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Introduction

Digital signal processing (DSP) is a revolutionary paradigm shift that enables processing

of physical data in the digital domain, where design and implementation are consider-

ably simplified. The success of DSP has driven the development of sensing and pro-

cessing systems that are more robust, flexible, cheaper, and, consequently, more widely

used than their analog counterparts. As a result of this success, the amount of data gener-

ated by sensing systems has grown considerably. Furthermore, in modern applications,

signals of wider bandwidth are used in order to convey more information and to enable

high resolution in the context of imaging. Unfortunately, in many important and emerg-

ing applications, the resulting sampling rate is so high that far too many samples need to

be transmitted, stored, and processed. In addition, in applications involving very wide-

band inputs it is often very costly, and sometimes even physically impossible, to build

devices capable of acquiring samples at the necessary rate. Thus, despite extraordinary

advances in sampling theory and computational power, the acquisition and processing

of signals in application areas such as radar, wideband communications, imaging, and

medical imaging continue to pose a tremendous challenge.

Recent advances in compressed sensing (CS) and sampling theory provide a frame-

work to acquire a wide class of analog signals at rates below the Nyquist rate, and

to perform processing at this lower rate as well. Together with the theory, various

prototypes have been developed that demonstrate the feasibility of sampling and pro-

cessing signals at sub-Nyquist rates in a robust and cost-effective fashion. More specif-

ically, CS is a framework that enables acquisition and recovery of sparse vectors from

underdetermined linear systems. This research area has seen enormous growth over the

past decade and has been explored in many areas of applied mathematics, computer

science, statistics, and electrical engineering. At its core, CS enables recovery of sparse

high-dimensional vectors from highly incomplete measurements using very efficient

optimization algorithms. More specifically, consider a vector x of length n. The vector

is said to be k-sparse if it has at most k nonzero components. More generally, CS results

apply to signals that are sparse in an appropriate basis or overcomplete representation.

The main idea underlying CS is that the vector x can be recovered from measurements

y = Ax, where y is of length m ≪ n as long as A satisfies certain mathematical

properties that render it a suitable CS matrix. The number of measurements m can be

chosen on the order of k log n, which in general is much smaller than the length of

the vector x. A large body of work has been published on a variety of optimization

algorithms that can recover x efficiently and robustly when m ≈ k log n. Loosely

xiv
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speaking, the theory of CS deals with conditions under which the recovery of informa-

tion has vanishing or small errors. The mathematical framework of CS has inspired new

acquisition methods and new signal processing applications in a large variety of areas,

including image processing, analog to digital conversion, communication systems, and

radar processing. In many of these examples the basic ideas underlying CS need to be

extended to include, for example, continuous-time inputs, practical sampling methods,

other forms of structure on the input, computational aspects, noise affects, different

metrics for recovery performance, nonlinear acquisition methods, and more.

Two books devoted to this topic have been published recently, which focus on

many of these aspects, as well as on the underlying mathematical results [1,2]. Their

main emphasis is on the basic underlying theory and its generalizations, optimization

methods, as well as applications primarily to image processing and analog-to-digital

conversion. The latter is also covered in depth in [3].

Radar signal processing represents a fertile field for CS applications. By their very

nature, radars collect data about surveillance volumes (search radars), targets (tracking

radars), terrain and ground targets (imaging radars), or buried objects (radar tomogra-

phy). From radar’s early days in World War II, through the emergence of digital radar in

the 1970s, to today’s advanced systems, the amount of data a radar system has to handle

has increased by orders of magnitude. While early digital radars had to contend with 10s

and 100s of kbps, today’s radars may be faced with data rates in the Gbps range or more,

leading to demanding requirements in cost, hardware, data storage, and processing. The

implications of applying CS to radar are potentially enormous: sampling rates could

be lowered, the number of antenna elements in large arrays might be reduced and the

computers required to handle the data may be downsized.

This book aims to present the latest theoretical and practical advances in radar signal

processing using tools from CS. In particular, this book offers an up-to-date review of

fundamental and practical aspects of sparse reconstruction in radar and remote sensing,

demonstrating the potential benefits achievable with the CS paradigm. We take a wider

scope than previous edited books on CS-based radars: we do not restrict ourselves to

specific disciplines (such as earth observation as in [4]) or applications (such as urban

sensing as in [5]), but discuss a variety of diverse application fields, including clutter

rejection, constant false alarm rate (CFAR) processing, adaptive beamforming, random

arrays for radar, space–time adaptive processing (STAP), multiple input multiple output

(MIMO) systems, radar super-resolution, cognitive radar [6] applications involving sub-

Nyquist sampling and spectrum sensing, radio frequency interference (RFI) suppres-

sion, and synthetic aperture radar (SAR).

The book is aimed at postgraduate students, PhD students, researchers, and engi-

neers working on signal processing and its applications to radar systems, as well as

researchers in other fields seeking an understanding of the potential applications of

CS. To read and fully understand the content it is assumed that the reader has some

background in probability theory and random processes, matrix theory, linear algebra,

and optimization theory, as well as radar systems. The book is organized into eleven

chapters broadly cathegorized into five areas: sub-Nyquist radar (Chapter 1); detection,

clutter/interference mitigation, and CFAR techniques (Chapters 2–6); super-resolution
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and beamforming (Chapters 7 and 8); radar spectrum sensing/sharing (Chapters 9 and

10); radar imaging (Chapter 11). Each chapter is self-contained and typically covers

three main aspects: fundamental theoretical principles, overview of the current state of

the art, and emerging/future research directions. Some chapters are also complemented

with analyses on real data. Since the chapters are independent, there is flexibility in

selecting material both for university courses and short seminars.

In Chapter 1, the authors review several sub-Nyquist pulse-Doppler radar systems

based on the Xampling framework. Contrary to other CS-based designs, their formu-

lations directly address the reduced-rate analog sampling in space and time, avoid a

prohibitive dictionary size, and are robust in the face of noise and clutter. The chapter

begins by introducing temporal sub-Nyquist processing for estimating the target loca-

tions using less bandwidth than conventional systems. This paves the way to cognitive

radars, which share their transmit spectrum with other communication services, thereby

providing a robust solution for coexistence in spectrally crowded environments. Next,

without impairing Doppler resolution, the authors reduce the dwell time by transmitting

interleaved radar pulses in a scarce manner within a coherent processing interval or

slow time. Then, they consider MIMO array radars and demonstrate spatial sub-Nyquist

processing, which allows the use of few antenna elements without degradation in

angular resolution. Finally, they demonstrate application of sub-Nyquist and cognitive

radars to imaging systems such as SAR. For each setting, the authors present a state-

of-the-art hardware prototype designed to demonstrate the real-time feasibility of

sub-Nyquist radars.

Chapter 2 discusses the problem of clutter mitigation, which has posed challenges to

radar designers and engineers since the early days of radar. Early techniques matured to

current approaches like STAP, which use a coherently processed data cube to estimate

clutter statistics and to perform adaptive filtering. This chapter examines CS techniques

for the mitigation of structured interference, such as clutter. The author first introduces

the relevant sensing model and describes results in uncompressed adaptive filtering.

This paves the way to the development of models for measurement compression of the

coherent data cube and of approaches to estimate and filter clutter from compressed

measurements. The chapter includes recent results showing how clutter second-order

statistics can be reliably estimated from compressed measurements if the clutter has

well-controlled eigenspectrum. Additionally, the covariance of the interference can be

incorporated into the CS estimation process to improve performance.

RFIs pose serious threats to the proper operations of ultra wideband (UWB) radar

systems due to severely degrading their imaging and target detection capabilities. RFI

mitigation is a challenging problem, since dynamic RFI sources utilize diverse mod-

ulation schemes, hence they are difficult to model precisely. Fortunately, RFI sources

possess certain unique properties that can be exploited for their mitigation. In Chapter 3

the authors propose several sparse signal recovery methods for effective RFI mitigation.

They first show that the RFI sources possess a low rank property and are sparse in the

frequency domain, while in contrast the desired UWB radar echoes are sparse in the time

domain. Therefore, robust principal component analysis (RPCA) can be used to simul-

taneously exploit these properties for effective RFI mitigation. RPCA, however, requires
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a fine tuning of a user parameter, which is dependent on the signal-to-interference ratio

(SIR). This parameter tuning is not straightforward in practice due to the lack of prior

knowledge on the RFI sources and on the desired UWB radar echoes. To avoid the

user parameter tuning problem, the authors consider modeling the RFI sources within

a pulse repetition interval (PRI) as a sum of sinusoids. The CLEAN algorithm can

then be used with the Bayesian information criterion (BIC) to determine the number

of sinusoids and to estimate their parameters. They show that CLEAN-BIC is user-

parameter-free and can be used to remove dominant RFI sources effectively. However,

since the sparse property of the UWB radar echoes are not utilized by CLEAN-BIC, the

resulting SAR images appear noisy, especially for low SIR values. To take advantage

of the merits of both RPCA and CLEAN-BIC algorithms, the authors consider using

CLEAN-BIC to estimate SIR, and the estimated SIR value is then used to determine

the user parameter for the RPCA algorithm. Finally, the algorithms are applied to both

simulated and experimentally measured data for performance evaluation.

Chapter 4 is focused on target detection from a set of compressive radar measure-

ments corrupted by additive white Gaussian noise. The complications in the calculation

of false alarm and detection probabilities that are caused by the nonlinear nature of target

recovery schemes in CS have impeded the application of such systems in practice. In

this chapter, the authors aim to show how recent advances in the asymptotic analysis of

CS recovery algorithms help to overcome this challenge. Fully adaptive and practical

CS target detection schemes are provided together with a detailed analysis of their

performance through extensive simulated and experimental data.

In Chapter 5, the authors present CFAR detectors for STAP random arrays. The

problem is formulated as detection of sparse targets given space–time observations

from thinned random arrays. The observations are corrupted by colored Gaussian noise

of an unknown covariance matrix, but secondary data are available for estimating the

covariance matrix. It is shown that the number of elements required to constrain the

peak sidelobe level scales logarithmically with the array aperture, whereas the number

of elements of a uniform linear array (ULA) scales linearly with the array aperture. New

adaptive detectors are developed that cope with the high sidelobes of random arrays.

Performance and complexity analysis demonstrate high performance at a reasonable

computation cost with significantly fewer elements than a ULA.

In Chapter 6, sparse-based STAP methods are developed by exploiting the intrinsic

sparsity of the clutter spatial-temporal power spectrum and of the space–time adaptive

weight vectors. First, the signal model of received space–time data for an airborne

phased array radar is introduced, and the intrinsic model sparsity for radar STAP is

analyzed. Second, leveraging on the sparsity of clutter spatial-temporal power spectrum,

a robust and fast iterative sparse recovery method is introduced. It can not only alleviate

the effect of noise and dictionary mismatch but can also reduce the computational com-

plexity via recursive inverse matrix calculation. Finally, based on the sparsity of space–

time adaptive weight vectors, a fast STAP method based on projection approximation

subspace tracking (PAST) with a sparse constraint is discussed. It provides a robust

and stable estimation of the clutter subspace when a small set of training samples is

available. Based on both the simulated and actual airborne phased array radar data, it is
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verified that the developed methods can provide satisfactory performance with a small

training sample support in a practical complex nonhomogeneous environment.

Chapter 7 considers the use of CS techniques for the resolution of multiple targets.

Estimating the relative angles, delays, and Doppler shifts from the received signals

allows for the determination of the locations and velocities of objects. However, due to

practical constraints, the probing signals have finite bandwidth B, the received signals

are observed over a finite time interval of length T only, and in addition, a radar typically

has only one or a few transmit and receive antennas. Those constraints fundamentally

limit the resolution up to which objects can be localized: the delay and Doppler reso-

lution is proportional to 1/B and 1/T , and a radar with NT transmit and NR receive

antennas can only achieve an angular resolution proportional to 1/(NT NR). The author

shows that the continuous angle-delay-Doppler triplets and the corresponding attenua-

tion factors can be resolved at much finer resolution, using ideas from CS. Specifically,

provided the angle-delay-Doppler triplets are separated either by factors proportional

to 1/(NT NR − 1) in angle, 1/B in delay, or 1/T in Doppler direction, they can be

recovered at significantly smaller scale or higher resolution.

Traditional adaptive beamformers are very sensitive to model mismatch, especially

when the training samples for adaptive beamformer design are contaminated by the

desired signal. In Chapter 8, the authors propose a strategy to reconstruct a signal-

free interference-plus-noise covariance matrix for adaptive beamformer design. Using

the sparsity of sources, the interference covariance matrix can be reconstructed as a

weighted sum of the tensor outer products of the interference steering vectors, and the

corresponding parameters are estimated from a sparsity-constrained covariance matrix

fitting problem. In contrast to classical CS and sparse reconstruction problems, the for-

mulated sparsity-constrained covariance matrix fitting problem can be effectively solved

by using the a priori information on array structure rather than using convex relaxation.

Simulation results demonstrate that the proposed adaptive beamformer almost always

provides near-optimal performance.

Chapter 9 deals with two-dimensional (2-D) spectrum sensing in the context of a

cognitive radar to gather real-time space–frequency electromagnetic awareness. Assum-

ing a sensor equipped with multiple receive antennas, a formal discrete-time sensing

signal model is developed, and two signal processing techniques capable of recovering

the space–frequency occupancy map via block sparsity exploitation are presented. The

former relies on the iterative adaptive algorithm (IAA) and incorporates a BIC-based

stage to foster block-sparsity in the recovery process. The latter resorts to the regularized

maximum likelihood (RML) estimation paradigm, which automatically promotes block-

sparsity in the 2-D profile evaluation. Some illustrative examples (both on simulated and

real data) are provided to compare the different strategies and highlight the effectiveness

of the developed approaches.

In Chapter 10, a cooperative spectrum-sharing scheme for a MIMO communication

system and a sparse sensing-based MIMO radar is presented. Both the radar and the

communication systems use transmit precoding. The radar transmit precoder, the radar

subsampling scheme, and the communication transmit covariance matrix are jointly

designed in order to maximize the radar SIR, while meeting certain communication
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rate and power constraints. The joint design is implemented at a control center, which

is a node with which both systems share physical layer information, and which also

performs data fusion for the radar. Efficient algorithms for solving the correspond-

ing optimization problem are presented. The cooperative design significantly improves

spectrum sharing performance, and the sparse sensing provides opportunities to control

interference.

Chapter 11 discusses applications of CS to radar imaging problems with reference

to SAR and inverse synthetic aperture radar (ISAR) sensors. The authors first provide

the relevant mathematical expressions for CS and SAR necessary to formulate the prob-

lem of CS SAR imaging. Thereafter, they consider the case where unknown motion

errors are present during the SAR acquisition process. Autofocusing, i.e., the blind

compensation of the aforementioned errors, is discussed, and general CS solutions are

presented. The chapter ends with a survey of CS methods for ISAR imaging of targets

with unknown motion.

References

[1] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge

University Press, 2012.

[2] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser

Basel, 2013, vol. 1, no. 3.

[3] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cambridge University Press,

2015.

[4] C.-H. Chen, Compressive Sensing of Earth Observations. CRC Press, 2017.

[5] M. Amin, Compressive Sensing for Urban Radar. CRC Press, 2014.

[6] A. Farina, A. De Maio, and S. Haykin, The Impact of Cognition on Radar Technology. Scitech

Publishing, Radar, Sonar & Navigation, 2017.

www.cambridge.org/9781108428293
www.cambridge.org


Cambridge University Press
978-1-108-42829-3 — Compressed Sensing in Radar Signal Processing
Edited by Antonio De Maio , Yonina C. Eldar , Alexander M. Haimovich 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Symbols

A unified notation is used throughout the book.

z column vector (lower case)

Z matrix (upper case)

zi ith element of z

Zi,l (i,l)-th entry of Z

A sensing matrix

� sparsity matrix

� = A� product

y observed measurement vector

x original signal vector

k sparsity

n ambient dimension

m number of measurements

‖ · ‖p p-norm

(·)T transpose operator

(·)∗ conjugate operator

(·)H conjugate transpose operator

(·)† pseudo inverse of the matrix argument

tr (·) trace of the square matrix argument

Rank (·) rank of the square matrix argument

λmax(·) maximum eigenvalue of the square matrix argument

λmin(·) minimum eigenvalue of the square matrix argument

diag(x) N -dimensional diagonal matrix whose ith diagonal element

is xi , i = 1,. . .,N , with x ∈ C
N

Range (A) range span of the column vectors of the matrix A

I identity matrix (its size is determined from the context)

0 matrix with zero entries (its size is determined from the context)

R
N set of N -dimensional vectors of real numbers

C
N set of N -dimensional vectors of complex numbers

H
N set of N × N Hermitian matrices

� for any A ∈ H
N , A � 0 means that A is a positive semidefinite matrix

≻ for any A ∈ H
N , A ≻ 0 means that A is a positive definite matrix

xx
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List of Symbols xxi

T standard notation for sets (uppercase letter)

|T | cardinality of a set T

x̂ result of ℓ1 minimization/recovery algorithm

supp(x) support of vector x

I standard notation for subset of indices

xT length-|T | sub-vector containing the elements of x

corresponding to the indices in T

AT m × |T | sub-matrix containing the columns of

the m × n matrix A indexed by T

j imaginary unit

Re(x) real part of the complex number x

Im(x) imaginary part of the complex number x

|x| modulus of the complex number x

arg(x) argument of the complex number x

E [·] statistical expectation

⊙ Hadamard product

⊗ Kronecker product

ẏ,
∂y
∂x

,
dy
dx

first derivative of y with respect to variable x

ÿ,
∂2y

∂x2 ,
d2y

dx2 second derivative of y with respect to variable x

P[·] probability measure

x(t) continuous time signal

h(t) pulse shape

xi measurements of x(t)

δk = δk(A) restricted isometry constant.

Statement of restricted isometry property (RIP): a matrix A satisfies the RIP of order

K if

(1 − δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2

for all x with ‖x‖0 ≤ K .
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