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Robert Calderbank, Duke University
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Preface

Since its introduction in 1948, the field of information theory has proved instrumen-

tal in the analysis of problems pertaining to compressing, storing, and transmitting

data. For example, information theory has allowed analysis of the fundamental limits

of data communication and compression, and has shed light on practical communica-

tion system design for decades. Recent years have witnessed a renaissance in the use

of information-theoretic methods to address problems beyond data compression, data

communications, and networking, such as compressive sensing, data acquisition, data

analysis, machine learning, graph mining, community detection, privacy, and fairness.

In this book, we explore a broad set of problems on the interface of signal processing,

machine learning, learning theory, and statistics where tools and methodologies orig-

inating from information theory can provide similar benefits. The role of information

theory at this interface has indeed been recognized for decades. A prominent example is

the use of information-theoretic quantities such as mutual information, metric entropy

and capacity in establishing minimax rates of estimation back in the 1980s. Here we

intend to explore modern applications at this interface that are shaping data science in

the twenty-first century.

There are of course some notable differences between standard information-theoretic

tools and signal-processing or data analysis methods. Globally speaking, information

theory tends to focus on asymptotic limits, using large blocklengths, and assumes the

data is represented by a finite number of bits and viewed through a noisy channel.

The standard results are not concerned with complexity but focus more on fundamen-

tal limits characterized via achievability and converse results. On the other hand, some

signal-processing techniques, such as sampling theory, are focused on discrete-time rep-

resentations but do not necessarily assume the data is quantized or that there is noise in

the system. Signal processing is often concerned with concrete methods that are opti-

mal, namely, achieve the developed limits, and have bounded complexity. It is natural

therefore to combine these tools to address a broader set of problems and analysis which

allows for quantization, noise, finite samples, and complexity analysis.

This book is aimed at providing a survey of recent applications of information-

theoretic methods to emerging data-science problems. The potential reader of this book

could be a researcher in the areas of information theory, signal processing, machine

learning, statistics, applied mathematics, computer science or a related research area, or
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xiv Preface

a graduate student seeking to learn about information theory and data science and to

scope out open problems at this interface. The particular design of this volume ensures

that it can serve as both a state-of-the-art reference for researchers and a textbook for

students.

The book contains 16 diverse chapters written by recognized leading experts world-

wide, covering a large variety of topics that lie on the interface of signal processing, data

science, and information theory. The book begins with an introduction to information

theory which serves as a background for the remaining chapters, and also sets the nota-

tion to be used throughout the book. The following chapters are then organized into four

categories: data acquisition (Chapters 2–4), data representation and analysis (Chapters

5–9), information theory and machine learning (Chapters 10 and 11), and information

theory, statistics, and compression (Chapters 12–15). The last chapter, Chapter 16, con-

nects several of the book’s themes via a survey of Fano’s inequality in a diverse range

of data-science problems. The chapters are self-contained, covering the most recent

research results in the respective topics, and can all be treated independently of each

other. A brief summary of each chapter is given next.

Chapter 1 by Rodrigues, Draper, Bajwa, and Eldar provides an introduction to infor-

mation theory concepts and serves two purposes: It provides background on classical

information theory, and presents a taster of modern information theory applied to

emerging data-science problems.

Chapter 2 by Kipnis, Eldar, and Goldsmith extends the notion of rate-distortion the-

ory to continuous-time inputs deriving bounds that characterize the minimal distortion

that can be achieved in representing a continuous-time signal by a series of bits when

the sampler is constrained to a given sampling rate. For an arbitrary stochastic input and

given a total bitrate budget, the authors consider the lowest sampling rate required to

sample the signal such that reconstruction of the signal from a bit-constrained represen-

tation of its samples results in minimal distortion. It turns out that often the signal can

be sampled at sub-Nyquist rates without increasing the distortion.

Chapter 3 by Jalali and Poor discusses the interplay between compressed sensing and

compression codes. In particular, the authors consider the use of compression codes to

design compressed sensing recovery algorithms. This allows the expansion of the class

of structures used by compressed sensing algorithms to those used by data compression

codes, which is a much richer class of inputs and relies on decades of developments in

the field of compression.

Chapter 4 by Pilanci develops information-theoretical lower bounds on sketching for

solving large statistical estimation and optimization problems. The term sketching is

used for randomized methods that aim to reduce data dimensionality in computationally

intensive tasks for gains in space, time, and communication complexity. These bounds

allow one to obtain interesting trade-offs between computation and accuracy and shed

light on a variety of existing methods.

Chapter 5 by Shakeri, Sarwate, and Bajwa treats the problem of dictionary learning,

which is a powerful signal-processing approach for data-driven extraction of features

from data. The chapter summarizes theoretical aspects of dictionary learning for vector-

and tensor-valued data and explores lower and upper bounds on the sample complexity
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Preface xv

of dictionary learning which are derived using information-theoretic tools. The depen-

dence of sample complexity on various parameters of the dictionary learning problem

is highlighted along with the potential advantages of taking the structure of tensor data

into consideration in representation learning.

Chapter 6 by Riegler and Bölcskei presents an overview of uncertainty relations for

sparse signal recovery starting from the work of Donoho and Stark. These relations are

then extended to richer data structures and bases, which leads to the recently discovered

set-theoretic uncertainty relations in terms of Minkowski dimension. The chapter also

explores the connection between uncertainty relations and the “large sieve,” a family

of inequalities developed in analytic number theory. It is finally shown how uncertainty

relations allow one to establish fundamental limits of practical signal recovery problems

such as inpainting, declipping, super-resolution, and denoising of signals.

Chapter 7 by Reeves and Pfister examines high-dimensional inference problems

through the lens of information theory. The chapter focuses on the standard linear model

for which the performance of optimal inference is studied using the replica method from

statistical physics. The chapter presents a tutorial of these techniques and presents a new

proof demonstrating their optimality in certain settings.

Chapter 8 by Shah discusses the question of learning distributions over permutations

of a given set of choices based on partial observations. This is central to capturing

choice in a variety of contexts such as understanding preferences of consumers over

a collection of products based on purchasing and browsing data in the setting of retail

and e-commerce. The chapter focuses on the learning task from marginal distributions

of two types, namely, first-order marginals and pair-wise comparisons, and provides a

comprehensive review of results in this area.

Chapter 9 by Raman and Varshney studies universal clustering, namely, clustering

without prior access to the statistical properties of the data. The chapter formalizes the

problem in information theory terms, focusing on two main subclasses of clustering that

are based on distance and dependence. A review of well-established clustering algo-

rithms, their statistical consistency, and their computational and sample complexities is

provided using fundamental information-theoretic principles.

Chapter 10 by Raginsky, Rakhlin, and Xu introduces information-theoretic measures

of algorithmic stability and uses them to upper-bound the generalization bias of learn-

ing algorithms. The notion of stability implies that its output does not depend too

much on any individual training example and therefore these results shed light on the

generalization ability of modern learning techniques.

Chapter 11 by Piantanida and Vega introduces the information bottleneck principle

and explores its use in representation learning, namely, in the development of com-

putational algorithms that learn the different explanatory factors of variation behind

high-dimensional data. Using these tools, the authors obtain an upper bound on the

generalization gap corresponding to the cross-entropy risk. This result provides an inter-

esting connection between mutual information and generalization, and helps to explain

why noise injection during training can improve the generalization ability of encoder

models.
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Chapter 12 by Ding, Yang, and Tarokh discusses fundamental limits of inference

and prediction based on model selection principles from modern data analysis. Using

information-theoretic tools the authors analyze several state-of-the-art model selec-

tion techniques and introduce two recent advances in model selection approaches, one

concerning a new information criterion and the other concerning modeling-procedure

selection.

Chapter 13 by Wu and Xu provides an exposition on some of the methods for deter-

mining the information-theoretical as well as computational limits for high-dimensional

statistical problems with a planted structure. Planted structures refer to a ground truth

structure (often of a combinatorial nature) which one is trying to discover in the presence

of random noise. In particular, the authors discuss first- and second-moment methods for

analyzing the maximum likelihood estimator, information-theoretic methods for proving

impossibility results using mutual information and rate-distortion theory, and techniques

originating from statistical physics. To investigate computational limits, they describe

randomized polynomial-time reduction schemes that approximately map planted-clique

problems to the problem of interest in total variation distance.

Chapter 14 by Zhao and Lai considers information-theoretic models for distributed

statistical inference problems with compressed data. The authors review several research

directions and challenges related to applying these models to various statistical learn-

ing problems. In these applications, data are distributed in multiple terminals, which

can communicate with each other via limited-capacity channels. Information-theoretic

tools are used to characterize the fundamental limits of the classical statistical inference

problems using compressed data directly.

Chapter 15 by Feizi and Médard treats different aspects of the network functional

compression problem. The goal is to compress a source of random variables for the

purpose of computing a deterministic function at the receiver where the sources and

receivers are nodes in a network. Traditional data compression schemes are special cases

of functional compression, in which the desired function is the identity function. It is

shown that for certain classes of functions considerable compression is possible in this

setting.

Chapter 16 by Scarlett and Cevher provides a survey of Fano’s inequality and its use

in various statistical estimation problems. In particular, the chapter overviews the use of

Fano’s inequality for establishing impossibility results, namely, conditions under which

a certain goal cannot be achieved by any estimation algorithm. The authors present

several general-purpose tools and analysis techniques, and provide representative exam-

ples covering group testing, graphical model selection, sparse linear regression, density

estimation, and convex optimization.

Within the chapters, the authors point to various open research directions at the

interface of information theory, data acquisition, data analysis, machine learning, and

statistics that will certainly see increasing attention in the years to come.

We would like to end by thanking all the authors for their contributions to this book

and for their hard work in presenting the material in a unified and accessible fashion.
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Notation

z scalar (or value of random variable Z)

Z random variable

z vector (or value of random vector Z)

Z matrix (or random vector)

zi ith entry of vector z

Zi, j (i, j)th entry of matrix Z

Zn = (Z1, . . . ,Zn) sequence of n random variables

zn = (z1, . . . ,zn) value of sequence of n random variables Zn

Z
j

i
=
(

Zi, . . . ,Z j

)

sequence of j− i+1 random variables

z
j

i
=
(

zi, . . . ,z j

)

value of sequence of j− i+1 random variables Z
j

i

‖ · ‖p p-norm

(·)T transpose operator

(·)∗ conjugate Hermitian operator

(·)† pseudo-inverse of the matrix argument

tr(·) trace of the square matrix argument

det(·) determinant of the square matrix argument

rank(·) rank of the matrix argument

range(·) range span of the column vectors of the matrix argument

λmax(·) maximum eigenvalue of the square matrix argument

λmin(·) minimum eigenvalue of the square matrix argument

λi(·) ith largest eigenvalue of the square matrix argument

I identity matrix (its size is determined from the context)

0 matrix with zero entries (its size is determined from the context)

T standard notation for sets

|T | cardinality of set T

R set of real numbers

C set of complex numbers

R
n set of n-dimensional vectors of real numbers

C
n set of n-dimensional vectors of complex numbers

j imaginary unit

Re(x) real part of the complex number x

Im(x) imaginary part of the complex number x

|x| modulus of the complex number x

arg(x) argument of the complex number x

E[·] statistical expectation

P[·] probability measure
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xviii Notation

H(·) entropy

H(·|·) conditional entropy

h(·) differential entropy

h(·|·) conditional differential entropy

D(·‖·) relative entropy

I(·; ·) mutual information

I(·; ·|·) conditional mutual information

N
(

µ,σ2
)

scalar Gaussian distribution with mean µ and variance σ2

N(µ,Σ) multivariate Gaussian distribution with mean µ and covariance

matrix Σ
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