Vibrations

This new edition explains how vibrations can be used in a broad spectrum of applications and how to meet the challenges faced by engineers and system designers.

The text integrates linear and nonlinear systems and covers the time domain and the frequency domain, responses to harmonic and transient excitations, and discrete and continuous system models. It focuses on modeling, analysis, prediction, and measurement to provide a complete understanding of the underlying physical vibratory phenomena and their relevance for engineering design.

Knowledge is put into practice through numerous examples with real-world applications in a range of disciplines, detailed design guidelines applicable to various vibratory systems, and over 40 online interactive graphics which provide a visual summary of system behaviors and enable students to carry out their own parametric studies. Thirteen new tables act as a quick reference for self-study, detailing key characteristics of physical systems and summarizing important results.

This is an essential text for undergraduate and graduate courses in vibration analysis, and a valuable reference for practicing engineers.

Balakumar Balachandran is a Minta Martin Professor of Engineering at the University of Maryland. He has authored and co-authored many books, chapters, and journal articles related to dynamics and vibrations, and he has several patents to his credit. He is a fellow of the American Society of Mechanical Engineers and the American Institute of Aeronautics and Astronautics.

Edward B. Magrab is Emeritus Professor in the Department of Mechanical Engineering at the University of Maryland. He has extensive experience in analytical and experimental studies of vibrations and acoustics, serving as an engineering consultant to over 20 companies and authoring or co-authoring a number of books on vibrations, noise control, instrumentation, integrated product design, Matlab, and Mathematica. He is a Life Fellow of the American Society of Mechanical Engineers.

Vibrations

Third Edition

BALAKUMAR BALACHANDRAN

University of Maryland, College Park

EDWARD B. MAGRAB University of Maryland, College Park

© in this web service Cambridge University Press & Assessment

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108427319 DOI: 10.1017/9781108615839

© Balakumar Balachandran and Edward B. Magrab 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

This book was previously published by Cengage Learning 1980, 2008 Third edition published by Cambridge University Press 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Names: Balachandran, Balakumar, author. | Magrab, Edward B., author. Title: Vibrations / Balakumar Balachandran (University of Maryland, College Park), Edward Magrab (University of Maryland, College Park).

Description: 3rd edition. | Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Includes bibliographical references and index.

Identifiers: LCCN 2018034163 | ISBN 9781108427319 (hardback : alk. paper)

Subjects: LCSH: Vibration. | Vibration—Mathematical models. Classification: LCC TA355 .B28 2019 | DDC 620.3—dc23 LC record available at https://lccn.loc.gov/2018034163

ISBN 978-1-108-42731-9 Hardback

Additional resources for this publication at www.cambridge.org/vibrations.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Malini, Ragini, and Nitin and In memory of T. R. Balachandran (1933–2017)

For June Coleman Magrab Still my muse after all these years

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

CONTENTS

	List of Examples	<i>page</i> xii
	List of Interactive Graphics	XV
	List of Symbols	xvii
	Preface to the Third Edition	xxiii
1	Introduction	1
	1.1 Introduction	1
	1.2 A Brief History of Vibrations	6
	1.3 About This Book	8
2	Modeling of Vibratory Systems	11
	2.1 Introduction	11
	2.2 Inertia Elements	13
	2.3 Stiffness Elements	18
	2.3.1 Introduction	18
	2.3.2 Linear Springs	20
	2.3.3 Nonlinear Springs	32
	2.3.4 Other Forms of Potential Energy Elements	38
	2.3.5 Summary of Equivalent Spring Constants	44
	2.4 Dissipation Elements	44
	2.4.1 Viscous Damping	44
	2.4.2 Combinations of Viscous Dampers and Linear Springs	49
	2.4.3 Other Forms of Dissipation	52
	2.5 Model Construction	55
	2.5.1 Introduction	55
	2.5.2 A Few Simple Models	55
	2.5.3 A Microelectromechanical System	60
	2.5.4 The Human Body	62
	2.5.5 A Ski	63
	2.5.6 Cutting Process	64
	2.6 Design for Vibration	65
	2.7 Summary	66
	Exercises	67

viii	Contents	
3	Single Degree-of-Freedom Systems: Governing Equations	76
	3.1 Introduction	76
	3.2 Force-Balance and Moment-Balance Methods	77
	3.2.1 Force-Balance Methods	77
	3.2.2 Moment-Balance Methods	83
	3.3 Natural Frequency and Damping Factor	87
	3.3.1 Natural Frequency	87
	3.3.2 Damping Factor	92
	3.4 Governing Equations for Different Types of Damping	96
	3.5 Governing Equations for Different Types of Applied Forces	97
	3.5.1 System with Base Excitation	97
	3.5.2 System with Unbalanced Rotating Mass	99
	3.5.3 System with Added Mass Due to a Fluid	100
	3.6 Lagrange's Equations	102
	3.7 Summary of Natural Frequency Equations for Single	
	Degree-of-Freedom Systems	129
	3.8 Summary	135
	Exercises	136
4	Single Degree-of-Freedom Systems: Free-Response Characteristics	148
	4.1 Introduction	148
	4.2 Free Responses of Undamped and Damped Systems	150
	4.2.1 Introduction: Damping Cases	150
	4.2.2 Free Response of Underdamped Systems: Kelvin–Voigt Model	157
	4.2.3 Free Response of Underdamped Systems: Maxwell Model	176
	4.3 Stability of a Single Degree-of-Freedom System	178
	4.4 Single Degree-of-Freedom Systems with Nonlinear Elements	182
	4.4.1 Nonlinear Stiffness	182
	4.4.2 Nonlinear Damping	186
	4.5 Summary	187
	Exercises	189
5	Single Degree-of-Freedom Systems Subjected to Periodic Excitations	197
	5.1 Introduction	197
	5.2 Response to Harmonic Excitation	200
	5.2.1 Excitation Applied from $t = 0$	200
	5.2.2 Excitation Present for All Time	210
	5.2.3 Response of Undamped System and Resonance	214
	5.2.4 Magnitude and Phase Information: Mass Excitation	217
	5.2.5 Magnitude and Phase Information: Rotating Unbalanced Mass	221

	Contents	ix
	5.2.6 Magnitude and Phase Information: Base Excitation	226
	5.2.7 Summary of Results of Sections 5.2.4, 5.2.5, and 5.2.6	230
	5.2.8 Harmonic Excitation of a System with a Maxwell Model	233
	5.3 Response to Excitation with Harmonic Components	238
	5.4 Frequency-Response Function	248
	5.4.1 Introduction	248
	5.4.2 Curve Fitting and Parameter Estimation	249
	5.4.3 Amplitude Response Function and Filter Characteristics5.4.4 Relationship of the Frequency-Response Function to the	250
	Transfer Function	255
	5.4.5 Alternative Forms of the Frequency-Response Function	259
	5.5 Acceleration Measurement: Accelerometer	261
	5.6 Vibration Isolation	263
	5.7 Energy Dissipation and Equivalent Damping	270
	5.8 Influence of Nonlinear Stiffness on Forced Response	282
	5.9 Summary	289
	Exercises	290
6	Single Degree-of-Freedom Systems: Subjected to Transient Excitations	297
	6.1 Introduction	297
	6.2 Response to Impulse Excitation	300
	6.3 Response to Step Input Excitation	310
	6.4 Response to Rectangular Pulse Excitation	316
	6.5 Response to Other Excitation Waveforms	322
	6.5.1 Significance of the Spectral Content of the Applied Force:	
	An Example	334
	6.6 Impact Testing	338
	6.7 Summary	340
	Exercises	341
7	Multiple Degree-of-Freedom Systems: Governing Equations, Natural	
	Frequencies, and Mode Shapes	344
	7.1 Introduction	344
	7.2 Governing Equations	346
	7.2.1 Force-Balance and Moment-Balance Methods7.2.2 General Form of Equations for a Linear	346
	Multi-Degree-of-Freedom System	356
	7.2.3 Lagrange's Equations of Motion	359
	7.3 Free Response Characteristics	378
	7.3.1 Undamped Systems: Natural Frequencies and Mode Shapes	378
	7.3.2 Natural Frequencies and Mode Shapes: A Summary	402

х

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Contents

7.3.3 Undamped Systems: Properties of Mode Shapes 402 7.3.4 Characteristics of Damped Systems 411 7.3.5 Conservation of Energy 421 7.4 Rotating Shafts on Flexible Supports 423 7.5 Stability 434 7.6 Summary 441 Exercises 442 Multiple Degree-of-Freedom Systems: General Solution for Response 8 and Forced Oscillations 458 8.1 Introduction 458 8.2 Normal-Mode Approach 460 8.2.1 General Solution 460 8.2.2 Response to Initial Conditions 465 8.3 Response to Arbitrary Forcing and Initial Conditions: Direct Numerical Approach 472 8.4 Response to Harmonic Forcing and the Frequency-Response Function 475 8.4.1 Frequency-Response Function 475 8.5 Vibration Absorbers 489 8.5.1 Undamped Vibration Absorber 489 8.5.2 Damped Linear Vibration Absorber 492 8.5.3 Centrifugal Pendulum Vibration Absorber 504 8.5.4 Bar Slider System 508 8.5.5 Pendulum Absorber 511 8.5.6 Particle Impact Damper 515 8.5.7 Vibration Absorbers: A Summary 525 8.6 Vibration Isolation: Transmissibility Ratio 525 8.7 Systems with Moving Base 536 8.8 Summary 538 Exercises 539 9 Vibrations of Beams 545 9.1 Introduction 545 9.2 Governing Equations of Motion 547 9.2.1 Preliminaries from Solid Mechanics 548 9.2.2 Potential Energy, Kinetic Energy, and Work 550 9.2.3 Derivation of the Equations of Motion 557 9.2.4 Beam Equations for a General Case 559 9.3 Free Oscillations: Natural Frequencies and Mode Shapes 566 9.3.1 Introduction 566

Contents	
9.3.2 General Solution for Natural Frequencies and Mode Shapes	
for Beams with Constant Cross-Section	
9.3.3 Orthogonality of the Mode Shapes	
9.3.4 Natural Frequencies and Mode Shapes of Constant Cross-Section	
Beams Without In-Span Attachments: Effects of Boundary Conditions 9.3.5 Effects of Stiffness and Inertial Elements Attached at an	
Interior Location	
9.3.6 Effects of an Axial Force and an Elastic Foundation on the Natural	
Frequency	
9.3.7 Tapered Beams	
9.4 Forced Oscillations	
9.5 Summary	
Exercises	
Appendices	
A Preliminaries from Dynamics	
B Laplace Transform Pairs	
C Solutions to Ordinary Differential Equations	
D Matrices	
E Complex Numbers and Variables	
F State-Space Formulation	
G Natural Frequencies and Mode Shapes of Bars, Shafts, and Strings	
H Evaluation of Eq. (9.120)	
Answers to Selected Exercises	
Glossary	

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

EXAMPLES

2.1	Determination of mass moments of inertia	page 16
	Slider mechanism: system with varying inertia property	17
2.3	Equivalent stiffness of a beam-spring combination	28
	Equivalent stiffness of a cantilever beam with a transverse end load	29
2.5	Equivalent stiffness of a beam with a fixed end and a translating support at	
	the other end	30
2.6	Equivalent stiffness of a microelectromechanical system (MEMS) fixed-fixed	
	flexure	31
	Equivalent stiffness due to gravity loading	43
	Equivalent damping coefficient and equivalent stiffness of a vibratory system	n 50
	Equivalent linear damping coefficient of a nonlinear damper	51
	Wind-driven oscillations about a system's static-equilibrium position	81
	Eardrum oscillations: nonlinear oscillator and linearized systems	82
3.3	Hand biomechanics	85
	Natural frequency from static deflection of a machine system	88
	Static deflection and natural frequency of the tibia bone in a human leg	89
3.6	System with a constant natural frequency	90
	Effect of mass on the damping factor	94
	Effects of system parameters on the damping factor	94
	Equation of motion for a linear single degree-of-freedom system	105
	Equation of motion for a system that translates and rotates	106
	Governing equation for an inverted pendulum	108
	Governing equation for motion of a disc segment	111
3.13	Governing equation for a translating system with a pretensioned or	
	precompressed spring	114
	Using negative stiffness to isolate a car seat	115
	Equation of motion for a disc with an extended mass	117
	Lagrange formulation for a microelectromechanical system (MEMS) device	
	Equation of motion of a slider mechanism	122
	Oscillations of a crankshaft	124
	Vibration of a centrifugal governor	127
	Oscillations of a rotating system	128
	Free response of a microelectromechanical system	153
4.2	Free response of a car tire	154

	Examples	xiii
4.3	Free response of a door	155
	Impact of a vehicle bumper	167
	Impact of a container housing a single degree-of-freedom system	169
	Collision of two viscoelastic bodies	172
4.7	Estimate of damping ratio using the logarithmic decrement	173
4.8	Inverse problem: information from a phase-plane plot	174
4.9	Instability of an inverted pendulum	181
5.1	Estimation of system damping ratio to tailor transient response	207
5.2	Start-up response of a flexibly supported rotating machine	208
5.3	Forced response of a damped system	212
5.4	Forced response of an undamped system	215
5.5	Fraction of applied force that is transmitted to the base	224
5.6	Response of an instrument subjected to base excitation	229
5.7	Single degree-of-freedom system subjected to a periodic pulse train	243
5.8	Damping ratio and bandwidth to obtain a desired Q	254
	Frequency-response function of a tire for pavement design analysis	256
	Design of an accelerometer	263
	Design of a vibration isolation mount	267
	Transmissibility of a floating vibration isolation system	268
	Vibratory system with structural damping	281
	Estimate for response amplitude of a system subjected to fluid damping	282
	Response of a linear vibratory system to multiple impacts	306
	Use of an additional impact to suppress the transient response	307
	Stress level under impulse loading	309
	Vehicle response to a step change in the road profile	314
	Response of a slab floor to transient loading	327
	Response to half sine pulse base excitation	329
	Single degree-of-freedom system with moving base and nonlinear spring	331
	Modeling of a milling machine on a flexible floor	348
	Conservation of linear momentum in a multiple degree-of-freedom system	350
	System with bounce and pitch motions	351
	Governing equations of a rate gyroscope	354 363
	System with a translating mass attached to an oscillating disc System with bounce and pitch motions revisited	363 364
	Pendulum absorber	366
	Bell and clapper	368
	Three coupled nonlinear oscillators: Lavrov's device	370
	Governing equations of a rate gyroscope revisited	370
	Governing equations of a rate gyroscope revisited Governing equations of hand-arm vibrations	372
	Natural frequencies and mode shapes of a two degree-of-freedom system	382
	Rigid-body mode of a railway car system	389
7.15	Ligit coup mous of a faith ag sur by been	207

xiv

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Examples

7.14	Natural frequencies and mode shapes of a two-mass-three-spring system	390
7.15	Natural frequencies and mode shapes of a pendulum attached	
	to a translating mass	392
7.16	Natural frequencies and mode shapes of a system with bounce and pitch	
	motions	395
7.17	Inverse problem: determination of system parameters	399
7.18	System of oscillators attached to a single degree-of-freedom system	400
	Orthogonality of modes, modal masses, and modal stiffness	
	of a spring-mass system	410
7.20	Nature of the damping matrix	417
	Free oscillation characteristics of a proportionally damped system	418
	Free oscillation characteristics of a system with gyroscopic forces	420
	Conservation of energy in a three degree-of-freedom system	423
	Stability of an undamped system with gyroscopic forces	434
	Wind-induced vibrations of a suspension bridge deck: stability analysis	435
	Disc brake squeal	437
8.1	Undamped free oscillations of a two degree-of-freedom system	467
	Damped and undamped free oscillations of a two degree-of-freedom system	468
8.3	Interaction of a rigid structure with its soil foundation	485
8.4	Absorber for a diesel engine	491
8.5	Absorber design for a rotating system with mass unbalance	502
8.6	Absorber design for a machine system	504
8.7	Design of a centrifugal pendulum vibration absorber for an	
	internal combustion engine	508
8.8	Design of machinery mounting to meet a transmissibility ratio requirement	535
9.1	Boundary conditions for a cantilever beam with an extended mass	564
9.2	Beams with attachments: maintaining a constant first natural frequency	597
9.3	Determination of the properties of a beam supporting rotating machinery	614
9.4	Natural frequencies of a tapered cantilever beam	619
9.5	Mode shape of a baseball bat	620
9.6	Impulse response of a cantilever beam	629
9.7	Frequency-response functions of a beam	631
9.8	Use of a second impact to suppress the transient response	633
9.9	Moving load on a beam	635

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

INTERACTIVE GRAPHICS

Interactive graphics are available online www.cambridge.org/vibrations

1.1	Normalized response of a spring-mass-damper system to various	
	excitations and damping	page 10
2.1	Deflection of two springs in series	23
2.2	Deflection of two springs in parallel and their equivalent stiffness	25
2.3	Geometric nonlinear stiffness of a combination of a vertical spring and an	
	inclined spring	36
2.4	Geometric nonlinear stiffness of three springs and configurations for zero	
	stiffness	38
3.1	Animation of the system shown in Figure 3.7	100
3.2	Animation of the system shown in Figure 3.9	106
3.3	Animation of the system shown in Figure 3.11	111
3.4	Animation of the system shown in Figure 3.13	116
3.5	Animation of the system shown in Figure 3.14	117
3.6	Animation of the system shown in Figure 3.16	122
3.7	Animation of the system shown in Figure 3.17	125
4.1	Response to an initial velocity: damping factor comparisons	153
4.2	Displacement, velocity, and acceleration response variations	
	with respect to initial conditions	161
4.3	Logarithmic decrement and the determination of the damping factor	163
4.4	Phase-plane plot, initial conditions, and the extrema values indicated in	
	Table 4.1	165
4.5	Maxwell and Kelvin-Voigt models: comparison of force transmitted	
	to the base	178
4.6	Comparison of responses of systems with linear springs, linear elastic	
	stops, and nonlinear springs	184
5.1	Amplitude and phase response functions and response to suddenly	
	applied sine wave or cosine wave	207
5.2	Harmonic excitation with time-dependent frequency	209
5.3	Amplitude and phase response functions for mass excitation, unbalanced	
	mass excitation, and moving base excitation	232
5.4	Phase relations amongst the excitation, displacement, and velocity	
	for three types of excitation	232

xvi

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Interactive Graphics

5.5 Comparison of the amplitude response and phase response for systems with Kelvin-Voigt and Maxwell models 237 5.6 Responses to different periodic waveforms in the time domain and the frequency domain 247 5.7 Amplitude response function as a filter 254 5.8 Transmissibility ratio for a system with a Kelvin–Voigt model and a system with a Maxwell model 266 **5.9** Hysteresis loops for different dissipation models 278 **5.10** Amplitude response of a system with cubic hardening spring 285 **6.1** Response to a rectangular pulse: convolution integral based approach 305 6.2 Spectral content of aperiodic and periodic waveforms 320 6.3 Response to transient excitation: time and frequency representations 327 6.4 Response of system with a nonlinear spring subjected to transient base 334 excitation **6.5** Effect of natural frequency and input force spectrum on system response 338 7.1 Natural frequencies of translating two degree-of-freedom systems 387 **7.2** Two degree-of-freedom systems with translation: natural frequencies and mode shapes 391 7.3 Two degree-of-freedom systems with translation and rotation: natural frequencies and mode shapes 398 8.1 Two degree-of-freedom system: displacement responses of masses to initial conditions 473 8.2 Two degree-of-freedom system: displacement responses of masses to transient forcing 474 **8.3** Two degree-of-freedom system: frequency-response functions 483 **8.4** Frequency-response function for an optimal choice of parameters 500 525 **8.5** Particle impact damper **8.6** Transmissibility ratio (TR) variation with respect to system parameters 533 9.1 Natural frequencies, mode shapes, and node points of beams with various 599 boundary conditions 9.2 Natural frequencies and mode shapes of beams with in-span attachments 610 **9.3** First mode shape of a double-tapered free-free beam 622 9.4 Response of a cantilever beam to an impulse force 631

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

SYMBOLS

a_i, b_i	Fourier series coefficients
$a_{1n}, a_{2n}, b_{1n}, b_{2n},$	boundary condition parameters for beam
a	acceleration vector
a_G	absolute acceleration of center of mass of a system
$a(t), a(\tau)$	acceleration
$a_{ss}(t)$	steady-state portion of $a(t)$
c, c_j	damping coefficient, translation motion
c_b	longitudinal speed in beam
C _c	critical damping coefficient
c_d	fluid damping coefficient
c_{eq}	equivalent viscous damping
C _{jn}	damping coefficient
C_r	pulse duration-bandwidth product
C_t	damping coefficient, rotational motion
<i>c</i> ₃₂	ratio of damping coefficients, c_3/c_2
$c_i(\Omega_i)$	coefficients in response of a single degree-of-freedom
	system to periodic forcing
<i>e</i> ₁ , <i>e</i> ₂	body-fixed unit vectors
$f(t), f(\tau)$	external forcing
$f(x,t), f(\eta,\tau)$	external forcing on beam
f_n	natural frequency, Hz
f_{nc}	non-conservative force per unit length on a beam
g	gravitational constant
h	elevation from ground or thickness of a beam
<i>i</i> , <i>j</i> , <i>k</i>	unit vectors fixed in inertial reference plane
k, k_j, k_s	translation spring constant, spring stiffness
k_e	equivalent spring constant
k_f	stiffness of elastic foundation
k_{jn}	stiffness coefficient
k_t, k_{tj}	torsion spring constant
k ₃₂	stiffness ratio, k_3/k_2
m, m_i, M_s	mass of a particle or a rigid body
m _e	equivalent mass
m_o	mass of a beam

xviii	Symbols	
	<i>m</i> _r	mass ratio, m_2/m_1
	p(x,t)	axial force on beam
	$\boldsymbol{p}, \boldsymbol{p}_i$	linear momentum vector
	q_j	generalized coordinate
	$\dot{\dot{q}}_j$	generalized velocity
	r	radius of gyration of beam cross-section
	r , r _i	position vector
	u(t)	unit step function
	S, S_j	Laplace transform parameter, roots of a polynomial in the parameter <i>s</i>
	t	time
	t_o	initial time, time delineating a characteristic
		of a waveform, characteristic time of a beam
	t_r	rise time
	v	velocity vector
	$v(t), v(\tau)$	velocity
	$v_{ss}(t)$	steady-state portion of $v(t)$
	$w(x,t), w(\eta, \tau)$	transverse displacement of beam
	$x(0), \dot{x}(0), x_j(0), \dot{x}_j(0)$	initial displacement, initial velocity
	$x(t), x(\tau), x_j(t)$	displacement
	$x_{\rm max}$	magnitude of $x(\tau_m)$
	X_o	static-equilibrium position
	$x_{ss}(t)$	steady-state portion of $x(t)$
	$\dot{x}(t), \dot{x}(au), \dot{x}_j(t)$	velocity
	$\ddot{x}(t), \ddot{x}(au), \ddot{x}_j(t)$	acceleration
	y(t)	displacement of base or nondimensional displacement
	$\ddot{y}(t)$	acceleration of base
	z(t)	relative displacement between mass and base
	A	cross-sectional area of beam
	A_o	magnitude of displacement due to initial conditions
	[A]	state matrix
	B_j	nondimensional torsion stiffness
	B_w	bandwidth of a filter
	C_n	beam eigenfunction parameter
	[<i>C</i>]	damping matrix
	D	Rayleigh dissipation function
	$D(\Omega)$	denominator of $H(\Omega)$
	E	Young's modulus
	E_d, E_{diss}	dissipation energy
	E_T	total energy in a signal
	$E(\omega)$	signal energy as a function of frequency

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Symbols

VIV
XIX

F , F _i	force vector
F_{s}	internal force vector
$F_T(t)$	force transmitted to the base
F_o	magnitude of $f(t)$
F(x)	spring force
F(s)	Laplace transform of forcing $f(t)$ or $f(\tau)$
G	shear modulus
G_B	beam energy function
G_0, G_L	beam energy function at boundaries
$G_{ij}(j\Omega)$	frequency-response function of inertial element <i>i</i> to force
5	applied to inertial element j
$G(\Omega)$	frequency-response function
$H(\Omega)$	amplitude response function, single degree-of-freedom system
$H_{ij}(\Omega)$	amplitude response function of inertial element <i>i</i> to force
5	applied to inertial element j
$H_{st}(\Omega)$	amplitude response function, system with
	structural damping
$H_{mb}(\Omega)$	amplitude response function, system with base excitation
$H_{ub}(\Omega)$	amplitude response function, system with
	rotating unbalanced mass
H	angular momentum
Ι	moment of inertia of beam cross-section about bending axis
J	mass moment of inertia about axis of rotation
J_G	mass moment of inertia about center of mass
J_O	mass moment of inertia about point "O"
J_j	mass moment of inertia of m_j
J_o	mass moment of inertia of m_o
K_{f}	nondimensional stiffness of elastic foundation
K_j	nondimensional spring stiffness
K_s	stiffness ratio, $k_s L^3 / (EI)$
[K]	stiffness matrix
L	length of an element
L_T	Lagrangian for a beam
M	net moment about a fixed point or the center of mass
M	magnitude of M
M(t)	external moment
M_{jn}	inertia coefficient
M_j	mass attached to beam boundaries
M_o	mass attached to beam
M_{so}	mass ratio, M_s/m_o
[M]	inertia matrix, mass matrix

хх	Symbols	
	N_n	square of the norm of the beam eigenfunction
	N_d	number of periods to reach τ_d
	\hat{P}	nondimensional axial force on beam
	P_o	percentage overshoot
	Q	quality factor
	$Q(\phi)$	spatial beam function
	Q_i	generalized force
	R	reduction in transmissibility
	$R(\phi)$	spatial beam function
	S, S_j	sensitivity
	$S(\phi)$	spatial beam function
	Т	period of oscillation at frequency ω , kinetic energy
	$T(\phi)$	spatial beam function
	T_d	period of oscillation at frequency ω_d
	TR	transmissibility ratio
	T_o, T_1	spring tension
	U	potential energy of beam
	V	potential energy, shear force on beam
	V_o	initial velocity
	W	work
	$W(x), W(\eta)$	transverse displacement of a beam
	W(0), W'(0),	
	W''(0), W'''(0)	beam shape function and its derivatives evaluated at $\eta = 0$
	$W_n(\eta)$	beam mode shape
	X(s)	Laplace transform of $x(t)$ or $x(\tau)$
	X_j	magnitude of displacement response to harmonic force
	X_{ij}	elements of $\{X\}$
	X_o	initial displacement
	$\{X\}$	displacement column vector
	$\{X\}_j$	<i>j</i> th mode shape corresponding to Ω_j
	α	nonlinear spring stiffness coefficient, coefficient in proportional
	<i>a</i>	damping matrix
	α	angular acceleration vector
	β	structural damping constant, coefficient in proportional
	δ	damping matrix
		logarithmic decrement Kronecker delta
	δ_{nm}	delta function
	$\delta(t)$	static displacement of a spring
	δ_{st}	coefficient of restitution, percentage error
	ε	coefficient of restitution, percentage entor

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Symbols

xxi

4	domina notio domina foston
ξ	damping ratio, damping factor
ζ_j	modal damping factor nondimensional beam coordinate, x/L
η	
$\{\eta(t)\},\{\dot{\eta}(t)\},\{\ddot{\eta}(t)\}$	modal amplitude or displacement, modal velocity, modal acceleration column matrices
$ heta, \dot{ heta}, \ddot{ heta}$	
	angular displacement, angular velocity, angular acceleration
$\theta(\Omega)$	phase angle response to harmonic excitation, steady state
$\theta_t(\Omega)$	phase angle response to harmonic excitation, transient phase angle response to harmonic excitation, system with
$\theta_{st}(\Omega)$	
	structural damping
K	curvature
λ_j	roots of a polynomial in the parameter λ
μ	coefficient of friction, kinematic viscosity, overlap factor in
2	turning
ρ	mass density bending stress in a beam
σ	•
τ	nondimensional time, $\omega_n t$ or $\omega_{n1} t$ nondimensional time it takes for a system to decay to a
$ au_d$	specified level
~	nondimensional time at which $x(\tau)$ is a maximum
$ au_m$	nondimensional time at which $x(t)$ is a maximum nondimensional rise time
$ au_r$ $\phi, \dot{\phi}, \ddot{\phi}$	angular displacement, angular velocity, angular
ψ, ψ, ψ	acceleration
(0)	phase angle associated with ζ
φ	phase angle associated with ç
$arphi_d \ \psi_n(au)$	temporal separation of variables function
$\psi_n(t)$ $\psi(\Omega)$	phase response, system with harmonic base excitation
$\varphi(22)$	excitation frequency, rad/s
ω_c	cutoff frequency, rad/s
	damped natural frequency, rad/s
ω_d	damped natural frequency of <i>j</i> th mode
ω_{dj} ω_n	natural frequency of single degree-of-freedom system, rad/s
ω_{nj}	uncoupled natural frequency of <i>j</i> th spring-mass system, rad/s
ω_{nj}	frequency ratio, ω_{n2}/ω_{n1}
ω_r	angular velocity vector
 [Φ]	modal matrix
$\Omega, \Omega_i, \Omega_o$	nondimensional frequency ratio, ω/ω_n or ω/ω_{n1} , ω_i/ω_n , ω_o/ω_n
Ω	nondimensional frequency coefficient for a beam
Ω_c	center frequency ratio of a filter
Ω_{cl}	lower cutoff frequency ratio of a filter
	·····

xxii	Symbols	
	$egin{array}{llllllllllllllllllllllllllllllllllll$	upper cutoff frequency ratio of a filter frequency at which $H(\Omega)$ is a maximum nondimensional natural frequency coefficient for a beam at the <i>n</i> th natural frequency

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

PREFACE TO THE THIRD EDITION

Vibration is a classical subject whose principles have been known and studied for many centuries and presented in many books. Over the years, the use of these principles to understand and design systems has seen considerable growth in the diversity of systems that are designed with vibrations in mind: mechanical, aerospace, electromechanical and microelectromechanical devices and systems, biomechanical and biomedical systems, ships and submarines, and civil structures. As the performance envelope of an engineered system is pushed to higher limits, nonlinear effects also have to be taken into account.

AIMS OF THE BOOK

This book has been written to enable the use of vibration principles in a broad spectrum of applications and to meet the wide range of challenges faced by system analysts and designers. To this end, the authors have the following goals.

- To provide an introduction to the subject of vibrations for undergraduate students in engineering and the physical sciences.
- To present vibration principles in a general context and to illustrate the use of these principles through carefully chosen examples from different disciplines.
- To use a balanced approach that integrates principles of linear and nonlinear vibrations with modeling, analysis, prediction, and measurement so that physical understanding of the vibratory phenomena and their relevance for engineering design can be emphasized.
- To deduce design guidelines that are applicable to a wide range of vibratory systems.

In writing this book, the authors have used the following guidelines. The material presented should have, to the extent possible, a physical relevance to justify its introduction and development. The examples should be relevant and wide ranging. There should be a natural integration and progression between linear and nonlinear systems, between the time domain and the frequency domain, among the responses of systems to harmonic and transient excitations, and between discrete and continuous system models. There should be a minimum emphasis placed on the discussion of numerical methods and procedures, per se, and instead, advantage should be taken of tools such as Matlab[®] and Mathematica[®] for generating the numerical solutions to complement the analytical solutions. In addition,

xxiv

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Preface to the Third Edition

numerical tools should be used in concert with analysis to extend studies on linear systems to include nonlinear elements. Finally, there should be a natural and integrated interplay and presentation between analysis, modeling, measurement, prediction, and design so that a reader does not develop artificial distinctions among them.

NEW MATERIAL

In this third edition, the authors have significantly enhanced the previous editions by creating the following new materials:

- Added numerous examples of model construction
- Introduced two ways in which a linear spring can be used to create zero stiffness
- Expanded the treatment of the Maxwell model
- Increased the number of waveforms analyzed for both periodic and transient excitations
- Doubled the number of vibration absorbers considered
- Presented a general way to determine the natural frequencies and mode shapes of 19 different undamped linear two degree-of-freedom systems and subsequently showed how to use these results to obtain the frequency-response functions for damped systems
- Added several new examples that illustrate novel applications of vibration analysis and design.

REARRANGEMENT OF MATERIAL

We have rearranged some of the material to make it more cohesive and better focused, to allow special cases to be easily considered, and to allow for the results to be more easily generalized. This is especially true for the material covering single degree-offreedom systems subject to harmonic excitation and to transient excitation, to systems with two degrees of freedom, and to beams.

TABLES

We have created 13 new tables in which we have collected, summarized, and in many cases extended, the results appearing in the main body of the text. The material presented in the tables has been organized so that the similarity in the vibration model features, system response, or other characteristics of seemingly different physical systems can be emphasized. These tables have many purposes: they are used to summarize the important results, they serve as a reference source and as a study guide, they extend basic results, and, in some cases, they can be used to create exercise problems.

INTERACTIVE GRAPHICS

We have created over 40 real-time interactive graphics that are keyed to the book's text and figures. The interactive graphics require no programming experience, only the use of a mouse or touch pad. (It does require one to download a free program from Wolfram.) Additionally, appearing in appropriate places in the text are guidelines that direct the reader on what to note in each and the major conclusions that can be reached through the use of an interactive graphic. The interactive graphics materials are intuitive to use and self-explanatory. All figures are enhanced using different colors, line types and labels and in many of them the authors display numerical values of special quantities of interest such as a maximum/minimum value or an optimum value. There are numerous advantages and benefits of these interactive graphics materials, including the following: they are easy to use since no knowledge of a programming language is required; realtime parametric investigations can be conducted and "what-if" scenarios can be explored while making comparisons with special cases; they complement textbook material where graphics can only provide specific instances of the results; and they can be used to enhance homework assignments by asking questions the answers to which can help further the understanding of the material.

With the inclusion of the interactive graphics, the analytical and numerical results are now extensively complemented with the ability to easily visualize and explore them. These interactive graphics also allow the student to verify the design guidelines that appear throughout the book and to realize that the interactive graphics can be used as a design aid for applications beyond the classroom. By conducting parametric studies with the aid of the interactive graphics, a reader can also get a better appreciation for the range of vibratory behaviors possible. Many of these interactive graphics can be used to reveal interesting phenomena, which the authors believe will help further a reader's understanding of vibrations.

FEATURES RETAINED FROM THE PREVIOUS EDITION

In addition to the new enhancements mentioned above, this book retains the following features.

- Newton's laws and Lagrange's equations are used to develop models of systems. Since an important part of this development requires kinematics, kinematics is reviewed in Appendix A.
- Laplace transforms are used to develop analytical solutions for linear vibratory systems and, from the Laplace domain, extend these results to the frequency domain. The responses of these systems are discussed in both the time and frequency domains to emphasize their duality.

xxvi

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Preface to the Third Edition

- Notions of transfer functions and frequency-response functions also are used throughout the book to help the reader develop a comprehensive picture of vibratory systems.
- **Design for vibration (DFV) guidelines** are introduced and are based on vibration principles developed throughout the book. The guidelines appear at the appropriate places in each chapter. These design guidelines serve the additional function of summarizing the preceding material by encapsulating the most important elements as they relate to some aspect of vibration design.
- **Introduction** to each chapter provides a discussion on what specifically will be covered in that chapter.
- Examples have been chosen so that they are of different levels of complexity, cover a wide range of vibration topics and, in most cases, have practical applications to real-world problems.
- Exercises have been organized to correlate with the most appropriate section of the text.
- Appendices are included on the following:
 - Preliminaries from dynamics
 - Laplace transform pairs
 - ° Solution methods to second-order ordinary differential equations
 - \circ Matrices
 - Complex numbers and variables
 - $_{\circ}\,$ State-space formulation
 - $_{\circ}\,$ Natural frequencies and mode shapes of bar, shafts, and strings
 - Derivation details related to beam vibrations.
- A glossary is included to list in one place the definitions of the major terms used in the book.

CONTENTS AND ORGANIZATION

The book is organized into nine chapters, with the topics covered ranging from pendulum systems and spring-mass-damper prototypes to beams. In the first chapter, a brief introduction to the subject of vibrations is provided, related history is reviewed, and examples of scenarios where this subject is relevant are provided.

In the second chapter, the inertia, stiffness, and damping elements that are used to construct a vibratory system model are introduced, the notion of equivalent spring stiffness is presented in different physical contexts, the modeling of nonlinear springs is addressed, damping models are discussed, and many examples of modeling physical systems are shown. In Chapter 3, the equation governing a single degree-of-freedom vibratory system is derived by using the principles of linear momentum balance and angular momentum balance and the Lagrange equations. The notions of natural frequency and

Preface to the Third Edition xxvii

damping factor are introduced and mass excitation, base excitation, and unbalanced mass excitation are examined. The linearization of governing equations for nonlinear systems is also discussed. In Chapter 4, the responses of linear single degree-of-freedom systems to initial conditions are examined for the Kelvin–Voigt material and for a Maxwell material, and the effects of nonlinear springs and damping are determined. In addition, response stability, nonlinear springs, and nonlinear dampers are discussed.

In Chapter 5, the responses of single degree-of-freedom systems subjected to periodic excitations are considered and the notions of resonance, frequency-response functions, and transfer functions are introduced. The relation between the information in the time domain and the frequency domain is examined in detail. The concepts used for vibration isolation and accelerometers are presented and the notion of equivalent damping is introduced. Alternative forms of the frequency-response function are discussed. The forced response of a nonlinear oscillator is also treated. In Chapter 6, the responses of single degree-of-freedom systems to different types of transient excitations are analyzed in terms of their frequency spectra relative to the amplitude response function of the system. The notion of rise time, overshoot, and settling time are presented. The transient response of a nonlinear oscillator is also examined.

Multiple degree-of-freedom systems are treated in Chapters 7 and 8 leading up to continuous systems in Chapter 9. In Chapter 7, the derivation of governing equations of motion of a system with multiple degrees of freedom is addressed by using the principles of linear momentum balance and angular momentum balance and Lagrange's equations. The natural frequencies and mode shapes of undamped systems are studied and the notion of a vibratory mode is explained. The linearization of governing system for nonlinear systems is treated and the stability and vibrations of rotating shafts on flexible mounts is presented in detail.

In Chapter 8, the general solution for the responses of systems with two degrees of freedom subjected to initial conditions and arbitrary forcing is presented by using the normalmode approach. The limitation of this approach with regard to the type of damping that can be considered is addressed. The notions of resonance, frequency-response functions, and transfer functions for a multiple degree-of-freedom system are discussed with respect to their application for system identification and for the design of vibration absorbers and for vibration isolation. The vibration-absorber material includes the traditional treatment of linear vibration absorbers and a brief introduction to the design of several distinctly different types of nonlinear vibration absorbers, which include bar-slider systems, pendulum absorbers, and particle-impact dampers. Techniques that can be used to determine optimal choice of absorber and isolator parameters are also presented.

In Chapter 9, the free and forced oscillations of thin elastic beams are treated for a large number of boundary conditions, in-span attachments, and beam geometry. Considerable attention is paid to the determination of natural frequencies and mode shapes for these configurations, which include effects of axial forces and an elastic foundation. In this

xxviii

Cambridge University Press & Assessment 978-1-108-42731-9 — Vibrations 3rd Edition Balakumar Balachandran , Edward B. Magrab Frontmatter <u>More Information</u>

Preface to the Third Edition

chapter, the power of the Laplace transform approach to solve the beam response for complex boundary conditions and in-span attachments becomes apparent. In addition, an appendix on the natural frequencies and mode shapes associated with the free oscillations of strings, bars, and shafts, each for various combinations of boundary conditions including an attached mass and an attached spring is included.

ACKNOWLEDGMENTS

We express our sincere thanks to our former students for their spirited participation with regard to earlier versions of this book and for providing feedback, to the reviewers of this manuscript for their constructive suggestions, and to our colleagues worldwide for their valuable feedback on previous editions of this book.

B. Balachandran E. B. Magrab College Park, MD