The Cambridge Handbook of Infant Development

This multidisciplinary volume features many of the world’s leading experts of infant development, who synthesize their research on infant learning and behavior, while integrating perspectives across neuroscience, socio-cultural context, and policy.

It offers an unparalleled overview of infant development across foundational areas such as prenatal development, brain development, epigenetics, physical growth, nutrition, cognition, language, attachment, and risk. The chapters present theoretical and empirical depth and rigor across specific domains of development, while highlighting reciprocal connections among brain, behavior, and social-cultural context.

The handbook simultaneously educates, enriches, and encourages. It educates through detailed reviews of innovative methods and empirical foundations and enriches by considering the contexts of brain, culture, and policy. This cutting-edge volume establishes an agenda for future research and policy, and highlights research findings and application for advanced students, researchers, practitioners, and policy-makers with interests in understanding and promoting infant development.

JEFFREY J. LOCKMAN is the Lila L. and Douglas J. Hertz Chair of Psychology at Tulane University, USA, and past-editor of the journal Child Development.

CATHERINE S. TAMIS-LEMONDA is Professor of Applied Psychology at New York University, USA.
The Cambridge Handbook
of Infant Development

Brain, Behavior, and Cultural Context

Edited by
Jeffrey J. Lockman
Tulane University
Catherine S. Tamis-LeMonda
New York University
For Ben (JJL) and Lila (CTL) — the infants who have inspired us.
Contents

List of Illustrations page x
List of Contributors xv
Preface xix

Part I. Foundations 1
1 Embodied Brain Model for Understanding Functional Neural Development of Fetuses and Infants 3
 YASUNORI YAMADA, HOSHINORI KANAZAWA, AND YASUO KUNIYOSHI

2 Infant Physical Growth 40
 MICHELLE LAMPL

3 Dynamic Epigenetic Impact of the Environment on the Developing Brain 70
 FRANCES A. CHAMPAGNE

4 Brain Development in Infants: Structure and Experience 94
 JOHN E. RICHARDS AND STEFANIA CONTE

5 Development During Infancy in Children Later Diagnosed with Autism Spectrum Disorder 128
 TERJE FALCK-YTTER AND EMILY JONES

Part II. Perceptual Development 155

6 Visual Development 157
 DAPHNE MAURER

7 Infant Visual Attention 186
 DIMA AMSO AND KRISTEN TUMMELTSHAMMER

8 Infants’ Perception of Auditory Patterns 214
 LAURA K. CIRELLI AND SANDRA E. TREHUB
CONTENTS

9 The Development of Touch Perception and Body Representation 238
 ANDREW J. BREMNER

10 The Development of Infant Feeding 263
 JULIE A. MENNELLA, CATHERINE A. FORESTELL,
 ALISON K. VENTURA, AND JENNIFER ORLET FISHER

11 The Development of Multisensory Attention Skills: Individual Differences, Developmental Outcomes, and Applications 303
 LORRAINE E. BAHRICK, ROBERT LICKLITER,
 AND JAMES T. TORRENCE TODD

Part III. Cognitive Development 339

12 Infant Memory 341
 HARLENE HAYNE AND JANE S. HERBERT

13 Infant Physical Knowledge 363
 SUSAN J. HESPOS AND ERIN M. ANDERSON

14 Infant Categorization 381
 LISA M. OAKES

15 Early Knowledge About Space and Quantity 410
 NORA S. NEWCOMBE

16 Infant Learning in the Digital Age 435
 SYLVIA N. RUSNAK AND RACHEL BARR

Part IV. Action 467

17 Action in Development: Plasticity, Variability, and Flexibility 469
 JAYA RACHWANI, JUSTINE HOCH, AND KAREN E. ADOLPH

18 The Mirror Neuron System and Social Cognition 495
 NATHAN A. FOX, VIRGINIA C. SALO, RANJAN DEBNATH,
 SANTIAGO MORALES, AND ELIZABETH G. SMITH

19 Infant Object Manipulation and Play 520
 CATHERINE S. TAMIS-LEMONDA AND JEFFREY J. LOCKMAN

 SWAPNAA JAYARAMAN AND LINDA B. SMITH
Part V. Language

21 Infant Speech Perception
 REBECCA K. REH AND JANET F. WERKER

22 Infant Vocal Learning and Speech Production
 ANNE S. WARLAUMONT

23 Infant Word Learning and Emerging Syntax
 DANI LEVINE, KATHY HIRSH-PASEK, AND ROBERTA MICHNICK GOLINKOFF

24 Dual Language Exposure and Early Learning
 NATALIE H. BRITO

Part VI. Emotional and Social Development

25 Infant Attachment (to Mother and Father) and Its Place in Human Development: Five Decades of Promising Research (and an Unsettled Issue)
 OR DAGAN AND ABRAHAM SAGI-SCHWARTZ

26 Infant Emotion Development and Temperament
 EVIN AKTAR AND KORALY PÉREZ-EDGAR

27 Infant Emotional Development
 SAMANTHA MITSVEN, DANIEL S. MESSINGER, JACQUELYN MOFFITT, AND YEOJIN AMY AHN

28 Understanding and Evaluating the Moral World in Infancy
 J. KILEY HAMLIN AND MIRANDA SITCH

29 Cross-Cultural Perspectives on Parent–Infant Interactions
 MARC H. BORNSTEIN AND GIANLUCA ESPOSITO

Index
Illustrations

Figures

1.1 Overview of the embodied brain model of a human fetus page 16
1.2 Overview of the nervous model 16
1.3 Embodied couplings underlying bodily spontaneous movements 19
1.4 (A) Spinal circuit model with activity-dependent plastic connections between. (B) Time evolution of average pairwise correlations among the outputs of alpha motor neurons comparing ipsilateral and contralateral muscle pairs during learning periods in the simulation using the zebrafish embryo model. (C, D) Examples of movement patterns after learning 20
1.5 Learning results of body representations 22
1.6 Learning of cortical body representations under intrauterine and extrauterine conditions 25
1.7 Impacts of atypical bodily movements on somatosensory feedbacks 26
1.8 Impacts of cortical excitatory/inhibitory imbalance on functional response properties of the network 27
3.1 DNA methylation and regulation of phenotypic outcomes 73
3.2 Complex pathways through which prenatal maternal environmental exposures impact the infant brain 75
3.3 Complex pathways through which paternal preconception environmental exposures impact the infant brain 82
4.1 Postnatal changes in head volume and brain size from birth through 85 years 96
4.2 (A) Postnatal development of human cerebral cortex. (B) (Top) Postnatal development of human cerebral cortex around Broca’s area. (Bottom) The development of neuronal morphology in human primary auditory cortex 98
4.3 (A) Mean synaptic density in synapses/100 μm³ in auditory, calcarine, and prefrontal cortex at various ages. (B) Postnatal changes in gray matter, white matter, and “other matter” volume from birth through 85 years. (C) Region-specific
cortical thickness, surface area, curvature, and gray matter volume trajectories for a selection of anatomical regions

4.4 (A) Cartoon drawing of a “typical” neuron with unmyelinated dendrites, cell body, and axon terminal, and the myelin sheath covering the axon. (B) How white matter increases over age

4.5 (A) Plot of age-related increase in relative content of myelinated white matter for the 100 studied children. (B) Changes in fractional anisotropy (FA) and apparent diffusion coefficient (ADC) for the genu of the corpus callosum (gCC) and the left superior longitudinal fasciculus (SLF)

4.6 (Top) Matched axially oriented slices through the mean myelin water fraction (MWF) for 3 months to 5 years. (Bottom) Change in MWF for an early region (occipital) and two late regions (frontal, temporal)

4.7 Changes in the N290 from 4.5 to 12 months of age

4.8 Grand-averaged waveforms for upright and inverted human faces in 3- and 12-month-old infants at left and right posterior temporal channels

4.9 (A) The distribution of relative theta power for the institutionalized group (IG) and the never-institutionalized group (NIG). (B) Mean absolute and relative power from the theta, alpha, and beta bands for the care-as-usual group (CAUG), foster care intervention (FCG), and never-institutionalized community controls (NIG). (C) Distribution of alpha power across the scalp at 8 years of age for children who remained in the institution (i.e., the care-as-usual group), children placed into foster care after 24 months (>24 months FCG), children placed in foster care before 24 months (<24 months FCG), and children reared with their biological parents (i.e., the never-institutionalized group)

4.10 Grand-averaged ERP waveforms of the IG and NIG at the baseline assessment (A), the 30-month post-intervention assessment (B), and the 42-month post-intervention assessment, (C) over the right occipital electrode (collapsed across conditions)

4.11 (Top) Average total cortical white matter and gray matter volume in cubic centimeters (cm³) for the CAUG, FCG, and NIG. (Bottom) Growth trajectories of total gray matter, frontal lobe, and parietal lobe gray matter for children from high-, mid-, and low-SES families

5.1 Variable heterogeneity in ASD as a function of developmental time
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 (A) Alpha band (7–8 Hz) connectivity in infants. (B) Pupillary light reflex in infants</td>
<td>133</td>
</tr>
<tr>
<td>6.1 The most principal pathways from the retina to the visual cortices</td>
<td>159</td>
</tr>
<tr>
<td>7.1 An infant participating in an eye-tracking experiment</td>
<td>189</td>
</tr>
<tr>
<td>7.2 Examples of (A) visual search and (B) spatial cueing tasks presented to infants</td>
<td>193</td>
</tr>
<tr>
<td>8.1 Thresholds for high-, middle-, and low-frequency bands at different ages</td>
<td>217</td>
</tr>
<tr>
<td>8.2 Keyboard beginning on middle C and ending on E in the subsequent octave</td>
<td>219</td>
</tr>
<tr>
<td>10.1 Orthonasal and retronasal routes of olfaction</td>
<td>266</td>
</tr>
<tr>
<td>11.1 Static images of the dynamic audiovisual events from the MAAP</td>
<td>318</td>
</tr>
<tr>
<td>11.2 Still image of the dynamic social (A) and nonsocial (B) events from the IPEP</td>
<td>320</td>
</tr>
<tr>
<td>11.3 Working model illustrates the mediational role of intersensory processing in language, social, and cognitive development during infancy</td>
<td>322</td>
</tr>
<tr>
<td>13.1 Schematic of the events used in Spelke et al. (1992)</td>
<td>366</td>
</tr>
<tr>
<td>13.2 Schematic of the events used in the unexpected outcome trials for Hespos and Baillargeon (2001b)</td>
<td>366</td>
</tr>
<tr>
<td>13.3 The expected (tall container event) and unexpected (short container event) from Hespos and Baillargeon (2001a)</td>
<td>367</td>
</tr>
<tr>
<td>13.4 Schematic of the support violations that infants detect at increasing ages</td>
<td>369</td>
</tr>
<tr>
<td>13.5 Pictures of the stimuli from Hespos and Baillargeon (2006)</td>
<td>370</td>
</tr>
<tr>
<td>13.6 A schematic of the habituation and test trials used in Hespos et al. (2009)</td>
<td>373</td>
</tr>
<tr>
<td>13.7 A schematic of the habituation and test trials used in Anderson, Hespos, and Rips (2018)</td>
<td>375</td>
</tr>
<tr>
<td>14.1 A common item that can be categorized</td>
<td>382</td>
</tr>
<tr>
<td>14.2 Habituation of looking-time tasks to study infants’ memory and discrimination (standard habituation) and categorization (multiple habituation)</td>
<td>387</td>
</tr>
<tr>
<td>15.1 Sequence of development of spatially relevant cell systems in the infant rat</td>
<td>414</td>
</tr>
<tr>
<td>15.2 Lateral view of an adult brain</td>
<td>419</td>
</tr>
<tr>
<td>15.3 Venn diagram showing possible overlap among aspects of spatial and numerical processing</td>
<td>425</td>
</tr>
<tr>
<td>16.1 Factors that ameliorate the transfer deficit</td>
<td>450</td>
</tr>
<tr>
<td>17.1 Infant motor milestone chart</td>
<td>472</td>
</tr>
<tr>
<td>17.2 Grid illustrating conceptions of infant motor development based on the classic approach and examples of plasticity,</td>
<td></td>
</tr>
</tbody>
</table>
variability, and flexibility in basic postural, manual, and locomotor skills 473

18.1 Simulation of mu rhythm desynchronization in the 8–13 Hz frequency band 500

18.2 Topographic plots of activity in the 6–9 Hz band during observation of a grasp in 9-month-old infants 503

20.1 An egocentric approach to the study of visual environments 551

20.2 Early face experiences 554

20.3 Developmental transition from visual experiences dense in faces to those dense in hands 555

20.4 A schematic of the cascade of feature abstraction in the human visual cortex 557

20.5 The (log) frequency distribution of individual people’s faces in infant head-camera images, ranked by appearance 559

20.6 Cluttered head-camera image of a 9-month-old infant, containing many different objects and body parts 560

21.1 Schematics of speech contrast discrimination in infancy within the context of different learning environments 587

22.1 (A) Waveform and spectrogram illustrating a protophone sequence produced by a 19-day-old infant. (B) A sequence of syllable vocalizations produced by the same infant at 4 months and 20 days. (C) Early word production by the same infant at 1 year, 2 months, and 20 days. (D) The maternal utterance, “Are those bubbles?” that preceded the infant vocalization shown in (C) 604

22.2 Schematic illustration of some of the major anatomical structures and neural and social pathways involved in infant vocalization and vocal learning 611

27.1 Mean smile strength from 1–5 of different smile types 751

27.2 In utero smile and cry-face configurations at 32 weeks gestation 752

27.3 Dynamic expressions of infant emotions showing increasing intensity of both smiling and cry face 757

27.4 Eye constriction (the Duchenne marker) indexes positive and negative affective intensity in the face-to-face/still face (FFSF) 758

Tables

10.1 Summary of the evidence of transfer of volatiles from maternal diet to amniotic fluid (AF) and breast milk (BM) and the short- and long-term effects on the recipient child 274
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2</td>
<td>Summary of experimental studies on effects of repeated exposure to single or a variety of foods on infants’ acceptance of target and novel fruits and vegetables</td>
<td>283</td>
</tr>
<tr>
<td>12.1</td>
<td>Sample experimental evidence supporting three general principles of infant memory development</td>
<td>345</td>
</tr>
<tr>
<td>18.1</td>
<td>Areas of design and processing in infant studies utilizing mu rhythm as a measure of mirroring in which considerable methodological variations exist</td>
<td>502</td>
</tr>
<tr>
<td>25.1</td>
<td>Model-based outcome predictions</td>
<td>701</td>
</tr>
</tbody>
</table>
Contributors

KAREN E. ADOLPH, New York University, USA
YEOJIN AMY AHN, University of Miami, USA
EVIN AKTAR, Leiden University, the Netherlands
DIMAS AMSO, Brown University, USA
ERIN M. ANDERSON, Northwestern University, USA
LORRAINE E. BAHRICK, Florida International University, USA
RACHEL BARR, Georgetown University, USA
MARC H. BORNSTEIN, Institute of Fiscal Studies, UK, and Eunice Kennedy
Shriver National Institute of Infant Health and Human Development, USA
ANDREW J. BREMNER, University of Birmingham, UK
NATALIE H. BRITO, New York University, USA
FRANCES A. CHAMPAGNE, University of Texas at Austin, USA
LAURA K. CIRELLI, University of Toronto, Canada
STEFANIA CONTE, University of South Carolina, USA
OR DAGAN, Stony Brook University, USA
RANJAN DEBNATH, University of Maryland, USA
GIANLUCA ESPOSITO, Nanyang Technological University, Singapore, and
University of Trento, Italy
TERJE FALCK-YTTER, Uppsala University, Sweden
JENNIFER ORLET FISHER, Temple University, USA
CATHERINE A. FORESTELL, College of William and Mary, USA
NATHAN A. FOX, University of Maryland, USA
ROBERTA MICHNICK GOLINKOFF, University of Delaware, USA
CONTRIBUTORS

J. KILEY HAMLIN, University of British Columbia, Canada
HARLENE HAYNE, University of Otago, New Zealand
JANE S. HERBERT, University of Wollongong, Australia
SUSAN J. HESPOS, Northwestern University, USA
KATHY HIRSH-PASEK, Temple University, USA
JUSTINE HOCH, New York University, USA
SWAPNA JAYARAMAN, Indiana University, USA
EMILY JONES, Birkbeck, University of London, UK
HOSHINORI KANAZAWA, University of Tokyo, Japan
YASUO KUNIYOSHI, University of Tokyo, Japan
MICHELLE LAMPL, Emory University, USA
DANI LEVINE, Temple University, USA
ROBERT LICKLITER, Florida International University, USA
JEFFREY J. LOCKMAN, Tulane University, USA
DAPHNE MAURER, McMaster University, Canada
JULIE A. MENNELLA, Monell Chemical Senses Center, USA
DANIEL S. MESSINGER, University of Miami, USA
SAMANTHA MITSVEN, University of Miami, USA
JACQUELYN MOFFITT, University of Miami, USA
SANTIAGO MORALES, University of Maryland, USA
NORA S. NEWCOMBE, Temple University, USA
LISA M. OAKES, University of California, Davis, USA
KORALY PÉREZ-EDGAR, Pennsylvania State University, USA
JAVA RACHWANI, New York University, USA
REBECCA K. REH, University of British Columbia, Canada
JOHN E. RICHARDS, University of South Carolina, USA
SYLVIA N. RUSNAK, Georgetown University, USA
ABRAHAM SAGI-SCHWARTZ, University of Haifa, Israel
VIRGINIA C. SALO, Vanderbilt University, USA
Contributors

MIRANDA SITCH, University of British Columbia, Canada
ELIZABETH G. SMITH, Cincinnati Children's Hospital, USA
LINDA B. SMITH, Indiana University, USA
CATHERINE S. TAMIS-LEMONDA, New York University, USA
JAMES T. TODD, Florida International University, USA
SANDRA E. TREHUB, University of Toronto, Canada
KRISTEN TUMMELTSHAMMER, Brown University, USA
ALISON K. VENTURA, California Polytechnic State University, USA
ANNE S. WARLAUMONT, University of California, Los Angeles, USA
JANET F. WERKER, University of British Columbia, Canada
YASUNORI YAMADA, University of Tokyo, Japan
Preface

When the two of us agreed to work on *The Cambridge Handbook of Infant Development*, our vision was to produce a collection of essays that would integrate perspectives across traditionally disparate areas, pose new directions for research, and enrich policy and practice. We recognized that this was a tall order. Yet, thanks to our contributors – the premier experts in infancy and human development, spanning disciplines and the globe – the Handbook has achieved its intended purpose. The end product is a state-of-the-art essential guide to contemporary research and theory on infant development.

The Cambridge Handbook of Infant Development spans a broad range of topics, including physical growth, brain development, health, and nutrition; cognitive, language, perception–action, social, and emotional development; and media and cultural influences in early development. Each chapter provides theoretical and empirical depth and rigor, while highlighting reciprocal connections among brain, behavior, and cultural context, and bridging the long-standing divide between basic research and real-world application. Thus, the Handbook simultaneously educates, enriches, and encourages. It educates through in-depth reviews of innovative methods and empirical foundations. It enriches an understanding of learning and development by considering the contexts of brain, culture, and policy. And it encourages new directions for research and policy by highlighting gaps between the current knowledge base and where research and practice need to go.

This definitive reference will appeal to academics, professionals, policy makers, and graduate and advanced undergraduate students from psychology, education, human development, pediatrics, nursing, occupational therapy, speech and hearing, and physical therapy. We hope that you are inspired by this collection of essays, and find them to be as educational, enriching, and encouraging as we did.

Jeffrey J. Lockman and Catherine S. Tamis-LeMonda