Contents

1 Introduction and Overview
1.1 Motivation and Background
1.2 Purpose of This Book
1.3 How to Use This Book
1.4 Suggested Reading
1.5 A Brief History of Robot Grasp Mechanics
References

Part I Basic Geometry of the Grasping Process

2 Rigid-Body Configuration Space
2.1 The Notion of Configuration Space
2.2 Configuration Space Obstacles
2.3 The C-Obstacle Normal
2.4 The C-Obstacle Curvature
Bibliographical Notes
Appendix: Details of Proofs
Exercises
References

3 Configuration Space Tangent and Cotangent Vectors
3.1 C-Space Tangent Vectors
3.2 C-Space Cotangent Vectors
3.3 Line Geometry of Tangent and Cotangent Vectors
Bibliographical Notes
Exercises
References

4 Rigid-Body Equilibrium Grasps
4.1 Rigid-Body Contact Models
4.2 The Grasp Map
4.3 The Equilibrium Grasp Condition
References
Contents

4.4 The Internal Grasp Forces 65
4.5 The Moment Labeling Technique 67
Bibliographical Notes 71
Appendix: Proof of Moment Labeling Lemma 72
Exercises 73
References 80

5 A Catalog of Equilibrium Grasps 81
5.1 Line Geometry of Equilibrium Grasps 81
5.2 The Planar Equilibrium Grasps 83
5.3 The Spatial Equilibrium Grasps 97
5.4 Equilibrium Grasps Involving Higher Numbers of Fingers 110
Bibliographical Notes 111
Appendix I: Proof Details 112
Appendix II: The Dimension of the Set of Frictionless Equilibrium Grasps 117
Exercises 120
References 132

Part II Frictionless Rigid-Body Grasps and Stances 133

6 Introduction to Secure Grasps 135
6.1 Immobilizing Grasps 135
6.2 Wrench Resistant Grasps 139
6.3 Duality of Immobilizing and Wrench-Resistant Grasps under Frictionless Contact Conditions 142
6.4 A Forward Look at the Chapters of Part II 144
Bibliographical Notes 144
Appendix: Proof Details 145
References 146

7 First-Order Immobilizing Grasps 147
7.1 The First-Order Free Motions 147
7.2 The First-Order Mobility Index 151
7.3 First-Order Immobilization 154
7.4 Graphical Interpretation of the First-Order Mobility Index 157
Bibliographical Notes 160
Appendix: Proof Details 161
Exercises 163
References 166

8 Second-Order Immobilizing Grasps 167
8.1 The Second-Order Free Motions 167
8.2 The Second-Order Mobility Index 171

9 Minimal Immobilizing Grasps

9.1 Minimal First-Order Immobilizing Grasps 195
9.2 The Maximal Inscribed Disc 198
9.3 Minimal Second-Order Immobilizing Grasps 201
9.4 Minimal Second-Order Immobilization of Polygons 208
9.5 Minimal Second-Order Immobilization of Polyhedral Objects 212
Bibliographical Notes 220
Appendix I: Details Concerning the Inscribed Disc 220
Appendix II: Details Concerning Minimal Second-Order Immobilization of 2-D Objects 222
Exercises 225
References 230

10 Multi-Finger Caging Grasps

10.1 Robot Hands Governed by a Scalar Shape Parameter 233
10.2 Configuration Space of One-Parameter Robot Hands 234
10.3 C-Space Representation of Cage Formations 236
10.4 The Caging Set Puncture Point 239
10.5 Graphical Depiction of Two-Finger Cage Formations 242
Bibliographical Notes 246
Appendix: Proof Details 247
Exercises 250
References 254

11 Frictionless Hand-Supported Stances under Gravity

11.1 C-Space Representation of Equilibrium Stances 257
11.2 The Stable Equilibrium Stances 261
11.3 The Stance Stability Test 264
11.4 Formulas for the Stance Stability Test 269
11.5 The Stable Equilibrium Region of 2-D Stances 271
11.6 The Stable Equilibrium Region of 3-D Stances 277
Bibliographical Notes 285
Appendix: Proof Details 286
Exercises 289
References 297
Contents

Part III Frictional Rigid-Body Grasps and Stances

12 Wrench-Resistant Grasps

- 12.1 Wrench Resistance and Internal Grasp Forces
- 12.2 Wrench Resistance as a Linear Matrix Inequality
- 12.3 Grasp Force Optimization
- 12.4 Grasp Controllability
- Bibliographical Notes
- Exercises
- References

13 Grasp Quality Functions

- 13.1 Quality Functions Based on Rigid-Body Kinematics
- 13.2 Quality Functions Based on the Grasp Matrix
- 13.3 Quality Functions Based on the Grasp Polygon
- 13.4 Quality Functions Based on Contact Point Locations
- 13.5 Quality Functions Based on Contact Force Magnitudes
- 13.6 Finger Force Optimization Based on Task Specification
- Bibliographical Notes
- Appendix I: Review of Distance Metrics and Norms
- Appendix II: Behavior of the Grasp Matrix under Coordinate Transformations
- Appendix III: The Wrench Resistance Regions
- Exercises
- References

14 Hand-Supported Stances under Gravity – Part I

- 14.1 Local Wrench-Resistant Stances
- 14.2 The Feasible Equilibrium Region of 2-D Stances
- 14.3 Graphical Construction of the 2-D Stance Equilibrium Region
- 14.4 Safety Margin on the 2-D Stance Equilibrium Region
- Bibliographical Notes
- Appendix: Proof Details
- Exercises
- References

15 Hand-Supported Stances under Gravity – Part II

- 15.1 Basic Properties of 3-D Equilibrium Stances
- 15.2 The Tame Hand-Supported Stances
- 15.3 A Scheme for Computing the Stance Equilibrium Region
- 15.4 The Boundary of the Net Wrench Cone W
- 15.5 Critical Contact Forces That Contribute Boundary Facets to W
- 15.6 The Stance Equilibrium Region Boundary Curves
- 15.7 Onset of Non-Static Motion Modes at the Contacts

Page 299
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliographical Notes</td>
<td>392</td>
</tr>
<tr>
<td>Appendix: Proofs and Technical Details</td>
<td>393</td>
</tr>
<tr>
<td>Exercises</td>
<td>403</td>
</tr>
<tr>
<td>References</td>
<td>408</td>
</tr>
<tr>
<td>Part IV Grasping Mechanisms</td>
<td></td>
</tr>
<tr>
<td>16 The Kinematics and Mechanics of Grasping Mechanisms</td>
<td>411</td>
</tr>
<tr>
<td>16.1 The Relation between Finger-Joint Velocities and the Grasped Object</td>
<td></td>
</tr>
<tr>
<td>Rigid-Body Velocity</td>
<td>411</td>
</tr>
<tr>
<td>16.2 The Relation between Finger-Joint Torques and Grasped Object Wrenches</td>
<td>417</td>
</tr>
<tr>
<td>16.3 The Four Types of Hand Mechanism Grasp Forces</td>
<td>421</td>
</tr>
<tr>
<td>16.4 Effect of the Robot Hand on Wrench-Resistant Grasps</td>
<td>427</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>434</td>
</tr>
<tr>
<td>Appendix I: The Jacobian of a Single Finger Mechanism</td>
<td>434</td>
</tr>
<tr>
<td>Appendix II: Resistant Contact Force Decomposition</td>
<td>435</td>
</tr>
<tr>
<td>Exercises</td>
<td>436</td>
</tr>
<tr>
<td>References</td>
<td>440</td>
</tr>
<tr>
<td>17 Grasp Manipulability</td>
<td>441</td>
</tr>
<tr>
<td>17.1 Instantaneous Manipulability</td>
<td>442</td>
</tr>
<tr>
<td>17.2 Local Manipulability</td>
<td>446</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>449</td>
</tr>
<tr>
<td>Appendix: Proof of the Local Manipulability Theorem</td>
<td>450</td>
</tr>
<tr>
<td>Exercises</td>
<td>451</td>
</tr>
<tr>
<td>References</td>
<td>453</td>
</tr>
<tr>
<td>18 Hand Mechanism Compliance</td>
<td>454</td>
</tr>
<tr>
<td>18.1 One-Dimensional Stiffness and Compliance</td>
<td>454</td>
</tr>
<tr>
<td>18.2 The Effects of Joint Compliance on Grasp Stiffness</td>
<td>457</td>
</tr>
<tr>
<td>18.3 The Grasp Center of Stiffness</td>
<td>463</td>
</tr>
<tr>
<td>18.4 Stability of Compliant Grasps</td>
<td>467</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>471</td>
</tr>
<tr>
<td>Appendix: Derivation of the Grasp Stiffness Matrix</td>
<td>471</td>
</tr>
<tr>
<td>Exercises</td>
<td>475</td>
</tr>
<tr>
<td>References</td>
<td>476</td>
</tr>
<tr>
<td>Appendix A Introduction to Non-Smooth Analysis</td>
<td>478</td>
</tr>
<tr>
<td>Appendix B Summary of Stratified Morse Theory</td>
<td>486</td>
</tr>
<tr>
<td>Index</td>
<td>493</td>
</tr>
</tbody>
</table>