Phonetics is a fundamental building block not just in linguistics but also in fields such as communication disorders. However, introductions to phonetics can often assume a background in linguistics, whilst at the same time overlooking the clinical and scientific aspects of the field. This textbook fills this gap by providing a comprehensive yet accessible overview of phonetics that delves into the fundamental science underlying the production of speech. Written with beginners in mind, it focuses on the anatomy and physiology of speech, while at the same time explaining the very basics of phonetics, such as the phonemes of English, the International Phonetic Alphabet, and phonetic transcription systems. It presents the sounds of speech as elements of linguistic structure and as the result of complex biological mechanics. It explains complicated terminology in a clear, easy-to-understand way, and provides examples from a range of languages, from disorders of speech, and from language learning.

Ian R. A. MacKay is retired Professor of linguistics at the University of Ottawa. He has taught phonetics and speech science for 45 years to students of linguistics, speech–language pathology, and audiology.
Phonetics and Speech Science

Ian R. A. MacKay

University of Ottawa
For JoDo, with thanks for everything
<table>
<thead>
<tr>
<th>Brief Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>page xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xviii</td>
</tr>
<tr>
<td>1 Phonetics and Language</td>
<td>1</td>
</tr>
<tr>
<td>2 Phonetic Transcription</td>
<td>27</td>
</tr>
<tr>
<td>3 Anatomy and Physiology of Speech</td>
<td>45</td>
</tr>
<tr>
<td>4 Air Pressure and Aerodynamics</td>
<td>81</td>
</tr>
<tr>
<td>5 Consonants</td>
<td>100</td>
</tr>
<tr>
<td>6 Vowels</td>
<td>143</td>
</tr>
<tr>
<td>7 Sounds of North American English</td>
<td>176</td>
</tr>
<tr>
<td>8 Voice, Phonation, and Nasality</td>
<td>186</td>
</tr>
<tr>
<td>9 Airstream Mechanisms: Clicks, Implosives, Ejectives, Esophageal Speech</td>
<td>211</td>
</tr>
<tr>
<td>10 Speech Dynamics</td>
<td>230</td>
</tr>
<tr>
<td>11 Suprasegmentals</td>
<td>273</td>
</tr>
<tr>
<td>12 Acoustics</td>
<td>311</td>
</tr>
<tr>
<td>13 Interlocutors: Talkers and Hearers</td>
<td>359</td>
</tr>
<tr>
<td>Glossary</td>
<td>399</td>
</tr>
<tr>
<td>References</td>
<td>428</td>
</tr>
<tr>
<td>Index</td>
<td>431</td>
</tr>
</tbody>
</table>
Contents

List of Figures
List of Tables
Acknowledgments

1 Phonetics and Language
1.1 Phonetics
1.2 Use of typography, symbols, and punctuation
1.3 Notes on terminology
1.4 Human language
1.5 Using the book
1.6 Phonetics and phonology
1.7 Same phonetic variable, different significance
1.8 Kinds of information in speech
1.9 A single speech sound
1.10 Cautions
1.11 Vocabulary

2 Phonetic Transcription
2.1 Phonetic transcription: history and principles
2.2 Why are there differences among experts' transcriptions?
2.3 A few notions of typography relevant to transcription and the IPA
2.4 Technical matters related to the IPA
2.5 Vocabulary

3 Anatomy and Physiology of Speech
3.1 Anatomy and physiology
3.2 The supraglottal organs
3.3 The velopharyngeal passage/port (VPP)
3.4 The larynx
3.5 Phonation
3.6 Respiration
3.7 Muscles and muscle names
3.8 A selection of important muscles and gestures in speech articulation
3.9 Vocabulary

page xii
xvii
xviii
1
2
4
7
12
13
16
18
22
23
25
27
31
35
40
44
45
48
56
57
60
61
66
71
79
Contents

4 Air Pressure and Aerodynamics 81
 4.1 Speech production requires a movement of air 81
 4.2 Air fills all spaces 81
 4.3 Air pressure 82
 4.4 Air pressure equalizes itself 86
 4.5 Airflow from higher to lower pressure 88
 4.6 Local air pressure disturbances in the production of speech 91
 4.7 Bernoulli principle 96
 4.8 Vocal fold vibration 97
 4.9 Vocabulary 99

5 Consonants 100
 5.1 Consonants 100
 5.2 Articulation, terms, and consonant naming conventions 101
 5.3 Principal places of consonant articulation (PoA) 104
 5.4 Types of movement in consonant articulation 107
 5.5 The International Phonetic Alphabet 109
 5.6 Manners of articulation of consonants 112
 5.7 Plosives 113
 5.8 Nasals 119
 5.9 Fricatives 121
 5.10 Affricates 128
 5.11 Approximants 129
 5.12 Flaps 134
 5.13 Trills 135
 5.14 Secondary articulation and double articulation 136
 5.15 Fortis versus lenis and other differences 138
 5.16 Other types of consonants 138
 5.17 Diacritics introduced in this chapter 139
 5.18 Consonant table as introduced in this chapter 140
 5.19 Vocabulary 142

6 Vowels 143
 6.1 Vowels and consonants 143
 6.2 IPA vowel table 145
 6.3 Cardinal vowels and the vowel quadrangle 145
 6.4 Where are front and back? What is high or low? 152
 6.5 Non-cardinal vowels 154
 6.6 Rounding 157
 6.7 Tense and lax; ATR 158
 6.8 Nasalization; nasalized vowels; nasal vowels 159
 6.9 Vowel duration (“length”) 161
6.10 Diphthongs 163
6.11 Diphthongized vowels 166
6.12 Terminology 168
6.13 Vocoids and syllabicity 169
6.14 Glides and approximants 170
6.15 On-glides, off-glides, and transitional glides 172
6.16 Diacritics introduced in this chapter 173
6.17 Vocabulary 174

7 Sounds of North American English 176
7.1 The sounds of General American English 176
7.2 Consonants and vowels 177
7.3 Sound inventory of General American English 178
7.4 Consonants 179
7.5 Approximants 180
7.6 American English has a non-rhotic flap 182
7.7 The relationship between glides and vowels 182
7.8 Vowels 183
7.9 Word stress 184

8 Voice, Phonation, and Nasality 186
8.1 Voice and phonation 186
8.2 The glottis 187
8.3 Production of voice; voicing 188
8.4 Voice onset time 192
8.5 Voice production in greater detail 195
8.6 Modes of vocal fold vibration: types of voice 203
8.7 Whisper 205
8.8 Nasality 206
8.9 IPA symbols introduced or mentioned in this chapter 209
8.10 Vocabulary 209

9 Airstream Mechanisms: Clicks, Implosives, Ejectives, Esophageal Speech 211
9.1 Different types of airstream 211
9.2 The pulmonic airstream mechanism 212
9.3 The glottalic airstream mechanism: ejectives and implosives 214
9.4 The ingressive velaric/lingual/oral airstream mechanism: clicks 217
9.5 Laryngectomees 220
9.6 Buccal speech 222
9.7 The esophageal airstream mechanism 223
9.8 Table of consonants introduced in this chapter 226
9.9 Airstream mechanism summary table 227
9.10 IPA symbols 229
9.11 Vocabulary 229

10 Speech Dynamics 230
10.1 Introduction 230
10.2 The nature of accommodation 232
10.3 The causes of accommodation 237
10.4 Hyperspeech and hypospeech (H&H Theory) 240
10.5 Do segments exist? 242
10.6 Types of accommodation 247
10.7 Variants of some English segments 249
10.8 Primary and secondary articulations 255
10.9 Noncontiguous (distant) accommodation 257
10.10 Metaphony (distant vowel accommodation) 259
10.11 Stress and accommodation 264
10.12 Sandhi 264
10.13 Other combinatory phenomena 266
10.14 Speech errors 270
10.15 IPA symbols introduced in this chapter 271
10.16 Vocabulary 271

11 Suprasegmentals 273
11.1 Introduction 273
11.2 Types of suprasegmental elements 274
11.3 Prominence 275
11.4 Stress 277
11.5 How languages use stress 286
11.6 English word stress 289
11.7 Phrasal stress 293
11.8 Emphasis 293
11.9 Contrastive emphasis 294
11.10 Weak forms 296
11.11 Intonation 297
11.12 Timing 300
11.13 Tone 303
11.14 Pitch accent 305
11.15 Voice quality 306
11.16 Articulatory setting 307
11.17 Summary table 308
11.18 IPA symbols introduced in this chapter 309
11.19 Vocabulary 309
Contents

12 **Acoustics** 311
 12.1 Acoustics – sound 311
 12.2 Wave motion 312
 12.3 Dimensions of waves 313
 12.4 Periodicity 317
 12.5 Wave motion of sound 318
 12.6 Perceptual dimensions of sound waves 324
 12.7 Harmonics 329
 12.8 Spectra and spectrograms 331
 12.9 Addition of waves 333
 12.10 Standing waves 338
 12.11 Resonance 341
 12.12 Acoustic principles applied to the vocal tract: vowels 347
 12.13 Acoustics of vowels 350
 12.14 Acoustics of consonants 354
 12.15 Vocabulary 358

13 **Interlocutors: Talkers and Hearers** 359
 13.1 Interlocutors, talkers, and hearers 359
 13.2 Speech versus written text 360
 13.3 Rate of information transfer 365
 13.4 Speech perception 367
 13.5 The ear 377
 13.6 Hearing 393
 13.7 Effects of hearing impairment on speech production 395
 13.8 Vocabulary 397

Glossary 399
References 428
Index 431
Figures

2.1. Serifs

3.1 A. The three body planes shown on drawings of the human body
 B. The planes are shown as cross-sections of the head. Image credit: mr.supachai praserdumrongchai / iStock.

3.2. A cross-section (midsagittal view) of the head

3.3. Divisions of the tongue surface

3.4. The palate and surrounding structures

3.5. The uvula

3.6. The divisions of the pharynx, and oral and nasal cavities

3.7. The airway crosses the passageway for food and liquid

3.8. Velopharyngeal port, open (A) and closed (B). Source: Cummings (2013).

3.9. The larynx and the laryngeal cartilages

3.10. The conus elasticus and the vocal folds as seen from above

3.11. The vocal folds in schematic cross-section

3.12. The thorax in inspiration and expiration

3.13. The intercostal muscles in inspiration and expiration

3.14. Muscle fibers

3.15. Muscles: two important facts

3.16. Muscles of the velum and upper pharynx

3.17. Posterior view of muscles of the velum

3.18. Action of intrinsic tongue muscles

3.19 A. Tip-raising and arching demonstrated with a piece of folded paper
 B. Intrinsic tongue muscles

3.20. Changing the shape of the tongue in coronal cross-section

3.21. Lowering the tongue body

3.22. Raising the back of the tongue

3.23. Muscles of facial expression in speech articulation

3.24. Some mandibular muscles

4.1. Air pressure is exerted in all directions

4.2. All air passageways are full of air at all times

4.3. Inhaling as airflow from high pressure to low pressure

4.4. Impounding air for plosives
List of Figures

4.5. The Bernoulli principle
5.1. Places of articulation
5.2. The International Phonetic Alphabet (consonants). Available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2020 International Phonetic Association
5.3. The International Phonetic Alphabet (non-pulmonic consonants). Available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2020 International Phonetic Association.
5.5. Tongue seal along the molars
5.6. An ultrasonic image of an American English bunched [ɹ]. Source: www.youtube.com/watch?v=-bKOot2WHhI. Copyright © Queen Margaret University, Edinburgh, Scotland
5.7. An ultrasonic image of a retroflexed [ɻ]. Source: www.youtube.com/watch?v=-bKOot2WHhI. Copyright © Queen Margaret University, Edinburgh, Scotland.
List of Figures

6.4. Vowel quadrangle in place 154
6.5. Inaccurate vowel quadrangles as seen in various reference works 155
6.6A. The IPA vowel chart, repeated from Figure 6.1. Image modified from IPA Chart, www.internationalphoneticassociation.org/content/full-ipa-chart. Available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2015 International Phonetic Association. 155
B. All of the non-cardinal vowels for which there are special IPA symbols. Image modified from IPA Chart, www.internationalphoneticassociation.org/content/full-ipa-chart. Available under a Creative Commons Attribution-Sharealike 3.0 Unported License. Copyright © 2015 International Phonetic Association. 155
6.7. Oral and nasalized vowels, [ɛ] and [ɛ̃] 160
6.8. The diphthong /ai/ 164
8.1. Positions of the arytenoid cartilages and consequent positions of the vocal folds and size and shape of the glottis 188
8.3. Voice onset time 194
8.4. Fiber-optic viewing of the vocal folds 196
8.5. The vocal folds in cross-section 196
8.6. Up-and-down movement in vocal fold vibration 199
8.7. The vocal folds do not move apart and together this way 199
8.8. Vocal fold vibration in cross-section 200
8.9. A mechanical 2-mass model 201
8.10. Development of the palate 208
9.1. Pulmonic egressive airstream mechanism 212
9.2. Glottalic egressive airstream mechanism (ejectives or glottalized consonants) 215
9.3. Velaric ingressive airstream mechanism (clicks) 218
9.4. Respiration in a laryngectomee 221
9.5. Laryngectomee’s airway and a tracheoesophageal shunt for producing esophageal speech 226
10.2. Accommodation: coarticulation /obo/, /omo/ 234
10.3. Accommodation: coarticulation /ibi/, /obo/ 235
10.4. Bamab and bambab 246
11.1. The vowel reduction continuum 281
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>A closer look at the vowel reduction continuum</td>
<td>281</td>
</tr>
<tr>
<td>11.3</td>
<td>Spectrograms of the Swedish word anden with Swedish Tone 1 and Tone 2</td>
<td>306</td>
</tr>
<tr>
<td>12.1</td>
<td>A surface wave on water</td>
<td>312</td>
</tr>
<tr>
<td>12.2</td>
<td>The cycle of a wave</td>
<td>313</td>
</tr>
<tr>
<td>12.3</td>
<td>Amplitude and wavelength</td>
<td>315</td>
</tr>
<tr>
<td>12.4A</td>
<td>A periodic wave</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>B. An aperiodic wave</td>
<td>318</td>
</tr>
<tr>
<td>12.5</td>
<td>Wave motion on water, in a Slinky, and through the air</td>
<td>320</td>
</tr>
<tr>
<td>12.6</td>
<td>Passage of a single cycle of a wave</td>
<td>321</td>
</tr>
<tr>
<td>12.7</td>
<td>Variations in air pressure and molecular displacement</td>
<td>322</td>
</tr>
<tr>
<td>12.8</td>
<td>Sound waves moving away from a point source</td>
<td>323</td>
</tr>
<tr>
<td>12.9</td>
<td>Phase</td>
<td>327</td>
</tr>
<tr>
<td>12.10</td>
<td>Spectra of the glottal source of the voice</td>
<td>330</td>
</tr>
<tr>
<td>12.11</td>
<td>A spectrum of sound</td>
<td>332</td>
</tr>
<tr>
<td>12.12</td>
<td>Relationship between spectra and a spectrogram</td>
<td>334</td>
</tr>
<tr>
<td>12.13</td>
<td>A spectrogram of the phrase “two, three, four”</td>
<td>334</td>
</tr>
<tr>
<td>12.14</td>
<td>The operation of Fourier's Theorem</td>
<td>336</td>
</tr>
<tr>
<td>12.15</td>
<td>Some complex periodic waves</td>
<td>337</td>
</tr>
<tr>
<td>12.16</td>
<td>A reflected wave</td>
<td>339</td>
</tr>
<tr>
<td>12.17</td>
<td>A standing wave</td>
<td>340</td>
</tr>
<tr>
<td>12.18</td>
<td>A standing wave</td>
<td>342</td>
</tr>
<tr>
<td>12.19</td>
<td>Resonance</td>
<td>343</td>
</tr>
<tr>
<td>12.20</td>
<td>Tuning</td>
<td>344</td>
</tr>
<tr>
<td>12.21</td>
<td>Tuning</td>
<td>344</td>
</tr>
<tr>
<td>12.22</td>
<td>Resonance in open and closed resonators</td>
<td>346</td>
</tr>
<tr>
<td>12.23</td>
<td>Spectrogram of a soft-drink (soda) bottle resonator.</td>
<td>347</td>
</tr>
<tr>
<td>12.24</td>
<td>The source–filter theory of vowel production</td>
<td>350</td>
</tr>
<tr>
<td>12.25</td>
<td>A two-resonator model of speech</td>
<td>351</td>
</tr>
<tr>
<td>12.26</td>
<td>Spectrograms of the vowels /i u æ/ with the formants highlighted</td>
<td>352</td>
</tr>
<tr>
<td>12.27</td>
<td>Stylized spectrograms showing formant transitions for plosives of each place of articulation followed by the vowel [a]. Used by permission of the American Institute of Physics.</td>
<td>354</td>
</tr>
<tr>
<td>12.28</td>
<td>Spectrograms of synthetically produced syllables, showing second formant transitions that produce the voiced plosives before various vowels. From Delattre, Liberman, and Cooper (1955). Used by permission of the American Institute of Physics.</td>
<td>355</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>12.29</td>
<td>The loci of the formant transitions of the alveolar plosives /d/ and /t/</td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>Spectrograms of voiceless fricatives</td>
<td></td>
</tr>
<tr>
<td>12.31</td>
<td>Spectrograms of several approximants</td>
<td></td>
</tr>
<tr>
<td>12.32</td>
<td>Spectrograms of several nasal consonants</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Segmentation of speech</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>The ear</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>Underwater swimmer hears the metal ladder vibrating underwater, but does not hear a voice generated above the water</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>Impedance mismatch</td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>A magnifying glass captures the sun’s energy over the entire glass surface, and concentrates it on one small spot</td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>The lever permits the trading of force for distance</td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>The cochlea shown “unrolled”</td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>The cochlea shown with the scalas visible</td>
<td></td>
</tr>
<tr>
<td>13.9</td>
<td>Scala media, showing organ of Corti and associated structures</td>
<td></td>
</tr>
<tr>
<td>13.10</td>
<td>Basilar membrane, organ of Corti, and the tectorial membrane</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>Place encoding on the organ of Corti</td>
<td></td>
</tr>
<tr>
<td>13.13</td>
<td>Audiogram</td>
<td></td>
</tr>
</tbody>
</table>
Tables

1.1. Use of special marks in the text
1.2. Traunmüller’s information sources in speech
2.1. Lower-case letters, ascenders and descenders
2.2. Roman versus italic
3.1. Anatomical divisions of the tongue surface used for naming places of articulation
4.1. Normal air pressure at sea level: standard units
5.1. Secondary articulations
5.2. The consonant table as described in this chapter
6.1. Terms in the IPA vowel chart
6.2. Pronunciations close to the primary cardinal vowels
6.3. Pronunciations close to the secondary cardinal vowels
8.1. Fundamental frequencies for different talkers and a singer
8.2. Contrast between murmured and modal plosives
8.3. Creaky voice in Danish
11.1. English vowels under primary, secondary, and tertiary stress
11.2. Tones of the Common Tongue (Mandarin) dialect of Chinese
12.1. Speed of propagation of sound in air at sea level
12.2. Wavelengths in air of some example frequencies
12.3. Formant and fundamental frequencies of the vowel /i/ in American English
12.4. Formant and fundamental frequencies of the vowel /u/ in American English
12.5. Frequencies of F1, F2, and F3 in vowels of American English
Acknowledgments

Any author of a textbook such as this must recognize the many people who have assisted in its writing and production. I wish, in particular, to thank Senior Commissioning Editor Helen Barton of Cambridge University Press for her support in accepting and assisting the creation of the book. Her ongoing patience and backing of the project have been instrumental in its writing. I likewise wish to thank Editorial Assistant, Isabel Collins, for assistance along the way.

Family is unavoidably affected when one writes a book; I owe a great deal for the unreserved support and patience I have been accorded.

A number of individuals have helped in myriad ways. Natalia Fullana, Ph.D., of the University of Barcelona (Universitat de Barcelona) read early chapters and made many helpful suggestions. Tom Goldman, Ph.D., provided helpful feedback on portions of the final chapter related to hearing.

It would be impossible to fully express the depth of my gratitude to the illustrator, Pascale Cherry, for her wonderful drawings. Pascale showed great dedication to the project, and she shows such talent for creating clear drawings, whether anatomical or graphical, that are informative and easily interpretable.

Nicola Chapman headed the production team at Cambridge University Press, and I am most grateful to her for performing this complex task with great professionalism and flexibility. Leigh Muller was copy-editor, and I am most grateful to her for her excellent suggestions for improvements, and for catching mistakes.

I would like to thank a number of anonymous individuals. One group of three reviewed the prospectus and read sample chapters. I am grateful for their encouragement. Later, the nearly completed manuscript was read in full by two individuals who submitted detailed commentary. I wish to thank them for their positive comments, as well as for their many helpful suggestions and criticisms, all of which were carefully considered, and most of which were incorporated.

Of course, any academic owes so much to the great number of scholars who built the knowledge base of the discipline. I want to thank them as well as my own professors and colleagues.
A university teacher gains from the wisdom – and struggles – of one’s students. Teaching phonetics for many years has influenced how many of the subjects within the book are presented, based on what made the best sense to my students. Several classes of mine used early versions of some of these chapters as their assigned reading, and their feedback was invaluable in improving those chapters.