often larger than the physical thickness of the lens itself. Moreover, the principal

planes may be distributed asymmetrically relative to the physical lens center, and may even be

on opposite sides of each other from what might be expected. In any case, regardless of the

location of the principal planes the focal lengths of a thick lens in either direction are the same,

provided only that the index of refraction of the media on either side of the lens is also the same.

It should be emphasized that this principle of reciprocity does not mean that a thick lens

works just as well in either orientation. The angular acceptance of a thick lens can be quite

different depending on its orientation, leading to very different fields of view in an imaging

application. More will be said about this in Chapter 6.

Effect of Surrounding Media
So far, we have mostly considered systems surrounded by free space, and only made general

allowances for the possibility of surrounding media other than free space. We close this chapter

with a more detailed examination of the effects of different indices of refraction. For example,

let us consider a thick lens, itself of refractive index nf, surrounded on one side by refractive

index n0 and on the other by refractive index n1, as shown in Fig. 1.6. The thin-lens formula in

this case becomes more complicated (cf. [5]), and assumes the more general form given by

n0

s0

+
n1

s1

=
nf − n0

R0

−

nf − n1

R1

(1.32)
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