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Equivariant homotopy theory started from geometrically motivated questions about

symmetries of manifolds. Several important equivariant phenomena occur not just for

a particular group, but in a uniform way for all groups. Prominent examples include

stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies

such uniform phenomena, i.e., universal symmetries encoded by simultaneous and

compatible actions of all compact Lie groups.

This book introduces graduate students and researchers to global equivariant homo-

topy theory. The framework is based on the new notion of global equivalences for

orthogonal spectra, a much finer notion of equivalence than is traditionally considered.

The treatment is largely self-contained and contains many examples, making it suitable

as a textbook for an advanced graduate class. At the same time, the book is a

comprehensive research monograph with detailed calculations that reveal the intrinsic

beauty of global equivariant phenomena.

Stefan Schwede is Professor in the Mathematical Institute at the University of

Bonn. His main area of expertise is algebraic topology, specifically stable homotopy
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Preface

Equivariant stable homotopy theory has a long tradition, starting from

geometrically motivated questions about symmetries of manifolds. The

homotopy-theoretic foundations of the subject were laid by tom Dieck, Se-

gal and May and their students and collaborators in the 1970s, and over the

intervening decades equivariant stable homotopy theory has been very use-

ful for solving computational and conceptual problems in algebraic topology,

geometric topology and algebraic K-theory. Various important equivariant the-

ories naturally exist not just for a particular group, but in a uniform way for

all groups in a specific class. Prominent examples of this are equivariant sta-

ble homotopy, equivariant K-theory or equivariant bordism. Global equivariant

homotopy theory studies such uniform phenomena, i.e., the adjective ‘global’

refers to simultaneous and compatible actions of all compact Lie groups.

This book introduces a new context for global homotopy theory. Various

ways of providing a home for global stable homotopy types have previously

been explored in [100, Ch. II], [68, Sec. 5], [18] and [19]. We use a different ap-

proach: we work with the well-known category of orthogonal spectra, but use

a notion of equivalence, the global equivalence, which is much finer than what

is traditionally considered. The basic underlying observation is that an orthog-

onal spectrum gives rise to an orthogonal G-spectrum for every compact Lie

group G, and the fact that all these individual equivariant objects come from

one orthogonal spectrum implicitly encodes strong compatibility conditions as

the group G varies. An orthogonal spectrum thus has G-equivariant homotopy

groups for every compact Lie group, and a global equivalence is a morphism

of orthogonal spectra that induces isomorphisms for all equivariant homotopy

groups for all compact Lie groups (based on ‘complete G-universes’, compare

Definition 4.1.3).

The structure of the equivariant homotopy groups of an orthogonal spec-

trum gives an idea of the information encoded in a global homotopy type in

our sense: the equivariant homotopy groups πG
k

(X) are contravariantly func-

vii
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viii Preface

torial for continuous group homomorphisms (‘restriction maps’), and they are

covariantly functorial for inclusions of closed subgroups (‘transfer maps’). The

restriction and transfer maps enjoy various transitivity properties and interact

via a double coset formula. This kind of algebraic structure has been studied

before under different names, e.g., ‘global Mackey functor’, ‘inflation func-

tor’, . . . . From a purely algebraic perspective, there are various parameters

here that one can vary, namely the class of groups to which a value is assigned

and the classes of homomorphisms to which restriction maps or transfer maps

are assigned, and lots of variations have been explored. However, the decision

to work with orthogonal spectra and equivariant homotopy groups on complete

universes dictates a canonical choice: we prove in Theorem 4.2.6 that the alge-

bra of natural operations between the equivariant homotopy groups of orthog-

onal spectra is freely generated by restriction maps along continuous group

homomorphisms and transfer maps along closed subgroup inclusion, subject

to explicitly understood relations.

We define the global stable homotopy category GH by localizing the cate-

gory of orthogonal spectra at the class of global equivalences. Every global

equivalence is in particular a non-equivariant stable equivalence, so there is a

‘forgetful’ functor U : GH −→ SH on localizations, where SH denotes the

traditional non-equivariant stable homotopy category. By Theorem 4.5.1 this

forgetful functor has a left adjoint L and a right adjoint R, both fully faithful,

which participate in a recollement of triangulated categories:

GH
+ i∗

�� GH U
��

i!

��

i∗

��

SH .

R

��

L
��

HereGH+ denotes the full subcategory of the global stable homotopy category

spanned by the orthogonal spectra that are stably contractible in the traditional,

non-equivariant sense.

The global sphere spectrum and suspension spectra are in the image of the

left adjoint (Example 4.5.11). Global Borel cohomology theories are the im-

age of the right adjoint (Example 4.5.19). The ‘natural’ global versions of

Eilenberg–MacLane spectra (Construction 5.3.8), Thom spectra (Section 6.1),

or topological K-theory spectra (Sections 6.3 and 6.4) are not in the image of

either of the two adjoints. Periodic global K-theory, however, is right induced

from finite cyclic groups, i.e., in the image of the analogous right adjoint from

an intermediate global homotopy category GHcyc based on finite cyclic groups

(Example 6.4.27).

Looking at orthogonal spectra through the eyes of global equivalences is

like using a prism: the latter breaks up white light into a spectrum of colors,
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Preface ix

and global equivalences split a traditional, non-equivariant homotopy type into

many different global homotopy types. The first example of this phenomenon

that we will encounter refines the classifying space of a compact Lie group

G. On the one hand, there is the constant orthogonal space with value a non-

equivariant model for BG; and there is the global classifying space BglG (see

Definition 1.1.27). The global classifying space is analogous to the geometric

classifying space of a linear algebraic group in motivic homotopy theory [123,

4.2], and it is the counterpart to the stack of G-principal bundles in the world

of stacks.

Another good example is the splitting up of the non-equivariant homotopy

type of the classifying space of the infinite orthogonal group. Again there is

the constant orthogonal space with value BO, the Grassmannian model BO

(Example 2.4.1), a different Grassmannian model bO (Example 2.4.18), the

bar construction model B◦O (Example 2.4.14), and finally a certain ‘cofree’

orthogonal space R(BO). The orthogonal space bO is also a homotopy colimit,

as n goes to infinity, of the global classifying spaces BglO(n). We discuss these

different global forms of BO in some detail in Section 2.4, and the associated

Thom spectra in Section 6.1.

In the stable global world, every non-equivariant homotopy type has two

extreme global refinements, the ‘left induced’ (the global analog of a constant

orthogonal space, see Example 4.5.10) and the ‘right induced’ global homotopy

type (representing Borel cohomology theories, see Example 4.5.19). Many

important stable homotopy types have other natural global forms. The non-

equivariant Eilenberg–MacLane spectrum of the integers has a ‘free abelian

group functor’ model (Construction 5.3.8), and another incarnation is the Eilen-

berg–MacLane spectrum of the constant global functor with value Z (Remark

4.4.12). These two global refinements of the integral Eilenberg–MacLane spec-

trum agree on finite groups, but differ for compact Lie groups of positive di-

mensions.

As already indicated, there is a great variety of orthogonal Thom spectra, in

real (or unoriented) flavors as mO and MO, as complex (or unitary) versions

mU and MU, and there are periodic versions mOP, MOP, mUP and MUP

of these; we discuss these spectra in Section 6.1. The theories represented by

mO and mU have the closest ties to geometry; for example, the equivariant

homotopy groups of mO receive Thom–Pontryagin maps from equivariant

bordism rings, and these are isomorphisms for products of finite groups and tori

(compare Theorem 6.2.33). The theories represented by MO are tom Dieck’s

homotopical equivariant bordism, isomorphic to ‘stable equivariant bordism’.

Connective topological K-theory also has two fairly natural global refine-

ments, in addition to the left and right induced ones. The ‘orthogonal sub-

space’ model ku (Construction 6.3.9) represents connective equivariant

www.cambridge.org/9781108425810
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K-theory on the class of finite groups; on the other hand, global connective

K-theory kuc (Construction 6.4.32) is the global synthesis of equivariant con-

nective K-theory in the sense of Greenlees [66]. The periodic global K-theory

spectrum KU is introduced in Construction 6.4.9; as the name suggests, KU is

Bott periodic and represents equivariant K-theory.

The global equivalences are part of a closed model structure (see Theorem

4.3.18), so the methods of homotopical algebra can be used to study the sta-

ble global homotopy category. This works more generally relative to a class

F of compact Lie groups, where we define F -equivalences by requiring that

πG
k

( f ) is an isomorphism for all integers and all groups in F . We call a class

F of compact Lie groups a global family if it is closed under isomorphisms,

subgroups and quotients. For global families we refine the F -equivalences to

a stable model structure, the F -global model structure, see Theorem 4.3.17.

Besides all compact Lie groups, interesting global families are the classes of

all finite groups, or all abelian compact Lie groups. The class of trivial groups

is also admissible here, but then we just recover the ‘traditional’ stable cate-

gory. If the family F is multiplicative, then the F -global model structure is

monoidal with respect to the smash product of orthogonal spectra and satis-

fies the monoid axiom (Proposition 4.3.28). Hence this model structure lifts

to modules over an orthogonal ring spectrum and to algebras over an ultra-

commutative ring spectrum (Corollary 4.3.29).

Ultra-commutativity A recurring theme throughout this book is a phe-

nomenon that I call ultra-commutativity. I use this term in the unstable and

stable context for the homotopy theory of strictly commutative objects un-

der global equivalences. An ultra-commutative multiplication has significantly

more structure than just a coherently homotopy-commutative product (usu-

ally called an E∞-multiplication). For example, the extra structure gives rise to

power operations that can be turned into transfer maps (in additive notation)

and norm maps (in multiplicative notation). Another difference is that an un-

stable global E∞-structure would give rise to naive deloopings (i.e., by trivial

representations). As I hope to discuss elsewhere, a global ultra-commutative

multiplication, in contrast, gives rise to ‘genuine’ deloopings (i.e., by non-

trivial representations). As far as the objects are concerned, ultra-commutative

monoids and ultra-commutative ring spectra are not at all new and have been

much studied before; so one could dismiss the name ‘ultra-commutativity’ as a

mere marketing maneuver. However, the homotopy theory of ultra-commutative

monoids and ultra-commutative ring spectra with respect to global equiva-

lences is new and, in the author’s opinion, important. And important concepts

deserve catchy names.
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Global homotopy types as orbifold cohomology theories I would like to

briefly mention another reason why one might be interested in global stable

homotopy theory. In short, global stable homotopy types represent genuine co-

homology theories on stacks, orbifolds and orbispaces. Stacks and orbifolds

are concepts from algebraic geometry and geometric topology that allow us to

talk about objects that locally look like the quotient of a smooth object by a

group action, in a way that remembers information about the isotropy groups

of the action. Such ‘stacky’ objects can behave like smooth objects even if the

underlying spaces have singularities. As for spaces, manifolds and schemes,

cohomology theories are important invariants also for stacks and orbifolds,

and examples such as ordinary cohomology or K-theory lend themselves to

generalization. Special cases of orbifolds are ‘global quotients’, often denoted

M//G, for example for a smooth action of a compact Lie group G on a smooth

manifold M. In such examples, the orbifold cohomology of M//G is supposed

to be the G-equivariant cohomology of M. This suggests a way to define orb-

ifold cohomology theories by means of equivariant stable homotopy theory,

via suitable G-spectra EG. However, since the group G is not intrinsic and can

vary, one needs equivariant cohomology theories for all groups G, with some

compatibility.

Part of the compatibility can be deduced from the fact that the same orbifold

can be presented in different ways; for example, if G is a closed subgroup of K,

then the global quotients M//G and (M×G K)//K describe the same orbifold. So

if the orbifold cohomology theory is represented by equivariant spectra {EG}G

as indicated above, then necessarily EG ≃ resK
G

(EK), i.e., the equivariant ho-

motopy types are consistent under restriction. This is the characteristic feature

of global equivariant homotopy types, and it suggests that the latter ought to

define orbifold cohomology theories.

The approach to global homotopy theory presented in this book in particular

provides a way of turning the above outline into rigorous mathematics. There

are different formal frameworks for stacks and orbifolds (algebro-geometric,

smooth, topological), and these objects can be studied with respect to various

notions of ‘equivalence’. The approach that most easily feeds into the present

context is the notion of topological stacks and orbispaces as developed by

Gepner and Henriques in their paper [61]. Their homotopy theory of topolog-

ical stacks is rigged up so that the derived mapping spaces out of the clas-

sifying stacks for principal G-bundles detect equivalences. In our setup, the

global classifying spaces of compact Lie groups (see Definition 1.1.27) play

exactly the same role, and this is another hint of a deeper connection. In fact,

the global homotopy theory of orthogonal spaces as developed in Chapter 1

is a model for the homotopy theory of orbispaces in the sense of Gepner and

Henriques. For a formal comparison of the two models I refer the reader to the
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author’s paper [145]. The comparison proceeds through yet another model, the

global homotopy theory of ‘spaces with an action of the universal compact Lie

group’. Here the universal compact Lie group (which is neither compact nor

a Lie group) is the topological monoid L of linear isometric self-embeddings

of R∞, and in [145] we establish a global model structure on the category of

L-spaces.

If we now accept that one can pass between stacks, orbispaces and orthog-

onal spaces in a homotopically meaningful way, a consequence is that ev-

ery global stable homotopy type (i.e., every orthogonal spectrum) gives rise

to a cohomology theory on stacks and orbifolds. Indeed, by taking the unre-

duced suspension spectrum, every unstable global homotopy type is transferred

into the triangulated global stable homotopy category GH . In particular, tak-

ing morphisms in GH into an orthogonal spectrum E defines Z-graded E-

cohomology groups. The counterpart of a global quotient M // G in the global

homotopy theory of orthogonal spaces is the semifree orthogonal space LG,V M

introduced in Construction 1.1.22. By the adjunction relating the global and G-

equivariant stable homotopy categories (see Theorem 4.5.24), the morphisms

�Σ∞
+

LG,V M, E� in the global stable homotopy category are in bijection with the

G-equivariant E-cohomology groups of M. In other words, when evaluated

on a global quotient M// G, our recipe for generating an orbifold cohomology

theory from a global stable homotopy type precisely returns the G-equivariant

cohomology of M, which was the original design criterion.

The procedure sketched so far actually applies to more general objects than

our global stable homotopy types: indeed, all that was needed to produce the

orbifold cohomology theory was a sufficiently exact functor from the homo-

topy theory of orbispaces to a triangulated category. If we aim for a stable ho-

motopy theory (as opposed to its triangulated homotopy category), then there

is a universal example, namely the stabilization of the homotopy theory of

orbispaces, obtained by formally inverting suspension. Our global theory is,

however, richer than this ‘naive’ stabilization. Indeed, there is a forgetful func-

tor from the global stable homotopy category, based on a complete G-universe;

the equivariant cohomology theories represented by such objects are usually

called ‘genuine’ (as opposed to ‘naive’). Genuine equivariant cohomology the-

ories have much more structure than naive ones; this structure manifests itself

in different forms, for example as transfer maps, stability under ‘twisted sus-

pension’ (i.e., smash product with linear representation spheres), an extension

of the Z-graded cohomology groups to an RO(G)-graded theory, and an equiv-

ariant refinement of additivity (the so called Wirthmüller isomorphism). Hence

global stable homotopy types in the sense of this book represent genuine (as

opposed to ‘naive’) orbifold cohomology theories.
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Organization In Chapter 1 we set up unstable global homotopy theory us-

ing orthogonal spaces, i.e., continuous functors from the category of finite-

dimensional inner product spaces and linear isometric embeddings to spaces.

We introduce global equivalences (Definition 1.1.2), discuss global classify-

ing spaces of compact Lie groups (Definition 1.1.27), and set up the global

model structures on the category of orthogonal spaces (Theorem 1.2.21). In

Section 1.3 we investigate the box product of orthogonal spaces from a global

equivariant perspective. Section 1.4 introduces a variant of unstable global ho-

motopy theory based on a global family, i.e., a class F of compact Lie groups

with certain closure properties. We discuss the F -global model structure and

record that for multiplicative global families, it lifts to the category of modules

and algebras (Corollary 1.4.15). In Section 1.5 we discuss the G-equivariant

homotopy sets of orthogonal spaces and identify the natural structure between

them (restriction maps along continuous group homomorphisms). The study

of natural operations on πG
0

(Y) is a recurring theme throughout this book; in

the later chapters we return to it in the contexts of ultra-commutative monoids,

orthogonal spectra and ultra-commutative ring spectra.

Chapter 2 is devoted to ultra-commutative monoids (a.k.a. commutative

monoids with respect to the box product, or lax symmetric monoidal functors),

which we want to advertise as a rigidified notion of ‘global E∞-space’. In Sec-

tion 2.1 we establish a global model structure for ultra-commutative monoids

(Theorem 2.1.15). Section 2.2 introduces and studies global power monoids,

the algebraic structure that an ultra-commutative multiplication gives rise to

on the homotopy group Rep-functor π
0
(R). Section 2.3 contains a large col-

lection of examples of ultra-commutative monoids and interesting morphisms

between them. In Section 2.4 we discuss and compare different global refine-

ments of the non-equivariant homotopy type BO, the classifying space for the

infinite orthogonal group. Section 2.5 discusses ‘units’ and ‘group comple-

tions’ of ultra-commutative monoids. As an application of this technology we

formulate and prove a global, highly structured version of Bott periodicity, see

Theorem 2.5.41.

Chapter 3 is a largely self-contained exposition of many basic facts about

equivariant stable homotopy theory for a fixed compact Lie group, modeled

by orthogonal G-spectra. In Section 3.1 we recall orthogonal G-spectra and

equivariant homotopy groups and prove their basic properties, such as the sus-

pension isomorphism and long exact sequences of mapping cones and homo-

topy fibers, and the additivity of equivariant homotopy groups on sums and

products. Section 3.2 discusses the Wirthmüller isomorphism and the closely

related transfers. In Section 3.3 we introduce and study geometric fixed-point

homotopy groups, an alternative invariant for characterizing equivariant sta-

ble equivalences. Section 3.4 contains a proof of the double coset formula

www.cambridge.org/9781108425810
www.cambridge.org


Cambridge University Press
978-1-108-42581-0 — Global Homotopy Theory
Stefan Schwede 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv Preface

for the composite of a transfer followed by the restriction to a closed sub-

group. We review Mackey functors for finite groups and show that after invert-

ing the group order, the category of G-Mackey functors splits as a product, in-

dexed by conjugacy classes of subgroups, of module categories over the Weyl

groups (Theorem 3.4.22). A topological consequence is that after inverting the

group order, equivariant homotopy groups and geometric fixed-point homo-

topy groups determine each other in a completely algebraic fashion, compare

Proposition 3.4.26 and Corollary 3.4.28. Section 3.5 is devoted to multiplica-

tive aspects of equivariant stable homotopy theory.

Chapter 4 sets the stage for stable global homotopy theory, based on the

notion of global equivalences for orthogonal spectra (Definition 4.1.3). We

discuss semifree orthogonal spectra and identify certain morphisms between

semifree orthogonal spectra as global equivalences (Theorem 4.1.29). In Sec-

tion 4.2 we investigate global functors, the natural algebraic structure on the

collection of equivariant homotopy groups of a global stable homotopy type.

Among other things, we explicitly calculate the algebra of natural operations

on equivariant homotopy groups (Theorem 4.2.6). In Section 4.3 we comple-

ment the global equivalences of orthogonal spectra by a stable model structure

that we call the global model structure. Its fibrant objects are the ‘global Ω-

spectra’ (Definition 4.3.8), the natural concept of a ‘global infinite loop space’

in our setting. Here we work more generally relative to a global family F and

consider the F -equivalences (i.e., equivariant stable equivalences for all com-

pact Lie groups in the family F ). We follow the familiar outline: a certain

F -level model structure is Bousfield localized to an F -global model structure

(see Theorem 4.3.17). In Section 4.4 we develop some basic theory around the

global stable homotopy category; since it comes from a stable model structure,

this category is naturally triangulated and we show that the suspension spectra

of global classifying spaces form a set of compact generators (Theorem 4.4.3).

In Section 4.5 we vary the global family: we construct and study left and right

adjoints to the forgetful functors associated with a change of global family

(Theorem 4.5.1). As an application of Morita theory for stable model cate-

gories we show that rationally the global homotopy category for finite groups

has an algebraic model, namely the derived category of rational global functors

(Theorem 4.5.29).

Chapter 5 focuses on ultra-commutative ring spectra, i.e., commutative

orthogonal ring spectra under multiplicative global equivalences. Section 5.1

introduces ‘global power functors’, the algebraic structure on the equivariant

homotopy groups of ultra-commutative ring spectra. Roughly speaking, global

power functors are global Green functors equipped with additional power op-

erations, satisfying various properties reminiscent of those of the power maps

x �→ xm in a commutative ring. The power operations give rise to norm maps
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(‘multiplicative transfers’) along finite index inclusions, and in our global con-

text, the norm maps conversely determine the power operations, compare

Remark 5.1.7. As we show in Theorem 5.1.11, the 0th equivariant homotopy

groups of an ultra-commutative ring spectrum form a global power functor.

In Section 5.2 we develop a description of the category of global power func-

tors via the comonad of ‘exponential sequences’ (Theorem 5.2.13) and dis-

cuss localization of global power functors at a multiplicative subset of the

underlying ring (Theorem 5.2.18). In Section 5.3 we give various examples

of global power functors, such as the Burnside ring global power functor, the

global functor represented by an abelian compact Lie group, free global power

functors, constant global power functors, and the complex representation ring

global functor. In Section 5.4 we establish the global model structure for ultra-

commutative ring spectra (Theorem 5.4.3) and show that every global power

functor is realized by an ultra-commutative ring spectrum (Theorem 5.4.14).

Chapter 6 is devoted to interesting examples of ultra-commutative ring spec-

tra. Section 6.1 discusses two orthogonal Thom spectra mO and MO. The

spectrum mO is globally connective and closely related to equivariant bor-

dism. The global functor π
0
(mO) admits a short and elegant algebraic presen-

tation: it is obtained from the Burnside ring global functor by imposing the

single relation tr
C2
e = 0, compare Theorem 6.1.44. The Thom spectrum MO

was first considered by tom Dieck and it represents ‘stable’ equivariant bor-

dism; it is periodic for orthogonal representations of compact Lie groups, and

admits Thom isomorphisms for equivariant vector bundles. The equivariant ho-

mology theory represented by MO can be obtained from the one represented

by mO in an algebraic fashion, by inverting the collection of ‘inverse Thom

classes’, compare Corollary 6.1.35. Section 6.2 recalls the geometrically

defined equivariant bordism theories. The Thom–Pontryagin construction maps

the unoriented G-equivariant bordism ring NG
∗ to the equivariant homotopy

ring πG
∗ (mO), and that map is an isomorphism when G is a product of a finite

group and a torus, see Theorem 6.2.33. We discuss global K-theory in Sections

6.3 and 6.4, which comes in three interesting flavors as connective global K-

theory ku, global connective K-theory kuc and periodic global K-theory KU

(and in the real versions ko, koc and KO).

We include three appendices where we collect material that is mostly well-

known, but that is either scattered through the literature or where we found

the existing expositions too sketchy. Appendix A is a self-contained review

of compactly generated spaces, our basic category to work in. Appendix B

deals with fundamental properties of equivariant spaces, including the basic

model structure in Proposition B.7. We also provide an exposition of the equiv-

ariant Γ-space machinery, culminating in a version of the Segal–Shimakawa

www.cambridge.org/9781108425810
www.cambridge.org


Cambridge University Press
978-1-108-42581-0 — Global Homotopy Theory
Stefan Schwede 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi Preface

delooping machine. In Appendix C we review the basic definitions, properties

and constructions involving categories of enriched functors.

While most of the material in the appendices is well-known, there are a

few results I could not find in the literature. These results include the fact that

compactly generated spaces are closed under geometric realization (Proposi-

tion A.35 (iii)), fixed points commute with geometric realization and latching

objects (Proposition B.1 (iv)), and compactly generated spaces are closed un-

der prolongation of Γ-spaces (Proposition B.26). Also apparently new are the

results that prolongation of G-cofibrant Γ-G-spaces to finite G-CW-complexes

is homotopically meaningful (Proposition B.48), and that prolongation of G-

cofibrant Γ-G-spaces to spheres gives rise to G-Ω-spectra (for very special

Γ-G-spaces, see Theorem B.61) and to positive G-Ω-spectra (for special Γ-G-

spaces, see Theorem B.65). Here the key ideas all go back to Segal [155] and

Shimakawa [157]; however, we formulate our results for the prolongation (i.e.,

categorical Kan extension), whereas Segal and Shimakawa work with a bar

construction (also known as a homotopy coend or homotopy Kan extension) in-

stead. We also give a partial extension of the machinery to compact Lie groups,

whereas previous papers on the subject restrict attention to finite groups. As I

explain in Remark B.66, there is no hope of obtaining a G-Ω-spectrum by eval-

uation on spheres for compact Lie groups of positive dimension. However, we

do prove in Theorem B.65 that evaluating a G-cofibrant special Γ-G-space on

spheres yields a ‘G◦-trivial positive G-Ω-spectrum’, where G◦ is the identity

component of G. Our Appendix B substantially overlaps with the paper [115]

by May, Merling and Osorno that provides comparisons of prolongation, bar

construction and the operadic approach to equivariant deloopings.

Relation to other work The idea of global equivariant homotopy theory

is not at all new and has previously been explored in different contexts. For

example, in Chapter II of [100], Lewis and May define coherent families of

equivariant spectra; these consist of collections of equivariant coordinate-free

spectra in the sense of Lewis, May and Steinberger, equipped with comparison

maps involving change of groups and change of universe functors.

The approach closest to ours is the global I∗-functors introduced by Green-

lees and May in [68, Sec. 5]. These objects are ‘global orthogonal spectra’ in

that they are indexed on pairs (G,V) consisting of a compact Lie group and a

G-representation V . The corresponding objects with commutative multiplica-

tion are called global I∗-functors with smash products in [68, Sec. 5] and it is

for these that Greenlees and May define and study multiplicative norm maps.

Clearly, an orthogonal spectrum gives rise to global I∗-functors in the sense of

Greenlees and May. In the second chapter of her thesis [18], Bohmann com-
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pares the approaches of Lewis–May and Greenlees–May; in the paper [19] she

also relates these to orthogonal spectra.

Symmetric spectra in the sense of Hovey, Shipley and Smith [81] is another

prominent model for the (non-equivariant) stable homotopy category. Much

of what we do here with orthogonal spectra can also be done with symmetric

spectra, if one is willing to restrict to finite groups (as opposed to general com-

pact Lie groups). This restriction arises because only finite groups embed into

symmetric groups, while every compact Lie group embeds into an orthogonal

group. Hausmann [72, 73] has established a global model structure on the cat-

egory of symmetric spectra, and he showed that the forgetful functor is a right

Quillen equivalence from the category of orthogonal spectra with the F in-

global model structure to the category of symmetric spectra with the global

model structure. While some parts of the symmetric and orthogonal theories

are similar, there are serious technical complications arising from the fact that

for symmetric spectra the naively defined equivariant homotopy groups are not

‘correct’, a phenomenon that is already present non-equivariantly.

Prerequisites This book assumes a solid background in algebraic topology

and (non-equivariant) homotopy theory, including topics such as singular

homology and cohomology, CW-complexes, homotopy groups, mapping

spaces, loop spaces, fibrations and fiber bundles, Eilenberg–MacLane spaces,

smooth manifolds, Grassmannian and Stiefel manifolds. Two modern refer-

ences that contain all we need (and much more) are the textbooks by Hatcher

[71] and tom Dieck [180]. Some knowledge of non-equivariant stable homo-

topy theory is helpful to appreciate the equivariant and global features of the

structures and examples we discuss; from a strictly logical perspective, how-

ever, the non-equivariant theory is a degenerate special case of the global the-

ory for the global family of trivial Lie groups. In particular, by simply ignoring

all group actions, the examples presented in this book give models for many

interesting and prominent non-equivariant stable homotopy types.

Since actions of compact Lie groups are central to this book, some familiar-

ity with the structure and representation theory of compact Lie groups is ob-

viously helpful, but we give references to the literature whenever we need any

non-trivial facts. Many of our objects of study organize themselves into model

categories in the sense of Quillen [134], so some background on model cate-

gories is necessary to understand the respective sections. The article [48] by

Dwyer and Spalinski is a good introduction, and Hovey’s book [80] is still the

definitive reference. Some acquaintance with unstable equivariant homotopy

theory is useful (but not logically necessary). By contrast, we do not assume

any prior knowledge of equivariant stable homotopy theory, and Chapter 3

is a self-contained introduction based on equivariant orthogonal spectra. The
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last two sections of Chapter 4 study the global stable homotopy category, and

here we freely use the language of triangulated categories. The first chapter of

Neeman’s book [128] is a possible reference for the necessary background.

Throughout the book we work in the category of compactly generated spaces

in the sense of McCord [118], i.e., k-spaces (also called Kelley spaces) that sat-

isfy the weak Hausdorff condition, see Definition A.1. Since the various useful

properties of compactly generated spaces are scattered through the literature,

we include a detailed discussion in Appendix A.
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