

The Cambridge Handbook of Animal Cognition

This handbook lays out the science behind how animals think, create, calculate, and remember. It provides concise overviews on major areas of study, such as animal communication and language, memory and recall, social cognition, social learning and teaching, and numerical and quantitative abilities, as well as innovation and problemsolving. The chapters also explore more nuanced topics in greater detail, showing how the research was conducted and how it can be used for further study. The authors range from academics working in renowned university departments to those from research institutions and practitioners in zoos. The volume encompasses a wide variety of species, ensuring the breadth of the field is explored.

ALLISON B. KAUFMAN is a research scientist for the Department of Ecology and Evolutionary Biology at University of Connecticut, USA, and holds a Ph.D. in Neuroscience from the University of California at Riverside. She currently has a research program based at the University of Connecticut, where her main interests are in communication and innovative abilities in animals. She has written or edited five books, including *Animal Cognition 101* with Erin Colbert-White.

JOSEP CALL is a comparative psychologist specializing in primate cognition, Wardlaw Professor of Evolutionary Origins of Mind in the School of Psychology and Neuroscience at University of St Andrews, UK, and Director of the Budongo Research Unit at Edinburgh Zoo. He has also been an elected fellow of the American Psychological Association, the Cognitive Science Society, the Royal Society of Edinburgh, and the British Academy.

JAMES C. KAUFMAN is Professor of Educational Psychology at the University of Connecticut, USA. He is the author or editor of more than forty-five books, including *The Cambridge Handbook in Creativity*, 2nd edition (Cambridge University Press, 2019). He has also published more than 400 papers and won many awards, including from Mensa, the American Psychological Association, and the National Association for Gifted Children.

The Cambridge Handbook of Animal Cognition

edited by
Allison B. Kaufman
University of Connecticut

Josep Call
University of St Andrews

James C. Kaufman University of Connecticut

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108426749 DOI: 10.1017/9781108564113

© Allison B. Kaufman, Josep Call and James C. Kaufman 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Kaufman, Allison B., 1976– editor. | Call, Josep, editor. | Kaufman, James C., editor.

Title: The Cambridge handbook of animal cognition / edited by Allison Kaufman, Department of Ecology and Evolutionary Biology, University of Connecticut, Josep Call, School of Psychology and Neuroscience, University of St Andrews, James C. Kaufman, Neag School of Education, University of Connecticut.

Other titles: Animal cognition

Description: Cambridge, UK; New York, NY: Cambridge University Press, 2021. | Series: Cambridge handbooks in psychology | Includes bibliographical references and index.

Identifiers: LCCN 2020040229 (print) | LCCN 2020040230 (ebook) | ISBN 9781108426749 (hardback) | ISBN 9781108445481 (paperback) | ISBN 9781108564113 (epub)

Subjects: LCSH: Cognition in animals–Handbooks, manuals, etc. Classification: LCC QL785 .C17 2021 (print) | LCC QL785 (ebook) | DDC 591.5/13–dc23 LC record available at https://lccn.loc.gov/2020040229

LC ebook record available at https://lccn.loc.gov/2020040230

ISBN 978-1-108-42674-9 Hardback ISBN 978-1-108-44548-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For our boys, Jacob and Asher, who have tolerated and even enjoyed the dogs, cats, parrot, millipedes, rabbits, iguana, chameleons, toad, hairless rats, and hissing cockroaches over the years.

No, we're not getting another dog.

—ABK and JCK

Contents

		page x
	List of Contributors Acknowledgments	xiii xviii
	Acknowledgments	AVIII
	Introduction	1
	Part I Communication and Language	3
1	Animal Communication Overview	
	FEDERICO ROSSANO AND STEPHAN P. KAUFHOLD	5
2	Communication in Ant Societies	
	BAPTISTE PIQUERET AND PATRIZIA D'ETTORRE	36
3	Symbolic Communication in the Grey Parrot	
	IRENE M. PEPPERBERG	56
4	Communication in Dogs and Wolves	
	KATALIN OLÁH, JÓZSEF TOPÁL, AND ANNA GERGELY	74
5	Semantic Communication in Primates	
	KLAUS ZUBERBÜHLER	100
	Part II Memory and Recall	115
6	Memory and Recall Overview	
	GEMA MARTÍN-ORDÁS	117
7	A Fish Memory Tale: Memory and Recall in Fish and Sharks	
	CATARINA VILA POUCA, LOUISE TOSETTO, AND CULUM BROW	n 140
8	Memory in Hummingbirds	
	MARIA CRISTINA TELLO-RAMOS AND DAVID J. PRITCHARD	174
9	Event Memory in Rats	
	JONATHON D. CRYSTAL	190

vii

viii Contents

10	Primate Recall Memory MOLLY FLESSERT AND MICHAEL J. BERAN	210
	Part III Social Cognition	223
11	Social Cognition Overview JUAN C. GÓMEZ	225
12	Proximate and Ultimate Mechanisms of Cooperation in Fishes JOACHIM G. FROMMEN AND STEFAN FISCHER	272
13	Evolutionary and Neural Bases of the Sense of Animacy ELENA LORENZI AND GIORGIO VALLORTIGARA	295
14	Raven Social Cognition and Behavior THOMAS BUGNYAR	322
15	Reciprocal cooperation – Norway rats (Rattus norvegicus) as an example MANON K. SCHWEINFURTH	343
16	Exploring the Social Minds of Elephants ELIZABETH A. KRISCH PIRUTINSKY AND JOSHUA M. PLOTNIK	362
17	Dolphin Social Cognition ADAM A. PACK	383
18	Mirror Self-Recognition: Five Decades of Primate Research JAMES R. ANDERSON AND DAVID L. BUTLER	415
	Part IV Social Learning and Teaching	441
19	Social Learning and Teaching Overview RACHEL L. KENDAL	443
20	Tandem Running Recruitment by <i>Temnothorax</i> Ants as a Model System for Social Learning TAKAO SASAKI AND STEPHEN C. PRATT	472
21	Fish Social Networks MATTHEW J. HASENJAGER AND WILLIAM HOPPITT	486
22	Social Learning in Birds VICTORIA E. LEE, ALISON L. GREGGOR, AND ALEX THORNTON	503
23	Social Learning in Chimpanzees RACHEL S. NELSON, ERIN C. CONNELLY, AND LYDIA M. HOPPER	534
	Part V Numerical and Quantitative Abilities	559
24	Numerical and Quantitative Abilities Overview SARAH T. BOYSEN	561

		Contents	ix
25	Numerical Competence in Fish CHRISTIAN AGRILLO AND MARIA ELENA MILETTO PETRAZZIN	ı 580	
26	Spatial–Numerical Association in Nonhuman Animals ROSA RUGANI AND ORSOLA ROSA-SALVA	602	
27	Perceptual Categorization in Pigeons OLGA F. LAZAREVA	621	
	Part VI Innovation and Problem-Solving	637	
28	Innovation and Problem-Solving Overview DANIEL SOL	639	
29	General Intelligence (g) in Mice CHARLES LOCURTO	653	
30	Bowerbird Innovation and Problem-Solving JASON KEAGY	667	
31	Parrot Innovation THERESA RÖSSLER, BERENIKA MIODUSZEWSKA, AND ALICE M. I. AUERSPERG	690	
32	Innovation in Marine Mammals ALLISON B. KAUFMAN	710	
33	Innovation in Capuchin Monkeys EDUARDO B. OTTONI	721	
34	Innovation and Problem-Solving in Orangutans ANNE E. RUSSON	733	
35	Do Apes and Monkeys Know What They (Don't) Know? The Question of Metacognition in Primates HEIDI L. MARSH	755	
36	Decision Making in Animals: Rational Choices and Adaptive Strategies	770	
	FRANCESCA DE PETRILLO AND ALEXANDRA G. ROSATI	770	
	Index	792	

Figures, Tables, and Boxes

Figures

2.1	Simplified phylogenetic tree of the insect order Hymenopiera.	page 51
2.2	The stridulatory organ of the ant Neoponera apicalis.	41
2.3	Trophallaxis and antennal boxing between two ants.	45
2.4	Gas-chromatogram showing the cuticular hydrocarbon profile of	f
	a Lasius niger queen.	48
3.1	(a) Occluded shapes (amodal completion) and (b) subjective	
	(Kanizsa, illusory) shapes (modal completion).	58
3.2	Samples of Kanizsa figures, occluded figures, and probes	
	presented to Griffin. Numbers are expected "x-corner" response.	61
5.1	The triangle of reference where a symbol is defined as	
	"a thing that represents or stands for something else."	101
7.1	Main mechanisms of regulation of memory investigated in fish.	151
8.1	A male rufous hummingbird feeding from an artificial flower.	177
8.2	To the left there is a four-panel graph representing the	
	percentage of first visits made to each patch over five days	
	by eight birds; to the right there is a diagram of the flower array	. 183
9.1	Source memory is documented by a higher revisit rate to	
	the chocolate replenishment location than to the	
	nonreplenishment chocolate location.	193
9.2	A hypothetical representation of unbound features.	195
9.3	Bound episodic memories function to disambiguate multiple,	
	interleaved study episodes.	196
9.4	Dissociating episodic item-in-context memory from	
	familiarity cues.	198
	Rats replay a stream of multiple episodic memories.	201
	Examples for multifaceted cooperative interactions in fishes.	276
	Typical helping behaviors in cooperatively breeding cichlids.	277
13.1	Schematic representation of the experimental procedure used to	
	test spontaneous preference for face-like stimuli in chicks.	296
13.2	Examples of simple moving stimuli used for studying	
	axis alignment.	301
13.3	Schematic representation of a point-light display with a person	
	standing and shaking his left hand.	302

X

List of Figures, Tables, and Boxes

хi

13.4	Schematic representation of the subcortical visual pathway	
	supposed to be involved in directing attention toward biologically	
	relevant stimuli in different vertebrates.	306
15.1	The three different decision rules involved in reciprocal help.	344
	Food-exchange apparatus.	347
	Asian elephant cooperation during a collaborative task	
10.1	depicted from ground (1), aerial (2), and side (3) views.	365
16.2	An Asian elephant female at the Golden Triangle Asian	303
10.2	Elephant Foundation in Chiang Rai, Thailand touches a	
	nearby conspecific.	372
20.1	A tandem running pair, with the leader at the right and the	312
20.1		171
20.2	follower at the left, of <i>T. rugatulus</i> .	474
20.2	Part of a tandem running path by a leader (black) and	477
20.2	a follower (gray) (top) and their speed during the trip (bottom).	475
	CCE in homing pigeons and ants.	478
21.1	Networks are composed of multiple nodes (often representing	
	individuals) that are connected by edges.	488
21.2	The core assumption underlying NBDA is that if a novel	
	behavioral trait, such as an extractive foraging technique or	
	knowledge of a profitable foraging patch, spreads through	
	social transmission, then this spread is expected to follow a	
	social network that reflects social learning opportunities.	492
21.3	An interaction network from Rosenthal et al. (2015).	495
25.1	Experimental apparatuses used to observe the spontaneous	
	behavior of fish in the presence of biologically relevant stimuli	
	differing in numerosity.	582
25.2	Experimental apparatuses used to study numerical abilities in	
	trained fish.	587
25.3	Blind Somalian cavefish can distinguish between two groups	
	of sticks that differ in numerosity in order to find food.	590
25.4	The solitaire illusion.	593
25.5	The future of numerical cognition studies in trained fish.	596
26.1	(a) Birds eye view of the apparatus used for training and testing.	
	(b) Representation of the test series in the orientation used for	
	the fronto-parallel test.	605
26.2	Birds eye view of the apparatus used for training and testing,	
	showing disposition of the elements with respect to the chick's	
	starting position.	607
26.3	Schematic representation of the training set up.	612
	Schematic representation of the training setup, with a single	
	central panel depicting twenty elements.	613
27.1	A schematic representation of a go/no-go task (left) and	
	forced-choice task (right).	623
27.2	Proportion of change from baseline rate to training rate during	
	extinction training.	626

xii List of Figures, Tables, and Boxes

630
644
646
669
678
682
002
692
744
774
80
142
348
401
421
624
627
654
655
657
037
659
737
, 5 ,
,
,
761
274
_

Contributors

CHRISTIAN AGRILLO

Department of General Psychology, University of Padova, Italy; and Padua Neuroscience Center, University of Padova, Italy

JAMES R. ANDERSON

Department of Psychology, Kyoto University Graduate School of Letters, Kyoto, Japan

ALICE M. I. AUERSPERG

Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria

MICHAEL J. BERAN

Department of Psychology and Language Research Center, Georgia State University

SARAH T. BOYSEN

Comparative Cognition Project, Sunbury, OH; and Center for Animal Welfare Science, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN

CULUM BROWN

Department of Biological Sciences, Macquarie University, 2109 NSW Australia

THOMAS BUGNYAR

Department of Behavioral and Cognitive Biology, University of Vienna

DAVID L. BUTLER

Cairnmillar Institute, Melbourne, Australia

ERIN CONNELLY

Lester E Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614

xiii

xiv List of Contributors

JONATHON D. CRYSTAL

Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405-7007, USA

FRANCESCA DE PETRILLO

Institute for Advance Study in Toulouse, Université Toulouse 1 Capitole, Espanade de l'Université, 31080 Toulouse Cedex 06, France; and Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109. USA

PATRIZIA D'ETTORRE

Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris XIII, Sorbonne Paris Nord; and Institut Universitaire de France (IUF)

STEFAN FISCHER

Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK; Konrad Lorenz Institute for Ethology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria; and Department of Behavioural and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

MOLLY FLESSERT

Department of Psychology and Language Research Center, Georgia State University

JOACHIM G. FROMMEN

Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland; and Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M15GD, UK

ANNA GERGELY

Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest

ALISON L. GREGGOR

Institute for Conservation Research, San Diego Zoo Global, USA

MATTHEW J. HASENJAGER

Department of Biological Sciences, Royal Holloway, University of London

LYDIA M. HOPPER

Lester E Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614

WILLIAM HOPPITT

Department of Biological Sciences, Royal Holloway, University of London

List of Contributors

XV

ALLISON B. KAUFMAN

Department of Ecology and Evolutionary Biology, University of Connecticut

JASON KEAGY

Department of Ecosystem Science and Management and , The Pennsylvania State University, University Park, PA, USA

RACHEL L. KENDAL

Durham Cultural Evolution Research Centre, Department of Anthropology, Durham University, UK

ELIZABETH A. KRISCH PIRUTINSKY

Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA

OLGA F. LAZAREVA

Department of Psychology and Neuroscience, Drake University

VICTORIA E. LEE

Centre for Ecology and Conservation, University of Exeter, UK

CHARLES LOCURTO

Department of Psychology, College of the Holy Cross, Worcester, MA 01610

ELENA LORENZI

Centre for Mind/Brain Sciences - University of Trento

HEIDI L. MARSH

George Brown College, Toronto, Canada

GEMA MARTIN-ORDAS

Division of Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, FK9 4LA

MARIA ELENA MILETTO PETRAZZINI

School of Biological and Chemical Science, Queen Mary University of London, UK

BERENIKA MIODUSZEWSKA

Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria; and Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany

RACHEL NELSON

Lester E Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; and The Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC 20052

xvi List of Contributors

KATALIN OLÁH

MTA-Momentum Social Minds Research Group, Eötvös Loránd University, Budapest, Hungary

EDUARDO B. OTTONI

University of São Paulo, Institute of Psychology - Dept. of Experimental Psychology

ADAM A. PACK

Departments of Psychology and Biology, University of Hawaii at Hilo, Hilo, Hawaii; and The Dolphin Institute, Hilo, Hawaii

IRENE M. PEPPERBERG

Department of Psychology, Harvard University

BAPTISTE PIQUERET

Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris XIII, Sorbonne Paris Nord

JOSHUA M. PLOTNIK

Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA

STEPHEN C. PRATT

School of Life Sciences, Arizona State University, Tempe AZ 85287, USA; and Center for Social Dynamics and Complexity, Arizona State University, Tempe AZ 85287, USA

DAVID J PRITCHARD

School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK

ORSOLA ROSA-SALVA

Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy

ALEXANDRA G. ROSATI

Departments of Psychology and Anthropology, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA

THERESA RÖSSLER

Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria; and Department of Cognitive Biology, University of Vienna, Vienna, Austria

ROSA RUGANI

Department of General Psychology, University of Padova, Padova, Italy; and Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States

List of Contributors

xvii

ANNE E. RUSSON

York University, Toronto, Canada

TAKAO SASAKI

Odum School of Ecology, University of Georgia, Athens, GA 30602, USA

MANON K. SCHWEINFURTH

School of Psychology and Neuroscience, University of St Andrews, KY16 9JP St Andrews, Scotland

DANIEL SOL

CREAF-CSIC (Centre for Ecological Research and Applied Forestries), Cerdanyola del Vallès, Catalonia E-08193, Spain

MARIA CRISTINA TELLO-RAMOS

School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK

ALEX THORNTON

Centre for Ecology and Conservation, University of Exeter, UK

JÓZSEF TOPÁL

Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest

LOUISE TOSETTO

Department of Biological Sciences, Macquarie University, 2109 NSW Australia

GIORGIO VALLORTIGARA

Centre for Mind/Brain Sciences - University of Trento

CATARINA VILA POUCA

Department of Zoology, Stockholm University SE-106 91 Stockholm, Sweden; and Behavioural Ecology Group, Wageningen University & Research, Wageningen, The Netherlands

KLAUS ZUBERBUEHLER

Institute of Biology, University of Neuchatel, Switzerland & School of Psychology and Neuroscience, University of St Andrews, Scotland (UK)

Acknowledgments

We are eternally grateful for the endless patience and understanding of Stephen Acerra, David Repetto, Matthew D. Bennett, and Emily Watton at Cambridge University Press. This book would never have happened without their guidance. We are also grateful to Alan S. Kaufman, Clare Mazur, and Genet Tulgetske for their help.

xviii