Cambridge University Press 978-1-108-42734-0 — Principles of Glacier Mechanics Roger LeB. Hooke Table of Contents <u>More Information</u>

Contents

	Preface to the third edition	page xiii
	Preface to the second edition	XV
	Preface to the first edition	xvii
	Physical constants relevant to ice	XIX
	Derived SI units and conversion factors	xxi
1	Why study glaciers?	1
2	Some basic concepts	5
	A note on units and coordinate axes	5
	Glacier size, shape, and temperature	5
	The condition of incompressibility	8
	Stresses, strains, and strain rates	10
3	Mass balance	17
	The transformation of snow to ice	18
	Snow stratigraphy	20
	Mass balance principles	22
	Mass balance of polar ice sheets	26
	Effect of albedo on mass balance	26
	Climatic causes of fluctuations in the meteorological component, B_n	1 28
	Loss of ice by calving $(\dot{B}_{\rm L})$	34
	Bottom melting	39
	Effect of atmospheric circulation patterns on mass balance	40
	Global mass balance and sea level	43
	Summary	44
4	Flow and fracture of a crystalline material	46
	Crystal structure of ice	47
	Dislocations	49
	Activation energy	52
	Premelting	53
	Deformation mechanisms	55
	Rate-limiting processes	56
	Recrystallization	60

viii

Cambridge University Press 978-1-108-42734-0 — Principles of Glacier Mechanics Roger LeB. Hooke Table of Contents <u>More Information</u>

Contents

	Summary of ice deformation	68
	Deformation mechanism maps	68
	A flow law for glacier ice	70
	Fracture and crevassing	73
	Summary	79
	5 The velocity field in a glacier	81
-	Measurement of velocity	82
	Balance velocity	83
	Shear stress	84
	Horizontal velocity at depth in an ice sheet	86
	Horizontal velocity in a valley glacier	88
	Mean horizontal velocity and ice flux	92
	Vertical velocity	93
	Submergence and emergence velocities	96
	Flow field	97
	Transverse profiles of surface elevation on a valley glacier	99
	Radar stratigraphy	101
	Effect of drifting snow on the velocity field	105
	Ice streams	112
	Summary	113
6	5 Temperature distribution in polar ice sheets	115
	Energy balance in an ice sheet	115
	Dependence of <i>K</i> on temperature	120
	The steady-state temperature profile at the center of an ice sheet	120
	Temperature profiles in the ablation zone	129
	Temperature profiles near the surface of an ice sheet	130
	Temperature profiles far from a divide	131
	Englacial and basal temperatures along a flowline calculated using	
	the column model	135
	Basal temperatures in Antarctica – comparison of solutions using	
	the column model and a numerical model	138
	Climate change	143
	Geomorphic implications	143
	Summary	147
7	The coupling between a glacier and its bed	149
	Sliding	149
	Deformation of subglacial till	166

Cambridge University Press 978-1-108-42734-0 — Principles of Glacier Mechanics Roger LeB. Hooke Table of Contents <u>More Information</u>

		Contents
	Abrasion	191
	Drumlins and flutes	194
	Summary	197
8	Water flow in and under glaciers: Geomorphic implications	199
	The englacial hydraulic system	199
	Equipotential surfaces in a glacier	205
	Types of subglacial drainage system	208
	Melt rates in conduits	209
	Water pressures in subglacial conduits on hard beds	213
	Surges	232
	Jökulhlaups	236
	Subglacial drainage and the formation of eskers	238
	Tunnel valleys	247
	Water pressure and glacier quarrying	248
	Origin of cirques and overdeepenings	252
	Summary	254
9	Stress and deformation	256
	Stress	256
	Momentum balance	265
	Deformation	266
	Condition that principal axes of stress and strain rate coincide	271
	Summary	273
10	Stress and velocity distribution in an idealized glacier	274
	Solutions for stresses and velocities in plane strain	274
	Comparison with real glaciers	289
	Summary	290
	·	
11	Numerical modeling	291
	Goals of modeling	291
	Numerical integration	292
	Finite-difference models	294
	Finite-element models	300
	Finite-volume models	302
	Coupling thermal and mechanical models	302
	Initial conditions and forcing	303
	Validation	304
	Sensitivity testing and tuning	304

ix

х

Cambridge University Press 978-1-108-42734-0 — Principles of Glacier Mechanics Roger LeB. Hooke Table of Contents <u>More Information</u>

Contents

	Intercomparison of models	305
	Non-deterministic models	306
	Examples	307
	Summary	318
1	2 Applications of stress and deformation principles to classical	
	problems	320
	Collapse of a cylindrical hole	320
	Calculating basal shear stresses using a force balance	332
	Longitudinal coupling	338
	Analysis of borehole-deformation data	342
	Summary	349
1	3 Ice streams and ice shelves	350
	The grounding zone	350
	Ice streams	352
	Ice shelves	366
	Summary	385
1	4 Finite strain and the origin of foliation	387
	The strain ellipse	387
	Simple and pure shear	389
	Parameters describing cumulative deformation	390
	Calculating cumulative strain	391
	Components of foliation	393
	Summary	406
1	5 Response of glaciers to climate change	408
	Feedback processes	409
	Pleistocene climate	410
	Response of a temperate glacier	411
	Elementary kinematic wave theory	413
	Analysis of the effect of a small change in mass balance using	
	a perturbation approach	416
	Effect of diffusion	420
	A novel approach to response times	420
	Numerical modeling of glacier responses	425
	Comparison with observation	429
	Summary	431
	-	

Cambridge University Press 978-1-108-42734-0 — Principles of Glacier Mechanics Roger LeB. Hooke Table of Contents <u>More Information</u>

		Contents	xi
16	Ico coro studios	400	
10		433	
	Laboratory techniques	434	
	Establishing a time scale for a core	436	
	The fruits of ice core studies	446	
	Summary	453	
	Problems	455	
	References	465	
	Index	506	