

The Cambridge Handbook of Infant Development

This multidisciplinary volume features many of the world's leading experts of infant development, who synthesize their research on infant learning and behavior, while integrating perspectives across neuroscience, socio-cultural context, and policy.

It offers an unparalleled overview of infant development across foundational areas such as prenatal development, brain development, epigenetics, physical growth, nutrition, cognition, language, attachment, and risk. The chapters present theoretical and empirical depth and rigor across specific domains of development, while highlighting reciprocal connections among brain, behavior, and social-cultural context.

The handbook simultaneously educates, enriches, and encourages. It educates through detailed reviews of innovative methods and empirical foundations and enriches by considering the contexts of brain, culture, and policy. This cutting-edge volume establishes an agenda for future research and policy, and highlights research findings and application for advanced students, researchers, practitioners, and policy-makers with interests in understanding and promoting infant development.

JEFFREY J. LOCKMAN is the Lila L. and Douglas J. Hertz Chair of Psychology at Tulane University, USA, and past-editor of the journal *Child Development*.

CATHERINE S. TAMIS-LEMONDA is Professor of Applied Psychology at New York University, USA.

The Cambridge Handbook of Infant Development

Brain, Behavior, and Cultural Context

Edited by
Jeffrey J. Lockman
Tulane University
Catherine S. Tamis-LeMonda
New York University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108426039

DOI: 10.1017/9781108351959

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-42603-9 Hardback ISBN 978-1-108-44439-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Ben (JJL) and Lila (CTL) — the infants who have inspired us.

Contents

	List of Illustrations List of Contributors	page x
	Preface	xv xix
	Part I. Foundations	1
1	Embodied Brain Model for Understanding Functional Neural Development of Fetuses and Infants YASUNORI YAMADA, HOSHINORI KANAZAWA, AND YASUO KUNIYOSHI	3
2	Infant Physical Growth MICHELLE LAMPL	40
3	Dynamic Epigenetic Impact of the Environment on the Developing Brain FRANCES A. CHAMPAGNE	70
4	Brain Development in Infants: Structure and Experience JOHN E. RICHARDS AND STEFANIA CONTE	94
5	Development During Infancy in Children Later Diagnosed with Autism Spectrum Disorder TERJE FALCK-YTTER AND EMILY JONES	128
	Part II. Perceptual Development	155
6	Visual Development DAPHNE MAURER	157
7	Infant Visual Attention DIMA AMSO AND KRISTEN TUMMELTSHAMMER	186
8	Infants' Perception of Auditory Patterns LAURA K. CIRELLI AND SANDRA E. TREHUB	214

vii

:::	CONTENT
V111	CONTENT

9	The Development of Touch Perception and Body Representation ANDREW J. BREMNER	238
10	The Development of Infant Feeding JULIE A. MENNELLA, CATHERINE A. FORESTELL, ALISON K. VENTURA, AND JENNIFER ORLET FISHER	263
11	The Development of Multisensory Attention Skills: Individual Differences, Developmental Outcomes, and Applications LORRAINE E. BAHRICK, ROBERT LICKLITER, AND JAMES T. TORRENCE TODD	303
	Part III. Cognitive Development	339
12	Infant Memory HARLENE HAYNE AND JANE S. HERBERT	341
13	Infant Physical Knowledge SUSAN J. HESPOS AND ERIN M. ANDERSON	363
14	Infant Categorization LISA M. OAKES	381
15	Early Knowledge About Space and Quantity NORA S. NEWCOMBE	410
16	Infant Learning in the Digital Age SYLVIA N. RUSNAK AND RACHEL BARR	435
	Part IV. Action	467
17	Action in Development: Plasticity, Variability, and Flexibility JAYA RACHWANI, JUSTINE HOCH, AND KAREN E. ADOLPH	469
18	The Mirror Neuron System and Social Cognition NATHAN A. FOX, VIRGINIA C. SALO, RANJAN DEBNATH, SANTIAGO MORALES, AND ELIZABETH G. SMITH	495
19	Infant Object Manipulation and Play CATHERINE S. TAMIS-LEMONDA AND JEFFREY J. LOCKMAN	520
20	The Infant's Visual World: The Everyday Statistics for Visual Learning SWAPNAA JAYARAMAN AND LINDA B. SMITH	549

> Contents ix Part V. Language 577 21 Infant Speech Perception 579 REBECCA K. REH AND JANET F. WERKER 22 Infant Vocal Learning and Speech Production 602 ANNE S. WARLAUMONT 632 23 Infant Word Learning and Emerging Syntax DANI LEVINE, KATHY HIRSH-PASEK, AND ROBERTA MICHNICK GOLINKOFF 24 Dual Language Exposure and Early Learning 661 NATALIE H. BRITO Part VI. Emotional and Social Development 685 25 Infant Attachment (to Mother and Father) and Its Place in Human Development: Five Decades of Promising 687 Research (and an Unsettled Issue) OR DAGAN AND ABRAHAM SAGI-SCHWARTZ 715 26 Infant Emotion Development and Temperament EVIN AKTAR AND KORALY PÉREZ-EDGAR 742 27 Infant Emotional Development SAMANTHA MITSVEN, DANIEL S. MESSINGER, JACQUELYN MOFFITT, AND YEOJIN AMY AHN 28 Understanding and Evaluating the Moral World in Infancy 777 J. KILEY HAMLIN AND MIRANDA SITCH 29 Cross-Cultural Perspectives on Parent-Infant Interactions 805 MARC H. BORNSTEIN AND GIANLUCA ESPOSITO Index 833

Illustrations

	Figures		
1.1	Overview of the embodied brain model of a human fetus	page	
1.2	Overview of the nervous model		16
1.3	Embodied couplings underlying bodily spontaneous		
	movements		19
1.4	(A) Spinal circuit model with activity-dependent plastic		
	connections between. (B) Time evolution of average pairwise		
	correlations among the outputs of alpha motor neurons		
	comparing ipsilateral and contralateral muscle pairs during		
	learning periods in the simulation using the zebrafish		
	embryo model. (C, D) Examples of movement patterns		•
1.5	after learning		20
1.5	Learning results of body representations		22
1.6	Learning of cortical body representations under intrauterine		25
1 7	and extrauterine conditions		25
1.7	Impacts of atypical bodily movements on somatosensory		26
1.0	feedbacks		26
1.8	Impacts of cortical excitatory/inhibitory imbalance on		27
2 1	functional response properties of the network		27
3.1	DNA methylation and regulation of phenotypic outcomes		73
3.2	Complex pathways through which prenatal maternal		75
2 2	environmental exposures impact the infant brain		13
3.3	Complex pathways through which paternal preconception		82
4.1	environmental exposures impact the infant brain Postnatal changes in head volume and brain size from birth		02
4.1	through 85 years		96
4.2	(A) Postnatal development of human cerebral cortex.		90
4.2	(B) (Top) Postnatal development of human cerebral cortex.		
	around Broca's area. (Bottom) The development of neuronal		
	morphology in human primary auditory cortex		98
4.3	(A) Mean synaptic density in synapses/100 µm ³ in auditory,		70
т.Э	calcarine, and prefrontal cortex at various ages. (B) Postnatal		
	changes in gray matter, white matter, and "other matter"		
	volume from hirth through 85 years (C) Region-specific		

X

		Illustrations	xi
4.4	cortical thickness, surface area, curvature, and gray matter volume trajectories for a selection of anatomical regions (A) Cartoon drawing of a "typical" neuron with	101	
	unmyelinated dendrites, cell body, and axon terminal, and		
	the myelin sheath covering the axon. (B) How white matter increases over age	104	
4.5	(A) Plot of age-related increase in relative content of	104	
	myelinated white matter for the 100 studied children.		
	(B) Changes in fractional anisotropy (FA) and apparent		
	diffusion coefficient (ADC) for the genu of the corpus callosum (gCC) and the left superior longitudinal		
	fasciculus (SLF)	105	
4.6	(Top) Matched axially oriented slices through the mean		
	myelin water fraction (MWF) for 3 months to 5 years.		
	(Bottom) Change in MWF for an early region (occipital) and two late regions (frontal, temporal)	107	
4.7	Changes in the N290 from 4.5 to 12 months of age	111	
4.8	Grand-averaged waveforms for upright and inverted	111	
	human faces in 3- and 12-month-old infants at left and		
4.0	right posterior temporal channels	112	
4.9	(A)The distribution of relative theta power for the institutionalized group (IG) and the never-institutionalized		
	group (NIG). (B) Mean absolute and relative power		
	from the theta, alpha, and beta bands for the care-as-		
	usual group (CAUG), foster care intervention (FCG),		
	and never-institutionalized community controls (NIG).		
	(C) Distribution of alpha power across the scalp at 8 years		
	of age for children who remained in the institution (i.e., the care-as-usual group), children placed into foster care after		
	24 months (>24 months FCG), children placed in foster		
	care before 24 months (<24 months FCG), and children		
	reared with their biological parents (i.e., the never-		
4.10	institutionalized group)	115	
4.10	Grand-averaged ERP waveforms of the IG and NIG at the baseline assessment (A), the 30-month post-intervention		
	assessment (B), and the 42-month post-intervention		
	assessment, (C) over the right occipital electrode (collapsed		
	across conditions)	116	
4.11	(Top) Average total cortical white matter and gray matter	1	
	volume in cubic centimeters (cm ³) for the CAUG, FCG, and NIG. (Bottom) Growth trajectories of total gray matter,	<u>.</u>	
	frontal lobe, and parietal lobe gray matter for children from		
	high-, mid-, and low-SES families	118	
5.1	Variable heterogeneity in ASD as a function of	120	
	developmental time	130	

xii ILLUSTRATIONS

5.2	(A) Alpha band (7–8 Hz) connectivity in infants.	
	(B) Pupillary light reflex in infants	133
6.1	The most principal pathways from the retina to the visual	
	cortices	159
7.1	An infant participating in an eye-tracking experiment	189
7.2	1 () 1	
	presented to infants	193
8.1	Thresholds for high-, middle-, and low-frequency bands at	
	different ages	217
8.2	Keyboard beginning on middle C and ending on E in the	210
10.1	subsequent octave	219
10.1	Orthonasal and retronasal routes of olfaction	266
11.1	Static images of the dynamic audiovisual events from	210
11.0	the MAAP	318
11.2	Still image of the dynamic social (A) and nonsocial	220
11.2	(B) events from the IPEP	320
11.3	Working model illustrates the mediational role of	
	intersensory processing in language, social, and cognitive	222
12.1	development during infancy	322
13.1	Schematic of the events used in Spelke et al. (1992)	366
13.2	Schematic of the events used in the unexpected outcome	266
12.2	trials for Hespos and Baillargeon (2001b)	366
13.3	The expected (tall container event) and unexpected (short	267
12.4	container event) from Hespos and Baillargeon (2001a)	367
13.4	Schematic of the support violations that infants detect at	260
12.5	increasing ages	369
13.5	Pictures of the stimuli from Hespos and Baillargeon (2006)	370
13.6	A schematic of the habituation and test trials used in	272
127	Hespos et al. (2009)	373
13.7	A schematic of the habituation and test trials used in	275
1 / 1	Anderson, Hespos, and Rips (2018)	375
14.1	A common item that can be categorized	382
14.2	Habituation of looking-time tasks to study infants'	
	memory and discrimination (standard habituation) and	207
15 1	categorization (multiple habituation)	387
15.1	Sequence of development of spatially relevant cell systems	414
15.0	in the infant rat	414
15.2	Lateral view of an adult brain	419
15.3	Venn diagram showing possible overlap among aspects of	125
16 1	spatial and numerical processing	425
16.1	Factors that ameliorate the transfer deficit	450 472
17.1	Infant motor milestone chart	4/2
17.2	Grid illustrating conceptions of infant motor development	
	based on the classic approach and examples of plasticity,	

		Illustrations	xiii
	variability, and flexibility in basic postural, manual, and		
	locomotor skills	473	
18.1	Simulation of mu rhythm desynchronization in the 8–13 Hz		
	frequency band	500	
18.2	Topographic plots of activity in the 6–9 Hz band during		
	observation of a grasp in 9-month-old infants	503	
20.1	An egocentric approach to the study of visual environments	551	
20.2	Early face experiences	554	
20.3	Developmental transition from visual experiences dense in		
	faces to those dense in hands	555	
20.4	A schematic of the cascade of feature abstraction in the		
	human visual cortex	557	
20.5	The (log) frequency distribution of individual people's faces		
	in infant head-camera images, ranked by appearance	559	
20.6	Cluttered head-camera image of a 9-month-old infant,		
	containing many different objects and body parts	560	
21.1	Schematics of speech contrast discrimination in infancy		
	within the context of different learning environments	587	
22.1	(A) Waveform and spectrogram illustrating a protophone		
	sequence produced by a 19-day-old infant. (B) A sequence		
	of syllable vocalizations produced by the same infant at		
	4 months and 20 days. (C) Early word production by the		
	same infant at 1 year, 2 months, and 20 days. (D) The		
	maternal utterance, "Are those bubbles?" that preceded the		
	infant vocalization shown in (C)	604	
22.2	Schematic illustration of some of the major anatomical	00.	
22.2	structures and neural and social pathways involved in infant		
	vocalization and vocal learning	611	
25.1	Four competing hypotheses ordered according to the issue	011	
23.1	they address	698	
27.1	Mean smile strength from 1–5 of different smile types	751	
27.1	<i>In utero</i> smile and cry-face configurations at 32 weeks	731	
21.2	gestation	752	
27.3	Dynamic expressions of infant emotions showing increasing	132	
21.3	intensity of both smiling and cry face	757	
27.4	Eye constriction (the Duchenne marker) indexes positive and		
27.4	negative affective intensity in the face-to-face/still face (FFSI		
	negative affective intensity in the face-to-face/still face (1.1.5)	736	
	Tables		
	Tables		
10.1	Summary of the evidence of transfer of volatiles from		
•	maternal diet to amniotic fluid (AF) and breast milk (BM)		
	and the short- and long-term effects on the recipient child	274	

X1V	ILLUST	ILLUSTRATIONS		
	10.2	Summary of experimental studies on effects of repeated exposure to single or a variety of foods on infants'		
		acceptance of target and novel fruits and vegetables	283	
	12.1	Sample experimental evidence supporting three general		
		principles of infant memory development	345	
	18.1	Areas of design and processing in infant studies utilizing		
		mu rhythm as a measure of mirroring in which considerable		
		methodological variations exist	502	
	25.1	Model-based outcome predictions	701	

Contributors

KAREN E. ADOLPH, New York University, USA

YEOJIN AMY AHN, University of Miami, USA

EVIN AKTAR, Leiden University, the Netherlands

DIMA AMSO, Brown University, USA

ERIN M. ANDERSON, Northwestern University, USA

LORRAINE E. BAHRICK, Florida International University, USA

RACHEL BARR, Georgetown University, USA

MARC H. BORNSTEIN, Institute of Fiscal Studies, UK, and Eunice Kennedy Shriver National Institute of Infant Health and Human Development, USA

ANDREW J. BREMNER, University of Birmingham, UK

NATALIE H. BRITO, New York University, USA

FRANCES A. CHAMPAGNE, University of Texas at Austin, USA

LAURA K. CIRELLI, University of Toronto, Canada

STEFANIA CONTE, University of South Carolina, USA

OR DAGAN, Stony Brook University, USA

RANJAN DEBNATH, University of Maryland, USA

GIANLUCA ESPOSITO, Nanyang Technological University, Singapore, and University of Trento, Italy

TERJE FALCK-YTTER, Uppsala University, Sweden

JENNIFER ORLET FISHER, Temple University, USA

CATHERINE A. FORESTELL, College of William and Mary, USA

NATHAN A. FOX, University of Maryland, USA

ROBERTA MICHNICK GOLINKOFF, University of Delaware, USA

xv

xvi

CONTRIBUTORS

J. KILEY HAMLIN, University of British Columbia, Canada HARLENE HAYNE, University of Otago, New Zealand JANE S. HERBERT, University of Wollongong, Australia SUSAN J. HESPOS, Northwestern University, USA KATHY HIRSH-PASEK, Temple University, USA JUSTINE HOCH, New York University, USA SWAPNAA JAYARAMAN, Indiana University, USA EMILY JONES, Birkbeck, University of London, UK HOSHINORI KANAZAWA, University of Tokyo, Japan YASUO KUNIYOSHI, University of Tokyo, Japan MICHELLE LAMPL, Emory University, USA DANI LEVINE, Temple University, USA ROBERT LICKLITER, Florida International University, USA JEFFREY J. LOCKMAN, Tulane University, USA DAPHNE MAURER, McMaster University, Canada JULIE A. MENNELLA, Monell Chemical Senses Center, USA DANIEL S. MESSINGER, University of Miami, USA SAMANTHA MITSVEN, University of Miami, USA JACQUELYN MOFFITT, University of Miami, USA SANTIAGO MORALES, University of Maryland, USA NORA S. NEWCOMBE, Temple University, USA LISA M. OAKES, University of California, Davis, USA KORALY PÉREZ-EDGAR, Pennsylvania State University, USA JAYA RACHWANI, New York University, USA REBECCA K. REH, University of British Columbia, Canada JOHN E. RICHARDS, University of South Carolina, USA SYLVIA N. RUSNAK, Georgetown University, USA ABRAHAM SAGI-SCHWARTZ, University of Haifa, Israel VIRGINIA C. SALO, Vanderbilt University, USA

Contributors

xvii

MIRANDA SITCH, University of British Columbia, Canada ELIZABETH G. SMITH, Cincinnati Children's Hospital, USA LINDA B. SMITH, Indiana University, USA CATHERINE S. TAMIS-LEMONDA, New York University, USA JAMES T. TODD, Florida International University, USA SANDRA E. TREHUB, University of Toronto, Canada KRISTEN TUMMELTSHAMMER, Brown University, USA ALISON K. VENTURA, California Polytechnic State University, USA ANNE S. WARLAUMONT, University of California, Los Angeles, USA JANET F. WERKER, University of British Columbia, Canada YASUNORI YAMADA, University of Tokyo, Japan

Preface

When the two of us agreed to work on *The Cambridge Handbook of Infant Development*, our vision was to produce a collection of essays that would integrate perspectives across traditionally disparate areas, pose new directions for research, and enrich policy and practice. We recognized that this was a tall order. Yet, thanks to our contributors – *the* premier experts in infancy and human development, spanning disciplines and the globe – the Handbook has achieved its intended purpose. The end product is a state-of-the-art essential guide to contemporary research and theory on infant development.

The Cambridge Handbook of Infant Development spans a broad range of topics, including physical growth, brain development, health, and nutrition; cognitive, language, perception—action, social, and emotional development; and media and cultural influences in early development. Each chapter provides theoretical and empirical depth and rigor, while highlighting reciprocal connections among brain, behavior, and cultural context, and bridging the long-standing divide between basic research and real-world application. Thus, the Handbook simultaneously educates, enriches, and encourages. It educates through in-depth reviews of innovative methods and empirical foundations. It enriches an understanding of learning and development by considering the contexts of brain, culture, and policy. And it encourages new directions for research and policy by highlighting gaps between the current knowledge base and where research and practice need to go.

This definitive reference will appeal to academics, professionals, policy makers, and graduate and advanced undergraduate students from psychology, education, human development, pediatrics, nursing, occupational therapy, speech and hearing, and physical therapy. We hope that you are inspired by this collection of essays, and find them to be as educational, enriching, and encouraging as we did.

Jeffrey J. Lockman and Catherine S. Tamis-LeMonda