INDEX

Absorber. See Vibration absorber

Accelerance, 260

Acceleration. 78. See also Dynamics

base, 98
gyroscopic, 354
harmonic excitation, due to, 211
measurement of, 261
response, 161
vector, 357, 361

Accelerometer, 261

Amplitude response, 201

bandwidth, 253
base excitation, 227
cutoff frequencies, 252
damping-dominated region, 218
filter characteristics, 251
mass-dominated region, 219
quality factor, 253
rotating unbalanced mass, 222
stiffness-dominated region, 218
structural damping, 279
summary, 230

Aperiodic motion, 286, 508, 515, 523, 524

Axial force. See Beams

Bars, vibration of. See State-space formulation

Base excitation, 97, 227
two degree-of-freedom system, 536

Beams

axial force, 552, 616
boundary conditions, 555, 560, 568, 583
characteristic equation, 574, 575, 576
elastic foundation, 553, 616
forced oscillations, 622
frequency-response function, 631
governing equation, 547, 559, 567
in-span attachments, with, 599
kinetic energy, 551
Lagrange's equation, 557
Lagrangian, 554
mode shapes, 577, 579, 583

natural frequencies, 583
natural frequencies, solution for, 570
orthogonality of mode shapes, 580
potential energy, 550
rigid body mode, 587
single degree-of-freedom system,
in-span, 554
tapered, 617

Chaotic behavior, 286, 508, 515
Coefficient of restitution, 167

Collision

particle damper, 516
vehicle bumper, 168
viscoelastic bodies, 172

Convolution integral, 298, 463, 627

Coulomb (dry friction) damping, 92, 273
Coulomb damping, 184
Critical damping, 92

Curve fitting, 28, 33, 92, 163, 249, 250

Dampened natural frequency, 150, 154, 155, 245, 298,
319, 415, 463, 465, 627

Damping. See Dissipation elements; Energy dissipation

Damping coefficient, 44
Damping factor

logarithmic decrement, from, 173
rotating system, 92
system parameters, effects of, 93
translating and rotating system, 108
translating system, 92

Damping matrix, 357, 358, 413, 415, 416

Degrees of freedom. See Dynamics

Displacement

base excitation, due to, 226
beam, arbitrary excitation of, 627
forced harmonic, damped, 201
forced harmonic, undamped, 214
free response, 150
multiple degree-of-freedom system, arbitrary excitation of, 464
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement (cont.)</td>
<td>720</td>
</tr>
<tr>
<td>multiple degree-of-freedom system, harmonic excitation of</td>
<td>478</td>
</tr>
<tr>
<td>transient excitation, due to</td>
<td>298</td>
</tr>
<tr>
<td>unbalanced mass, due to</td>
<td>222</td>
</tr>
<tr>
<td>Dissipation elements, 12, 44</td>
<td>47</td>
</tr>
<tr>
<td>combined with spring, 50</td>
<td>50</td>
</tr>
<tr>
<td>Coulomb (dry friction), 52</td>
<td>52</td>
</tr>
<tr>
<td>energy dissipation, 49</td>
<td>49</td>
</tr>
<tr>
<td>fluid (velocity-squared) damping, 52</td>
<td>52</td>
</tr>
<tr>
<td>squeeze film air damping, 53</td>
<td>53</td>
</tr>
<tr>
<td>structural (hysteretic) damping, 53</td>
<td>53</td>
</tr>
<tr>
<td>viscous fluid, 44, 54</td>
<td>44, 54</td>
</tr>
<tr>
<td>Dynamics, 647–60</td>
<td>647</td>
</tr>
<tr>
<td>Eigenfunctions, 571</td>
<td>571</td>
</tr>
<tr>
<td>Eigenvalues, 181, 379, 381, 396, 412, 571, 580</td>
<td>181, 379, 381, 396, 412, 571, 580</td>
</tr>
<tr>
<td>Eigenvector, 379</td>
<td>379</td>
</tr>
<tr>
<td>Energy dissipation, 165, 271</td>
<td>165, 271</td>
</tr>
<tr>
<td>comparisons of different types, 276</td>
<td>276</td>
</tr>
<tr>
<td>Coulomb (dry friction), 273</td>
<td>273</td>
</tr>
<tr>
<td>equivalent viscous damping, 270</td>
<td>270</td>
</tr>
<tr>
<td>fluid (velocity-squared), 274</td>
<td>274</td>
</tr>
<tr>
<td>structural, 275</td>
<td>275</td>
</tr>
<tr>
<td>viscous, 271</td>
<td>271</td>
</tr>
<tr>
<td>Equivalent viscous damping, 270</td>
<td>270</td>
</tr>
<tr>
<td>Coulomb, 274</td>
<td>274</td>
</tr>
<tr>
<td>fluid (velocity squared), 275</td>
<td>275</td>
</tr>
<tr>
<td>structural, 276</td>
<td>276</td>
</tr>
<tr>
<td>Fluid (velocity-squared) damping, 52, 184, 276</td>
<td>52, 184, 276</td>
</tr>
<tr>
<td>Force on fixed surface, 81, 164</td>
<td>81, 164</td>
</tr>
<tr>
<td>impulse, from, 302</td>
<td>302</td>
</tr>
<tr>
<td>rotating unbalanced mass, 224</td>
<td>224</td>
</tr>
<tr>
<td>Force-balance method, 77, 346</td>
<td>77, 346</td>
</tr>
<tr>
<td>Forced harmonic excitation, 200</td>
<td>200</td>
</tr>
<tr>
<td>Maxwell model, 233</td>
<td>233</td>
</tr>
<tr>
<td>N harmonic components (Fourier series), 241</td>
<td>241</td>
</tr>
<tr>
<td>nonlinear springs, with, 282</td>
<td>282</td>
</tr>
<tr>
<td>resonance, 215</td>
<td>215</td>
</tr>
<tr>
<td>steady state, 201, 210</td>
<td>201, 210</td>
</tr>
<tr>
<td>transient part, 201</td>
<td>201</td>
</tr>
<tr>
<td>two harmonic components, with, 238</td>
<td>238</td>
</tr>
<tr>
<td>undamped, 214</td>
<td>214</td>
</tr>
<tr>
<td>Fourier series, 241</td>
<td>241</td>
</tr>
<tr>
<td>periodic pulse train, 243</td>
<td>243</td>
</tr>
<tr>
<td>Fourier transform, 304</td>
<td>304</td>
</tr>
<tr>
<td>Free response of multiple degree-of-freedom systems, 378</td>
<td>378</td>
</tr>
<tr>
<td>characteristic equation, 379, 385</td>
<td>379, 385</td>
</tr>
<tr>
<td>modal matrix, 380, 384</td>
<td>380, 384</td>
</tr>
<tr>
<td>mode shapes, 378, 380</td>
<td>378, 380</td>
</tr>
<tr>
<td>natural frequencies, 378</td>
<td>378</td>
</tr>
<tr>
<td>rigid-body mode, 390</td>
<td>390</td>
</tr>
<tr>
<td>Free response of single degree-of-freedom system, 150</td>
<td>150</td>
</tr>
<tr>
<td>critically damped system, 151</td>
<td>151</td>
</tr>
<tr>
<td>Kelvin–Voigt model, 157</td>
<td>157</td>
</tr>
<tr>
<td>Maxwell model, 176</td>
<td>176</td>
</tr>
<tr>
<td>overdamped system, 151</td>
<td>151</td>
</tr>
<tr>
<td>undamped system, 151</td>
<td>151</td>
</tr>
<tr>
<td>underdamped system, 150</td>
<td>150</td>
</tr>
<tr>
<td>Frequency-response function, 248, 255</td>
<td>248, 255</td>
</tr>
<tr>
<td>alternate forms, 260</td>
<td>260</td>
</tr>
<tr>
<td>Fourier transform, relation to, 258</td>
<td>258</td>
</tr>
<tr>
<td>two degree-of-freedom system, 473, 475, 485</td>
<td>473, 475, 485</td>
</tr>
<tr>
<td>Fundamental frequency, 241</td>
<td>241</td>
</tr>
<tr>
<td>Generalized coordinates, 102, 346, 347, 434, 489</td>
<td>102, 346, 347, 434, 489</td>
</tr>
<tr>
<td>Generalized force, 102, 428</td>
<td>102, 428</td>
</tr>
<tr>
<td>Governing equation of single degree-of-freedom system, added mass of fluid, 100</td>
<td>100</td>
</tr>
<tr>
<td>base excitation, 97</td>
<td>97</td>
</tr>
<tr>
<td>Coulomb damping, 96</td>
<td>96</td>
</tr>
<tr>
<td>fluid (velocity-squared) damping, 97</td>
<td>97</td>
</tr>
<tr>
<td>force balance method, from, 78</td>
<td>78</td>
</tr>
<tr>
<td>moment balance method, from, 83</td>
<td>83</td>
</tr>
<tr>
<td>nonlinear damping, 184</td>
<td>184</td>
</tr>
<tr>
<td>nonlinear spring, with, 182</td>
<td>182</td>
</tr>
<tr>
<td>piecewise linear springs, with, 182</td>
<td>182</td>
</tr>
<tr>
<td>structural damping, 97</td>
<td>97</td>
</tr>
<tr>
<td>unbalanced rotating mass, 99</td>
<td>99</td>
</tr>
<tr>
<td>Governing equations multiple degree-of-freedom systems, 346</td>
<td>346</td>
</tr>
<tr>
<td>base excitation, 536</td>
<td>536</td>
</tr>
<tr>
<td>bounce and pitch, systems with, 351</td>
<td>351</td>
</tr>
<tr>
<td>equilibrium position, 352</td>
<td>352</td>
</tr>
<tr>
<td>force balance methods, from, 346</td>
<td>346</td>
</tr>
<tr>
<td>Lagrange’s equations, using, 359</td>
<td>359</td>
</tr>
<tr>
<td>matrix form, 347, 356</td>
<td>347, 356</td>
</tr>
<tr>
<td>moment balance methods, from, 347</td>
<td>347</td>
</tr>
<tr>
<td>N degree-of-freedom system, 356</td>
<td>356</td>
</tr>
<tr>
<td>Gyroscopic force, 421</td>
<td>421</td>
</tr>
<tr>
<td>Harmonic excitation. See Forced harmonic excitation</td>
<td>421</td>
</tr>
<tr>
<td>Hysteresis loop, 276</td>
<td>276</td>
</tr>
<tr>
<td>Impact. See Transient excitation</td>
<td>276</td>
</tr>
<tr>
<td>Impact testing, 338</td>
<td>338</td>
</tr>
<tr>
<td>Impulse response, 301</td>
<td>301</td>
</tr>
</tbody>
</table>
Inertia
- elements, 12
- force, 78
- mass moment of, 16
- rotary, 84
- varying, 17

Inertia matrix, 347, 357, 358, 415

Initial conditions, 157, 465

Initial value problem, 148

Input-output relationship, 198, 304

Isolation. See Vibration isolation

Kelvin–Voigt model, 50

Kinetic energy, 13, 102, 165, 359, 425, 551, 554. See also Dynamics

Lagrange’s equations for multiple degree-of-freedom systems, 102
- bell and clapper, 369
- bounce and pitch, 364
- generalized coordinates, 102
- generalized force, 102
- hand-arm vibrations, 373
- kinetic energy, 102
- Lavrov’s device, 371
- pendulum absorber, 366
- potential energy, 102
- Rayleigh dissipation function, 102
- translating mass and oscillating disc, 363
- translating mass with pendulum, 393
- translating mass with system of single degree-of-freedom systems, 400
- translating two degree-of-freedom system, 362

Lagrange’s equations for single degree-of-freedom system, 103
- car seat, 115
- centrifugal governor, 127
- crankshaft, 124
- disc segment, 111
- disc with extended mass, 117
- inverted pendulum, 108
- MEMS device, 119
- pretensioned spring, 114
- rotating system, 128
- slider mechanism, 122
- translation and rotation, 106

Laplace transform. See also Laplace transform pairs
- base excitation, solution to, 329
- beam equation, solution to, 571
- beam, forced vibrations of, 626
- frequency-response function, relation to, 257
- initial value problem, solution to, 149
- stability, determination of, 179
- transfer function, 255
- transient excitation, solution to, 298, 316

Laplace transform pairs, 661–7

Linear momentum, 301
- principle of, 14

Linear systems, 211, 271, 356, 363, 508
- reciprocity property, 633
- linearization, 83, 352, 376, 507
- Logarithmic decrement, 163

Maxwell model, 50, 233
- reduction to Kelvin–Voigt model, 235

Mechanical impedance, 261

Mobility, 260

Modal analysis, experimental, 28, 261

Modal matrix, 380, 402, 408, 461

Mode shapes. See Multiple degree-of-freedom systems

Model construction, 55
- aircraft wing, 57
- axial fan, 59
- civil structure, 56
- crane, 58
- drop forge, 59
- human body, 62
- loudspeaker, 56
- machine tool cutting process, 64
- MEMS accelerometer, 60
- motorcycle, 59
- ski, 63

Moment-balance method, 77, 347

Moving base. See Base excitation

Multiple degree-of-freedom systems
- arbitrary forcing, response to, 472
- characteristics of damped systems, 411
- conservation of energy, 421
- damping factor, constant, 416
- frequency-response function, 473, 475, 485
- generalized coordinates, 461
- harmonic forcing, 475
- initial conditions, response to, 463, 465
- linear independence of modes, 410
- modal coordinates, 463
- modal damping, 463
- modal damping factor, 414
- modal mass, 408
- modal matrix, 380, 402, 415, 461
- modal stiffness, 408

© in this web service Cambridge University Press & Assessment

www.cambridge.org
Index

Multiple degree-of-freedom systems (cont.)
- mode shapes, orthogonality of, 402
- mode shapes, table of, 402
- natural frequencies, table of, 402
- node points, 397
- normal mode solution, 461
- orthonormal mode, 409
- proportional damping, 413, 462
- rotating shafts, 424
- stability, 434
- structural damping, 483

Natural frequency of single degree-of-freedom systems
- disc segment, 113
- MEMS device, 121
- pendulum system, 110
- rotating system, 88, 119, 129
- static deflection, from, 88
- translating and rotating system, 108
- translating system, 87
- translating system with pretensioned spring, 115, 117

Nonlinear damping, 184
Nonlinear stiffness, 32
- cubic, 282
- cubic, 32, 33
- cubic, 283
- cubic hardening, 182
- due to geometry, 34
- gear backlash, 286
- piecewise linear, 182
- quadratic, 82

Normal modes, 380
- orthonormal, 409

Orthogonal function, 580, 624, 626
Orthogonality
- eigenvectors, 407, 415
- modes, 402, 466, 580
Overdamped system, 92, 151
Overshoot. See Transient excitation

Parallel axis theorem, 13
Parameter estimation, 250
Pendulums, 41
- absorber, 366, 511
- inverted, 108
- inverted, instability of, 180
Period of free oscillation
damped, 161
undamped, 88

Phase response, 201
- base excitation, 227
- rotating unbalanced mass, 222
- structural damping, 279
- summary, 230
Phase-plane plot, 165
Potential energy
- beam, 550
- compressed gas, 40
- fluid element, 38
- nonlinear stiffness element, 32
- pendulums, 41
- spring, 19
Principal coordinates, 463

Quality factor, 253
- power dissipated, and, 272
Rayleigh dissipation function, 102
Rigid body mode, 389, 587
Rise time. See Transient excitation
Root locus diagram, 179
Rotating shafts. See Multiple degree-of-freedom systems

Settling time. See Transient excitation
Shafts, vibration of. See State-space formulation

Single degree-of-freedom systems
- beam, attached to, 559
- damping factor, 92
- forced harmonic excitation, 200, 238
- forced harmonic undamped, 214
- free response, 150
- governing equation added mass of fluid, 101
- governing equation rotation, 84
- governing equation translation, 80
- natural frequency, 87
- transient excitation, response to, 298
- vibration isolation of, 263

Springs
- equivalent spring constant, 29
- equivalent torsional spring constant, 22
- equivalent translation spring constant, 21, 28, 30, 31
- in parallel, 21, 23
- in series, 21
- nonlinear, 182
- potential energy, 20, 22
- structural elements, 25
- torsion, 20
- translation, 20
Index

Squeeze film air damping, 53
Stability
 asymptotic, 180
 multiple degree-of-freedom system, 434
 pendulum, inverted, 180
 root locus diagram, 179
 single degree-of-freedom, 178
State-space formulation, 689–95
Static displacement, 79
 unbalanced rotating mass, 100
Static equilibrium position, 79, 82, 86
Steady state response, 201, 209, 217, 238, 520, 522
Step force
 single degree-of-freedom system, 312
 two degree-of-freedom system, 472
Step force, response to
 single degree-of-freedom system, 310
 two degree-of-freedom system, 472
Stiffness
 complex-valued, 281
 stiffness elements, 31
Stiffness elements, 12, 18
 nonlinear, 32
 nonlinear from geometry, 34, 36
Stiffness matrix, 348, 357, 358, 415
Strings, vibration of. See State-space formulation
System identification, 28
Transfer function, 255
 frequency-response function, relation to, 255
Transient excitation, 297
 convolution integral, using, 298
 impulse, 300
 impulse testing, 304
 Laplace transform, using, 298
 moving base, 329
 multiple degree-of-freedom systems, 464
 nonlinear spring, with, 331
 overshoot, percentage, 312
 rectangular pulse, 316
rise time, 312
 settling time, 313
spectral content, significance of, 334
 step input, 310
 waveforms, other, 320
Transmissibility ratio, 265
 Maxwell model of, 266
 single degree-of-freedom system, 265
 two degree-of-freedom system, 531
Unbalanced rotating mass, 99, 221, 224
Underdamped system, 92
Unstable. See Stability
Velocity, 274
 harmonic excitation, due to, 211, 218, 219
 particle damper, 518
 transient response, 157
Vibration absorber, 489
 bar-slider system, 508
 centrifugal pendulum, 504
 damped, 492
 optimal values, 497, 498
 particle impact damper, 515
 pendulum, 511
 table of, 525
 undamped, 489
Vibration isolation, 263, 531
 base excitation, 264
 mass excitation, 264
Vibrations
 brief history of, 6
 definition of, 1
 design for, 65
 subset of dynamics, 5
 unwanted, 1
Viscous damping, 44, 101, 103, 271, 348, 359, 622
Whirling, 433
Work, 15
Work-energy theorem, 15