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1 Introduction to Information Theory
and Data Science

Miguel R. D. Rodrigues, Stark C. Draper, Waheed U. Bajwa, and Yonina C. Eldar

Summary

The field of information theory – dating back to 1948 – is one of the landmark intel-

lectual achievements of the twentieth century. It provides the philosophical and math-

ematical underpinnings of the technologies that allow accurate representation, efficient

compression, and reliable communication of sources of data. A wide range of storage

and transmission infrastructure technologies, including optical and wireless commu-

nication networks, the internet, and audio and video compression, have been enabled

by principles illuminated by information theory. Technological breakthroughs based on

information-theoretic concepts have driven the “information revolution” characterized

by the anywhere and anytime availability of massive amounts of data and fueled by the

ubiquitous presence of devices that can capture, store, and communicate data.

The existence and accessibility of such massive amounts of data promise immense

opportunities, but also pose new challenges in terms of how to extract useful and action-

able knowledge from such data streams. Emerging data-science problems are different

from classical ones associated with the transmission or compression of information in

which the semantics of the data was unimportant. That said, we are starting to see

that information-theoretic methods and perspectives can, in a new guise, play impor-

tant roles in understanding emerging data-science problems. The goal of this book is

to explore such new roles for information theory and to understand better the modern

interaction of information theory with other data-oriented fields such as statistics and

machine learning.

The purpose of this chapter is to set the stage for the book and for the upcoming

chapters. We first overview classical information-theoretic problems and solutions. We

then discuss emerging applications of information-theoretic methods in various data-

science problems and, where applicable, refer the reader to related chapters in the book.

Throughout this chapter, we highlight the perspectives, tools, and methods that play

important roles in classic information-theoretic paradigms and in emerging areas of data

science. Table 1.1 provides a summary of the different topics covered in this chapter and

highlights the different chapters that can be read as a follow-up to these topics.
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Table 1.1. Major topics covered in this chapter and their connections to other chapters

Section(s) Topic Related chapter(s)

1.1–1.4 An introduction to information theory 15

1.6 Information theory and data acquisition 2–4, 6, 16

1.7 Information theory and data representation 5, 11

1.8 Information theory and data analysis/processing 6–16

1.1 Classical Information Theory: A Primer

Claude Shannon’s 1948 paper “A mathematical theory of communications,” Bell Systems

Technical Journal, July/Oct. 1948, laid out a complete architecture for digital communi-

cation systems [1]. In addition, it articulated the philosophical decisions for the design

choices made. Information theory, as Shannon’s framework has come to be known, is

a beautiful and elegant example of engineering science. It is all the more impressive as

Shannon presented his framework decades before the first digital communication system

was implemented, and at a time when digital computers were in their infancy.

Figure 1.1 presents a general schematic of a digital communication system. This

figure is a reproduction of Shannon’s “Figure 1” from his seminal paper. Before 1948

no one had conceived of a communication system in this way. Today nearly all digital

communication systems obey this structure.

The flow of information through the system is as follows. An information source first

produces a random message that a transmitter wants to convey to a destination. The

message could be a word, a sentence, or a picture. In information theory, all information

sources are modeled as being sampled from a set of possibilities according to some

probability distribution. Modeling information sources as stochastic is a key aspect of

Shannon’s approach. It allowed him to quantify uncertainty as the lack of knowledge

and reduction in uncertainty as the gaining of knowledge or “information.”
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Figure 1.1 Reproduction of Shannon’s Figure 1 in [1] with the addition of the source and channel

encoding/decoding blocks. In Shannon’s words, this is a “schematic diagram of a general

communication system.”
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The message is then fed into a transmission system. The transmitter itself has two

main sub-components: the source encoder and the channel encoder. The source encoder

converts the message into a sequence of 0s and 1s, i.e., a bit sequence. There are two

classes of source encoders. Lossless source coding removes predictable redundancy

that can later be recreated. In contrast, lossy source coding is an irreversible process

wherein some distortion is incurred in the compression process. Lossless source cod-

ing is often referred to as data compression while lossy coding is often referred to as

rate-distortion coding. Naturally, the higher the distortion the fewer the number of bits

required.

The bit sequence forms the data payload that is fed into a channel encoder. The out-

put of the channel encoder is a signal that is transmitted over a noisy communication

medium. The purpose of the channel code is to convert the bits into a set of possible

signals or codewords that can be reliably recovered from the noisy received signal.

The communication medium itself is referred to as the channel. The channel can

model the physical separation of the transmitter and receiver. It can also, as in data

storage, model separation in time.

The destination observes a signal that is the output of the communication channel.

Similar to the transmitter, the receiver has two main components: a channel decoder and

a source decoder. The former maps the received signal into a bit sequence that is, one

hopes, the same as the bit sequence produced by the transmitter. The latter then maps

the estimated bit sequence to an estimate of the original message.

If lossless compression is used, then an apt measure of performance is the probabil-

ity that the message estimate at the destination is not equal to the original message at

the transmitter. If lossy compression (rate distortion) is used, then other measures of

goodness, such as mean-squared error, are more appropriate.

Interesting questions addressed by information theory include the following.

1. Architectures

• What trade-offs in performance are incurred by the use of the architecture

detailed in Figure 1.1?

• When can this architecture be improved upon; when can it not?

2. Source coding: lossless data compression

• How should the information source be modeled; as stochastic, as arbitrary

but unknown, or in some other way?

• What is the shortest bit sequence into which a given information source can

be compressed?

• What assumptions does the compressor work under?

• What are basic compression techniques?

3. Source coding: rate-distortion theory

• How do you convert an analog source into a digital bitstream?

• How do you reconstruct/estimate the original source from the bitstream?

• What is the trade-off involved between the number of bits used to describe

a source and the distortion incurred in reconstruction of the source?
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4. Channel coding

• How should communication channels be modeled?

• What throughput, measured in bits per second, at what reliability, measured

in terms of probability of error, can be achieved?

• Can we quantify fundamental limits on the realizable trade-offs between

throughput and reliability for a given channel model?

• How does one build computationally tractable channel coding systems that

“saturate” the fundamental limits?

5. Multi-user information theory

• How do we design systems that involve multiple transmitters and receivers?

• How do many (perhaps correlated) information sources and transmission

channels interact?

The decades since Shannon’s first paper have seen fundamental advances in each of

these areas. They have also witnessed information-theoretic perspectives and thinking

impacting a number of other fields including security, quantum computing and com-

munications, and cryptography. The basic theory and many of these developments are

documented in a body of excellent texts, including [2–9]. Some recent advances in net-

work information theory, which involves multiple sources and/or multiple destinations,

are also surveyed in Chapter 15. In the next three sections, we illustrate the basics of

information-theoretic thinking by focusing on simple (point-to-point) binary sources and

channels. In Section 1.2, we discuss the compression of binary sources. In Section 1.3,

we discuss channel coding over binary channels. Finally, in Section 1.4, we discuss

computational issues, focusing on linear codes.

1.2 Source Coding: Near-Lossless Compression of Binary Sources

To gain a feel for the tools and results of classical information theory consider the fol-

lowing lossless source coding problem. One observes a length-n string of random coin

flips, X1,X2, . . . ,Xn, each Xi ∈ {heads, tails}. The flips are independent and identically

distributed with P(Xi = heads) = p, where 0 ≤ p ≤ 1 is a known parameter. Suppose we

want to map this string into a bit sequence to store on a computer for later retrieval.

Say we are going to assign a fixed amount of memory to store the sequence. How much

memory must we allocate?

Since there are 2n possible sequences, all of which could occur if p is not equal to 0

or 1, if we use n bits we can be 100% certain we could index any heads/tails sequence

that we might observe. However, certain sequences, while possible, are much less likely

than others. Information theory exploits such non-uniformity to develop systems that

can trade off between efficiency (the storage of fewer bits) and reliability (the greater

certainty that one will later be able to reconstruct the observed sequence). In the follow-

ing, we accept some (arbitrarily) small probability ǫ > 0 of observing a sequence that we
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choose not to be able to store a description of.1 One can think of ǫ as the probability of

the system failing. Under this assumption we derive bounds on the number of bits that

need to be stored.

1.2.1 Achievability: An Upper Bound on the Rate Required for Reliable Data Storage

To figure out which sequences we may choose not to store, let us think about the statis-

tics. In expectation, we observe np heads. Of the 2n possible heads/tails sequences there

are
(

n
np

)

sequences with np heads. (For the moment we ignore non-integer effects and

deal with them later.) There will be some variability about this mean but, at a minimum,

we must be able to store all these expected realizations since these realizations all have

the same probability. While
(

n
np

)

is the cardinality of the set, we prefer to develop a good

approximation that is more amenable to manipulation. Further, rather than counting car-

dinality, we will count the log-cardinality. This is because given k bits we can index 2k

heads/tails source sequences. Hence, it is the exponent in which we are interested.

Using Stirling’s approximation to the factorial, log2n! = n log2n−(log2e)n+O(log2n),

and ignoring the order term, we have

log

(

n

np

)

≃ nlog2n−n(1− p)log2(n(1− p))−np log2(np) (1.1)

= n log2

(

1

1− p

)

+np log2

(

1− p

p

)

= n

[

(1− p)log2

(

1

1− p

)

+ p log2

(

1

p

)]

. (1.2)

In (1.1), the (log2e)n terms have canceled and the term in square brackets in (1.2) is

called the (binary) entropy, which we denote as HB(p), so

HB(p) = −plog2 p− (1− p) log2(1− p), (1.3)

where 0 ≤ p ≤ 1 and 0log0 = 0. The binary entropy function is plotted in Fig. 1.2 within

Section 1.3. One can compute that when p = 0 or p = 1 then HB(0) = HB(1) = 0. The

interpretation is that, since there is only one all-tails and one all-heads sequence, and

we are quantifying log-cardinality, there is only one sequence to index in each case so

log2(1) = 0. In these cases, we a priori know the outcome (respectively, all the heads

or all tails) and so do not need to store any bits to describe the realization. On the other

hand, if the coin is fair then p = 0.5, HB(0.5) = 1,
(

n
n/2

)

≃ 2n, and we must use n bits of

storage. In other words, on an exponential scale almost all binary sequences are 50%

heads and 50% tails. As an intermediate value, if p = 0.11 then HB(0.11) ≃ 0.5.

1 In source coding, this is termed near-lossless source coding as the arbitrarily small ǫ bounds the probability

of system failure and thus loss of the original data. In the variable-length source coding paradigm, one

stores a variable amount of bits per sequence, and minimizes the expected number of bits stored. We focus

on the near-lossless paradigm as the concepts involved more closely parallel those in channel coding.
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The operational upshot of (1.2) is that if one allocates nHB(p) bits then basically all

expected sequences can be indexed. Of course, there are caveats. First, np need not be

integer. Second, there will be variability about the mean. To deal with both, we allocate

a few more bits, n(HB(p)+ δ) in total. We use these bits not just to index the expected

sequences, but also the typical sequences, those sequences with empirical entropy close

to the entropy of the source.2 In the case of coin flips, if a particular sequence consists

of nH heads (and n−nH tails) then we say that the sequence is “typical” if

HB(p)−δ ≤

[

nH

n
log2

(

1

p

)

+
n−nH

n
log2

(

1

1− p

)]

≤ HB(p)+δ. (1.4)

It can be shown that the cardinality of the set of sequences that satisfies condition (1.4) is

upper-bounded by 2n(HB(p)+δ). Therefore if, for instance, one lists the typical sequences

lexicographically, then any typical sequence can be described using n(HB(p)+ δ) bits.

One can also show that for any δ > 0 the probability of the source not producing a typical

sequence can be upper-bounded by any ǫ > 0 as n grows large. This follows from the

law of large numbers. As n grows the distribution of the fraction of heads in the realized

source sequence concentrates about its expectation. Therefore, as long as n is sufficiently

large, and as long as δ > 0, any ǫ > 0 will do. The quantity HB(p)+δ is termed the storage

“rate” R. For this example R = HB(p)+ δ. The rate is the amount of memory that must

be made available per source symbol. In this case, there were n symbols (n coin tosses),

so one normalizes n(HB(p)+δ) by n to get the rate HB(p)+δ.

The above idea can immediately be extended to independent and identically dis-

tributed (i.i.d.) finite-alphabet (and more general) sources as well. The general definition

of the entropy of a finite-alphabet random variable X with probability mass function

(p.m.f.) pX is

H(X) = −
∑

x∈X

pX(x)log2 pX(x), (1.5)

where “finite-alphabet” means the sample space X is finite.

Regardless of the distribution (binary, non-binary, even non-i.i.d.), the simple coin-

flipping example illustrates one of the central tenets of information theory. That is, to

focus one’s design on what is likely to happen, i.e., the typical events, rather than on

worst-case events. The partition of events into typical and atypical is, in information

theory, known as the asymptotic equipartition property (AEP). In a nutshell, the simplest

form of the AEP says that for long i.i.d. sequences one can, up to some arbitrarily small

probability ǫ, partition all possible outcomes into two sets: the typical set and the atypical

set. The probability of observing an event in the typical set is at least 1− ǫ. Furthermore,

on an exponential scale all typical sequences are of equal probability. Designing for

typical events is a hallmark of information theory.

2 In the literature, these are termed the “weakly” typical sequences. There are other definitions of typicality

that differ in terms of their mathematical use. The overarching concept is the same.
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1.2.2 Converse: A Lower Bound on the Rate Required for Reliable Data Storage

A second hallmark of information theory is the emphasis on developing bounds. The

source coding scheme described above is known as an achievability result. Achievability

results involve describing an operational system that can, in principle, be realized in

practice. Such results provide (inner) bounds on what is possible. The performance of

the best system is at least this good. In the above example, we developed a source coding

technique that delivers high-reliability storage and requires a rate of H(X)+ δ, where

both the error ǫ and the slack δ can be arbitrarily small if n is sufficiently large.

An important coupled question is how much (or whether) we can reduce the rate

further, thereby improving the efficiency of the scheme. In information theory, outer

bounds on what is possible – e.g., showing that if the encoding rate is too small one

cannot guarantee a target level of reliability – are termed converse results.

One of the key lemmas used in converse results is Fano’s inequality [7], named for

Robert Fano. The statement of the inequality is as follows: For any pair of random

variables (U,V) ∈ U×V jointly distributed according to pU,V (·, ·) and for any estimator

G :U→V with probability of error Pe = Pr[G(U) � V],

H(V |U) ≤ HB(Pe)+Pe log2(|V|−1). (1.6)

On the left-hand side of (1.6) we encounter the conditional entropy H(V |U) of the joint

p.m.f. pU,V (·, ·). We use the notation H(V |U = u) to denote the entropy in V when the

realization of the random variable U is set to U = u. Let us name this the “pointwise”

conditional entropy, the value of which can be computed by applying our formula for

entropy (1.5) to the p.m.f. pV |U(·|u). The conditional entropy is the expected pointwise

conditional entropy:

H(V |U)=
∑

u∈U

pU (u)H(V |U = u) =
∑

u∈U

pU (u)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

v∈V

pV |U(v|u)log2

(

1

pV |U(v|u)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(1.7)

Fano’s inequality (1.6) can be interpreted as a bound on the ability of any hypothesis

test function G to make a (single) correct guess of the realization of V on the basis of

its observation of U. As the desired error probability Pe → 0, both terms on the right-

hand side go to zero, implying that the conditional entropy must be small. Conversely, if

the left-hand side is not too small, that asserts a non-zero lower bound on Pe. A simple

explicit bound is achieved by upper-bounding HB(Pe) as HB(Pe) ≤ 1 and rearranging to

find that Pe ≥ (H(V |U)−1)/log2(|V|−1).

The usefulness of Fano’s inequality stems, in part, from the weak assumptions it

makes. One can apply Fano’s inequality to any joint distribution. Often identification of

an applicable joint distribution is part of the creativity in the use of Fano’s inequality. For

instance in the source coding example above, one takes V to be the stored data sequence,

so |V| = 2n(HB(p)+δ), and U to be the original source sequence, i.e., U = Xn. While we

do not provide the derivation herein, the result is that to achieve an error probability of

at most Pe the storage rate R is lower-bounded by R ≥ H(X)− Pe log2|X| −HB(Pe)/n,
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where |X| is the source alphabet size; for the binary example |X| = 2. As we let Pe→ 0

we see that the lower bound on the achievable rate is H(X) which, letting δ→ 0, is also

our upper bound. Hence we have developed an operational approach to data compression

where the rate we achieve matches the converse bound.

We now discuss the interaction between achievability and converse results. As long as

the compression rate R>H(X) then, due to concentration in measure, in the achievability

case the failure probability ǫ > 0 and rate slack δ > 0 can both be chosen to be arbitrarily

small. Concentration of measure occurs as the blocklength n becomes large. In parallel

with n getting large, the total number of bits stored nR also grows.

The entropy H(X) thus specifies a boundary between two regimes of operation. When

the rate R is larger than H(X), achievability results tell us that arbitrarily reliable storage

is possible. When R is smaller than H(X), converse results imply that reliable storage

is not possible. In particular, rearranging the converse expression and once again noting

that HB(Pe) ≤ 1, the error probability can be lower-bounded as

Pe ≥
H(X)−R−1/n

log2 |X|
. (1.8)

If R < H(X), then for n sufficiently large Pe is bounded away from zero.

The entropy H(X) thus characterizes a phase transition between one state, the pos-

sibility of reliable data storage, and another, the impossibility. Such sharp information-

theoretic phase transitions also characterize classical information-theoretic results on

data transmission which we discuss in the next section, and applications of information-

theoretic tools in the data sciences which we turn to later in the chapter.

1.3 Channel Coding: Transmission over the Binary Symmetric Channel

Shannon applied the same mix of ideas (typicality, entropy, conditional entropy) to solve

the, perhaps at first seemingly quite distinct, problem of reliable and efficient digital

communications. This is typically referred to as Shannon’s “channel coding” problem

in contrast to the “source coding” problem already discussed.

To gain a sense of the problem we return to the simple binary setting. Suppose our

source coding system has yielded a length-k string of “information bits.” For simplicity

we assume these bits are randomly distributed as before, i.i.d. along the sequence, but

are now fair; i.e., each is equally likely to be “0” or a “1.” The objective is to convey this

sequence over a communications channel to a friend. Importantly we note that, since

the bits are uniformly distributed, our result on source coding tells us that no further

compression is possible. Thus, uniformity of message bits is a worst-case assumption.

The channel we consider is the binary symmetric channel (BSC). We can transmit

binary symbols over a BSC. Each input symbol is conveyed to the destination, but not

entirely accurately. The binary symmetric channel “flips” each channel input symbol

(0→ 1 or 1→ 0) with probability p, 0 ≤ p ≤ 1. Flips occur independently. The challenge

is for the destination to deduce, one hopes with high accuracy, the k information bits
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Figure 1.2 On the left we present a graphical description of the binary symmetric channel (BSC).

Each transmitted binary symbol is represented as a 0 or 1 input on the left. Each received binary

observation is represented by a 0 or 1 output on the right. The stochastic relationship between

inputs and outputs is represented by the connectivity of the graph where the probability of

transitioning each edge is represented by the edge label p or 1− p. The channel is “symmetric”

due to the symmetries in these transition probabilities. On the right we plot the binary entropy

function HB(p) as a function of p, 0 ≤ p ≤ 1. The capacity of the BSC is CBSC = 1−HB(p).

transmitted. Owing to the symbol flipping noise, we get some slack; we transmit n ≥ k

binary channel symbols. For efficiency’s sake, we want n to be as close to k as possible,

while meeting the requirement of high reliability. The ratio k/n is termed the “rate” of

communication. The length-n binary sequence transmitted is termed the “codeword.”

This “bit flipping” channel can be used, e.g., to model data storage errors in a computer

memory. A graphical representation of the BSC is depicted in Fig. 1.2.

1.3.1 Achievability: A Lower Bound on the Rate of Reliable Data Communication

The idea of channel coding is analogous to human-evolved language. The length-k string

of information bits is analogous to what we think, i.e., the concept we want to impart to

the destination. The length-n codeword string of binary channel symbols is analogous

to what we say (the sentence). There is redundancy in spoken language that makes it

possible for spoken language to be understood in noisy (albeit not too noisy) situations.

We analogously engineer redundancy into what a computer transmits in order to be able

to combat the expected (the typical!) noise events. For the BSC those would be the

expected bit-flip sequences.

We now consider the noise process. For any chosen length-n codeword there are about
(

n
np

)

typical noise patterns which, using the same logic as in our discussion of source

compression, is a set of roughly 2nHB(p) patterns. If we call Xn the codeword and En

the noise sequence, then what the receiver measures is Yn = Xn + En. Here addition is

vector addition over F2, i.e., coordinate-wise, where the addition of two binary symbols

is implemented using the XOR operator. The problem faced by the receiver is to identify

the transmitted codeword. One can imagine that if the possible codewords are far apart in

the sense that they differ in many entries (i.e., their Hamming distance is large) then the
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receiver will be less likely to make an error when deciding on the transmitted codeword.

Once such a codeword estimate has been made it can then be mapped back to the length-

k information bit sequence. A natural decoding rule, in fact the maximum-likelihood rule,

is for the decoder to pick the codeword closest to Yn in terms of Hamming distance.

The design of the codebook (analogous to the choice of grammatically correct – and

thus allowable – sentences in a spoken language) is a type of probabilistic packing prob-

lem. The question is, how do we select the set of codewords so that the probability of a

decoding error is small? We can develop a simple upper bound on how large the set of

reliably decodable codewords can be. There are 2n possible binary output sequences. For

any codeword selected there are roughly 2nHB(p) typical output sequences, each associ-

ated with a typical noise sequence, that form a noise ball centered on the codeword. If we

were simply able to divide up the output space into disjoint sets of cardinality 2nHB(p), we

would end up with 2n/2nHB(p) = 2n(1−HB(p)) distinct sets. This sphere-packing argument

tells us that the best we could hope to do would be to transmit this number of distinct

codewords reliably. Thus, the number of information bits k would equal n(1−HB(p)).

Once we normalize by the number n of channels uses we get a transmission rate of

1−HB(p).

Perhaps quite surprisingly, as n gets large, 1−HB(p) is the supremum of achievable

rates at (arbitrarily) high reliability. This is the Shannon capacity CBSC = 1−HB(p). The

result follows from the law of large numbers, which can be used to show that the typical

noise balls concentrate. Shannon’s proof that one can actually find a configuration of

codewords while keeping the probability of decoding error small was an early use of

the probabilistic method. For any rate R = CBSC − δ, where δ > 0 is arbitrarily small, a

randomized choice of the positioning of each codeword will with high probability, yield

a code with a small probability of decoding error. To see the plausibility of this statement

we revisit the sphere-packing argument. At rate R=CBSC−δ the 2nR codewords are each

associated with a typical noise ball of 2nHB(p) sequences. If the noise balls were all (in the

worst case) disjointed, this would be a total of 2nR2nHB(p) = 2n(1−HB(p)−δ)+nHB(p) = 2n(1−δ)

sequences. As there are 2n binary sequences, the fraction of the output space taken up

by the union of typical noise spheres associated with the codewords is 2n(1−δ)/2n = 2−nδ.

So, for any δ > 0 fixed, as the blocklength n→∞, only an exponentially disappearing

fraction of the output space is taken up by the noise balls. By choosing the codewords

independently at random, each uniformly chosen over all length-n binary sequences, one

can show that the expected (over the choice of codewords and channel noise realization)

average probability of error is small. Hence, at least one codebook exists that performs

at least as well as this expectation.

While Shannon showed the existence of such a code (actually a sequence of codes

as n → ∞), it took another half-century for researchers in error-correction coding to

find asymptotically optimal code designs and associated decoding algorithms that were

computationally tractable and therefore implementable in practice. We discuss this

computational problem and some of these recent code designs in Section 1.4.

While the above example is set in the context of a binary-input and binary-output

channel model, the result is a prototype of the result that holds for discrete memoryless

channels. A discrete memoryless channel is described by the conditional distribution
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