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Unstable global homotopy theory

In this chapter we develop a framework for unstable global homotopy the-

ory via orthogonal spaces, i.e., continuous functors from the category of linear

isometries L to spaces. In Section 1.1 we define global equivalences of orthog-

onal spaces and establish many basic properties of this class of morphisms.

We also introduce global classifying spaces of compact Lie groups, the basic

building blocks of global homotopy types. In Section 1.2 we complement the

global equivalences by a global model structure on the category of orthogonal

spaces. The construction follows a familiar pattern, by Bousfield localization

of an auxiliary ‘strong level model structure’. Section 1.2 also contains a dis-

cussion of cofree orthogonal spaces, i.e., global homotopy types that are ‘right

induced’ from non-equivariant homotopy types. In Section 1.3 we recall the

box product of orthogonal spaces, a Day convolution product based on the

orthogonal direct sum of inner product spaces. The box product is a symmetric

monoidal product, fully homotopical under global equivalences and globally

equivalent to the cartesian product. Section 1.4 introduces an important vari-

ation of our theme, where we discuss unstable global homotopy theory for a

‘global family’, i.e., a class of compact Lie groups with certain closure prop-

erties. In Section 1.5 we introduce the G-equivariant homotopy set πG
0

(Y) of

an orthogonal space and identify the natural structure on these sets (restriction

maps along continuous group homomorphisms). The study of natural opera-

tions on the sets πG
0

(Y) is a recurring theme throughout this book, and we will

revisit and extend the results on these operations in the later chapters for ultra-

commutative monoids, orthogonal spectra and ultra-commutative ring spectra.

Our main reason for working with orthogonal spaces is that they are the

direct unstable analog of orthogonal spectra, and in this unstable model for

global homotopy theory the passage to the stable theory in Chapter 4 is espe-

cially simple. However, there are other models for unstable global homotopy

theory, most notably topological stacks and orbispaces as developed by Gep-

ner and Henriques in their paper [61]. For a comparison of these two models
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2 Unstable global homotopy theory

to our orthogonal space model we refer to the author’s paper [145]. The com-

parison proceeds through yet another model, the global homotopy theory of

‘spaces with an action of the universal compact Lie group’. Here the universal

compact Lie group (which is neither compact nor a Lie group) is the topo-

logical monoid L of linear isometric self-embeddings of R∞, and in [145] we

establish a global model structure on the category of L-spaces.

1.1 Orthogonal spaces and global equivalences

In this section we introduce orthogonal spaces along with the notion of global

equivalences, our setup to rigorously formulate the idea of ‘compatible equiv-

ariant homotopy types for all compact Lie groups’. We introduce various basic

techniques to manipulate global equivalences of orthogonal spaces, such as

recognition criteria by homotopy or strict colimits over representations (Propo-

sitions 1.1.7 and 1.1.17), and a list of standard constructions that preserve

global equivalences (Proposition 1.1.9). Theorem 1.1.10 is a cofinality result

for orthogonal spaces showing that fairly general changes in the indexing

category of linear isometries do not affect the global homotopy type. Defi-

nition 1.1.27 introduces global classifying spaces of compact Lie groups, the

basic building blocks of global homotopy theory. Proposition 1.1.30 justifies

the name by explaining the sense in which the global classifying space BglG

‘globally classifies’ principal G-bundles.

Before we start let us fix some notation and conventions. By a ‘space’ we

mean a compactly generated space in the sense of [118], i.e., a k-space (also

called Kelley space) that satisfies the weak Hausdorff condition, see Definition

A.1. We denote the category of compactly generated spaces by T and review

its basic properties in Appendix A.

An inner product space is a finite-dimensional real vector space equipped

with a scalar product, i.e., a positive-definite symmetric bilinear form. We

denote by L the category with objects the inner product spaces and morphisms

the linear isometric embeddings. The category L is a topological category

in the sense that the morphism spaces come with a preferred topology: if

ϕ : V −→ W is a linear isometric embedding, then the action of the orthog-

onal group O(W), by post-composition, induces a bijection

O(W)/O(ϕ⊥) � L(V,W) , A · O(ϕ⊥) �−→ A ◦ ϕ ,

where ϕ⊥ = W − ϕ(V) is the orthogonal complement of the image of ϕ. We

topologize L(V,W) so that this bijection is a homeomorphism, and this topol-

ogy is independent of ϕ. If (v1, . . . , vk) is an orthonormal basis of V , then for
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1.1 Orthogonal spaces and global equivalences 3

every linear isometric embedding ϕ : V −→ W the tuple (ϕ(v1), . . . , ϕ(vk)) is

an orthonormal k-frame of W. This assignment is a homeomorphism from

L(V,W) to the Stiefel manifold of k-frames in W.

An example of an inner product space is the vector space Rn with the stan-

dard scalar product

〈x, y〉 = x1y1 + · · · + xnyn .

In fact, every inner product space V is isometrically isomorphic to the inner

product space Rn, for n the dimension of V . So the full topological subcategory

with the object Rn is a small skeleton of L.

Definition 1.1.1 An orthogonal space is a continuous functor Y : L −→ T to

the category of spaces. A morphism of orthogonal spaces is a natural transfor-

mation. We denote the category of orthogonal spaces by spc.

The use of continuous functors from the category L to spaces has a long

history in homotopy theory. The systematic use of inner product spaces (as op-

posed to numbers) to index objects in stable homotopy theory seems to go back

to Boardman’s thesis [15]. The category L (or its extension that also contains

countably infinite-dimensional inner product spaces) is denoted I by Board-

man and Vogt [16], and this notation is also used in [112]; other sources [102]

use the symbol I. Accordingly, orthogonal spaces are sometimes referred to

as I -functors, I -spaces or I-spaces. Our justification for using yet another

name is twofold: first, our use of orthogonal spaces comes with a shift in em-

phasis, away from a focus on non-equivariant homotopy types and towards

viewing an orthogonal space as representing compatible equivariant homotopy

types for all compact Lie groups. Second, we want to stress the analogy be-

tween orthogonal spaces and orthogonal spectra, the former being an unstable

global world with the latter the corresponding stable global world.

Now we define our main new concept, the notion of ‘global equivalence’

between orthogonal spaces. We let G be a compact Lie group. By a G-represen-

tation we mean a finite-dimensional orthogonal representation, i.e., a real in-

ner product space equipped with a continuous G-action by linear isometries.

In other words, a G-representation consists of an inner product space V and

a continuous homomorphism ρ : G −→ O(V). In this context, and throughout

the book, we will often use without explicit mention that continuous homo-

morphisms between Lie groups are automatically smooth, see for example [28,

Prop. I.3.12]. For every orthogonal space Y and every G-representation V , the

value Y(V) inherits a G-action from the G-action on V and the functoriality of

Y . For a G-equivariant linear isometric embedding ϕ : V −→ W, the induced

map Y(ϕ) : Y(V) −→ Y(W) is G-equivariant.
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4 Unstable global homotopy theory

We denote by

Dk
= {x ∈ Rk : 〈x, x〉 ≤ 1} and ∂Dk

= {x ∈ Rk : 〈x, x〉 = 1}

the unit disc in Rk and its boundary, a sphere of dimension k − 1, respectively.

In particular, D0
= {0} is a one-point space and ∂D0

= ∅ is empty.

Definition 1.1.2 A morphism f : X −→ Y of orthogonal spaces is a global

equivalence if the following condition holds: for every compact Lie group G,

every G-representation V , every k ≥ 0 and all continuous maps α : ∂Dk −→

X(V)G and β : Dk −→ Y(V)G such that β|∂Dk = f (V)G ◦ α, there is a G-

representation W, a G-equivariant linear isometric embedding ϕ : V −→ W

and a continuous map λ : Dk −→ X(W)G such that λ|∂Dk = X(ϕ)G ◦ α and such

that f (W)G ◦ λ is homotopic, relative to ∂Dk, to Y(ϕ)G ◦ β.

In other words, for every commutative square on the left

∂Dk α ��

incl

��

X(V)G

f (V)G

��

∂Dk α ��

incl

��

X(V)G
X(ϕ)G

�� X(W)G

f (W)G

��
Dk

β
�� Y(V)G Dk

β
��

λ

��❥
❥

❥
❥

❥
❥

❥
❥

❥
❥

Y(V)G

Y(ϕ)G

�� Y(W)G,

there exists the lift λ on the right-hand side that makes the upper left triangle

commute on the nose, and the lower right triangle commute up to homotopy

relative to ∂Dk. In such a situation we will often refer to the pair (α, β) as a

‘lifting problem’ and we will say that the pair (ϕ, λ) solves the lifting problem.

Example 1.1.3 If X = A and Y = B are the constant orthogonal spaces

with values A and B, and f = g is the constant morphism associated with a

continuous map g : A −→ B, then g is a global equivalence if and only if for

every commutative square

∂Dk ��

incl

��

A

g

��
Dk ��

λ

��
③

③

③

③

③

B,

there exists a lift λ that makes the upper left triangle commute, and the lower

right triangle commute up to homotopy relative to ∂Dk. But this is one of

the equivalent ways of characterizing weak equivalences of spaces, compare

[114, Sec. 9.6, Lemma]. So g is a global equivalence if and only if g is a weak

equivalence.

Remark 1.1.4 The notion of global equivalence is meant to capture the idea

that for every compact Lie group G, some induced morphism

hocolimV f (V) : hocolimV X(V) −→ hocolimV Y(V)
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1.1 Orthogonal spaces and global equivalences 5

is a G-weak equivalence, where ‘hocolimV ’ is a suitable homotopy colimit over

all G-representations V along all equivariant linear isometric embeddings. This

is a useful way to think about global equivalences and it could be made pre-

cise by letting V run over the poset of finite-dimensional subrepresentations of

a complete G-universe and using the Bousfield–Kan construction of a homo-

topy colimit over this poset. Since the ‘poset of all G-representations’ has a

cofinal subsequence, called an exhaustive sequence in Definition 1.1.6, we can

also model the ‘homotopy colimit over all G-representations’ as the mapping

telescope over an exhaustive sequence. However, the actual definition we work

with has the advantage that it does not refer to universes and we do not have to

define or manipulate homotopy colimits.

In many examples of interest all the structure maps of an orthogonal space

Y are closed embeddings. When this is the case, the actual colimit (over the

subrepresentations of a complete universe) of the G-spaces Y(V) serves the

purpose of a ‘homotopy colimit over all representations’ and it can be used to

detect global equivalences, compare Proposition 1.1.17 below.

We will now establish some useful criteria for detecting global equivalences.

We call a continuous map f : A −→ B an h-cofibration if it has the homotopy

extension property, i.e., given a continuous map ϕ : B −→ X and a homotopy

H : A × [0, 1] −→ X starting with ϕ f , there is a homotopy H̄ : B× [0, 1] −→ X

starting with ϕ such that H̄◦( f×[0, 1]) = H. Below we will write Ht = H(−, t) :

A −→ X. All h-cofibrations in the category of compactly generated spaces are

closed embeddings, compare Proposition A.31. The following somewhat tech-

nical lemma should be well known, but I was unable to find a reference.

Lemma 1.1.5 Let A be a subspace of a space B such that the inclusion A −→

B is an h-cofibration. Let f : X −→ Y be a continuous map and

H : A × [0, 1] −→ X and K : B × [0, 1] −→ Y

homotopies such that K|A×[0,1] = f H. Then the lifting problem (H0,K0) has a

solution if and only if the lifting problem (H1,K1) has a solution.

Proof The problem is symmetric, so we only show one direction. We suppose

that the lifting problem (H0,K0) has a solution consisting of a continuous map

λ : B −→ X such that λ|A = H0 and a homotopy G : B × [0, 1] −→ Y such that

G0 = f ◦ λ , G1 = K0 and (Gt)|A = f ◦ H0

for all t ∈ [0, 1]. The homotopy extension property provides a homotopy

H′ : B × [0, 1] −→ X such that

H′0 = λ and H′|A×[0,1] = H .
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6 Unstable global homotopy theory

Then the map λ′ = H′
1

: B −→ X satisfies

λ′|A = (H′1)|A = H1 .

We define a continuous map J : B × [0, 3] −→ Y by

Jt =



























f ◦ H′
1−t

for 0 ≤ t ≤ 1,

Gt−1 for 1 ≤ t ≤ 2, and

Kt−2 for 2 ≤ t ≤ 3.

In particular,

J0 = f ◦ λ′ and J3 = K1;

so J almost witnesses the fact that λ′ solves the lifting problem (H1,K1), except

that J is not a relative homotopy.

We improve J to a relative homotopy from f ◦ λ′ to K1. We define a contin-

uous map L : A × [0, 3] × [0, 1] −→ Y by

L(−, t, s) =



























f ◦ H1−t for 0 ≤ t ≤ s,

f ◦ H1−s for s ≤ t ≤ 3 − s, and

f ◦ Ht−2 for 3 − s ≤ t ≤ 3.

Then L(−,−, 0) is the constant homotopy at the map f ◦ H1, and

L(−,−, 1) = J|A×[0,3] : A × [0, 3] −→ Y .

Since the inclusion of A into B is an h-cofibration, the inclusion of B×{0}∪A×{0}

A × [0, 1] into B × [0, 1] has a continuous retraction; hence the inclusion

B × {0} × [0, 1] ∪A×{0}×[0,1] A × [0, 1] × [0, 1] −→ B × [0, 1] × [0, 1]

also has a continuous retraction. We abbreviate D = [0, 3]×{1}∪{0, 3}× [0, 1];

the pair of spaces ([0, 3]×[0, 1], D) is pair-homeomorphic to ([0, 1]×[0, 1], {0}×

[0, 1]). So the inclusion

B × D ∪A×D A × [0, 3] × [0, 1] −→ B × [0, 3] × [0, 1]

has a continuous retraction. The map L and the map

J ∪ const fλ ∪ constK1
: B × D = B × ([0, 3] × {1} ∪ {0, 3} × [0, 1]) −→ Y

agree on A × D, so there is a continuous map L̄ : B × [0, 3] × [0, 1] −→ Y

such that

L̄(−,−, 1) = J , L̄|A×[0,3]×[0,1] = L ,

and

L̄(−, 0, s) = f ◦ λ and L̄(−, 1, s) = K1
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1.1 Orthogonal spaces and global equivalences 7

for all s ∈ [0, 1]. The map J̄ = L̄(−,−, 0) : B × [0, 3] −→ Y then satisfies

J̄|A×[0,3] = L̄(−,−, 0)|A×[0,3] = L(−,−, 0) ,

which is the constant homotopy at the map f ◦H1; so J̄ is a homotopy

(parametrized by [0, 3] instead of [0, 1]) relative to A. Because

J̄0 = L̄(−, 0, 0) = f ◦ λ and J̄3 = L̄(−, 3, 0) = K1 ,

the homotopy J̄ witnesses that λ′ solves the lifting problem (H1,K1). �

Definition 1.1.6 Let G be a compact Lie group. An exhaustive sequence is a

nested sequence

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · ·

of finite-dimensional G-representations such that every finite-dimensional G-

representation admits a linear isometric G-embedding into some Vn.

Given an exhaustive sequence {Vi}i≥1 of G-representations and an orthogonal

space Y , the values at the representations and their inclusions form a sequence

of G-spaces and G-equivariant continuous maps

Y(V1) −→ Y(V2) −→ · · · −→ Y(Vi) −→ · · · .

We denote by

teli Y(Vi)

the mapping telescope of this sequence of G-spaces; this telescope inherits a

natural G-action.

We recall that a G-equivariant continuous map f : A −→ B between G-

spaces is a G-weak equivalence if for every closed subgroup H of G, the map

f H : AH −→ BH of H-fixed points is a weak homotopy equivalence (in the

non-equivariant sense).

Proposition 1.1.7 The following three conditions are equivalent for every

morphism of orthogonal spaces f : X −→ Y.

(i) The morphism f is a global equivalence.

(ii) For every compact Lie group G, every G-representation V, every finite

G-CW-pair (B, A) and all continuous G-maps α : A −→ X(V) and

β : B −→ Y(V) such that β|A = f (V) ◦ α, there is a G-representation

W, a G-equivariant linear isometric embedding ϕ : V −→ W and a con-

tinuous G-map λ : B −→ X(W) such that λ|A = X(ϕ) ◦ α and such that

f (W) ◦ λ is G-homotopic, relative to A, to Y(ϕ) ◦ β.

www.cambridge.org/9781108425810
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8 Unstable global homotopy theory

(iii) For every compact Lie group G and every exhaustive sequence {Vi}i≥1 of

G-representations, the induced map

teli f (Vi) : teli X(Vi) −→ teli Y(Vi)

is a G-weak equivalence.

Proof At various places in the proof we use without explicitly mentioning

it that taking G-fixed points commutes with formation of the mapping tele-

scopes; this follows from the fact that taking G-fixed points commutes with

pushouts along closed embeddings and with sequential colimits along closed

embeddings, compare Proposition B.1.

(i)=⇒(ii) We argue by induction over the number of relative G-cells in

(B, A). If B = A, then λ = α solves the lifting problem and there is nothing

to show. Now we suppose that A is a proper subcomplex of B. We choose a

G-CW-subcomplex B′ that contains A and such that (B, B′) has exactly one

equivariant cell. Then (B′, A) has strictly fewer cells, and the restricted equiv-

ariant lifting problem (α : A −→ X(V), β′ = β|B′ : B′ −→ Y(V)) has a solution

(ϕ : V −→ U, λ′ : B′ −→ X(U)) by the inductive hypothesis.

We choose a characteristic map for the last cell, i.e., a pushout square of

G-spaces

G/H × ∂Dk
χ

��

incl

��

B′

incl

��
G/H × Dk

χ
�� B

in which H is a closed subgroup of G. We arrive at the non-equivariant lifting

problem on the left:

∂Dk
(λ′)H◦χ̄

��

incl

��

X(U)H

f (U)H

��

∂Dk
(λ′)H◦χ̄

��

incl

��

X(U)H
X(ψ)H

�� X(W)H

f (W)H

��
Dk

Y(ϕ)H◦βH◦χ̄

�� Y(U)H Dk

Y(ϕ)H◦βH◦χ̄

��

λ

��❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

Y(U)H

Y(ψ)H

�� Y(W)H .

Here χ̄ = χ(eH,−) : Dk −→ BH . Since f is a global equivalence, there is

an H-equivariant linear isometric embedding ψ : U −→ W and a continuous

map λ : Dk −→ X(W)H such that λ|∂Dk = X(ψ)H ◦ (λ′)H ◦ χ̄ and f (W)H ◦ λ

is homotopic, relative to ∂Dk, to Y(ψ)H ◦ Y(ϕ)H ◦ βH ◦ χ̄, as illustrated by

the diagram on the right above. By enlarging W if necessary we can assume

without loss of generality that W is underlying a G-representation and even

that ψ is G-equivariant.

The G-equivariant extension of λ

G/H × Dk −→ X(W) , (gH, x) �−→ g · λ(x)
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1.1 Orthogonal spaces and global equivalences 9

and the map X(ψ) ◦λ′ : B′ −→ X(W) then agree on G/H ×∂Dk, so they glue to

a G-map λ̃ : B −→ X(W). The pair (ψϕ : V −→ W, λ̃ : B −→ X(W)) then solves

the original lifting problem (α, β).

(ii)=⇒(iii) We suppose that f satisfies (ii) and we let G be any compact Lie

group and {Vi}i≥1 an exhaustive sequence of G-representations. We consider an

equivariant lifting problem, i.e., a finite G-CW-pair (B, A) and a commutative

square:

A
α ��

incl

��

teli X(Vi)

teli f (Vi)

��
B

β
�� teli Y(Vi) .

We show that every such lifting problem has an equivariant solution. Since B

and A are compact, there is an n ≥ 0 such that α has image in the truncated

telescope tel[0,n] X(Vi) and β has image in the truncated telescope tel[0,n] Y(Vi)

(see Proposition A.15 (i)). There is a natural equivariant homotopy from the

identity of the truncated telescope tel[0,n] X(Vi) to the composite

tel[0,n] X(Vi)
proj
−−−→ X(Vn)

incl
−−→ tel[0,n] X(Vi) .

Naturality means that this homotopy is compatible with the same homotopy for

the telescope of the G-spaces Y(Vi). Lemma 1.1.5 (or rather its G-equivariant

generalization) applies to these homotopies, so instead of the original lifting

problem we may solve the homotopic lifting problem

A
α′ ��

incl

��

X(Vn)
in ��

f (Vn)

��

teli X(Vi)

teli f (Vi)

��
B

β′
�� Y(Vn)

in

�� teli Y(Vi),

where α′ is the composite of the projection tel[0,n] X(Vi) −→ X(Vn) with α,

viewed as a map into the truncated telescope, and similarly for β′.

Since f satisfies (ii), the lifting problem (α′ : A −→ X(Vn), β′ : B −→

Y(Vn)) has a solution after enlarging Vn along some linear isometric G-

embedding. Since the sequence {Vi}i≥1 is exhaustive, we can take this embed-

ding as the inclusion i : Vn −→ Vm for some m ≥ n, i.e., there is a continuous

G-map λ : B −→ X(Vm) such that λ|A = X(i)G ◦ α′ and such that f (Vm)G ◦ λ is
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10 Unstable global homotopy theory

G-homotopic, relative to A, to Y(i)G ◦ β′, compare the diagram:

A
α′ ��

incl

��

X(Vn)
X(i)

�� X(Vm)

f (Vm)

��
B

β′
��

λ

��❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤ Y(Vn)
Y(i)

�� Y(Vm).

The composite

X(Vn)
X(i)

�� X(Vm)
im �� teli X(Vi)

does not agree with in : X(Vn) −→ teli X(Vi), so the composite in ◦ λ : B −→

teli X(Vi) does not quite solve the (modified) lifting problem (in◦α
′, in◦β

′). But

there is a G-equivariant homotopy H : X(Vn) × [0, 1] −→ teli X(Vi) between

im ◦ X(i) and in and a similar homotopy K : Y(Vn) × [0, 1] −→ teli Y(Vi) for Y

instead of X. These homotopies satisfy

K ◦ ( f (Vn) × [0, 1]) = (teli f (Vi)) ◦ H ,

so Lemma 1.1.5 implies that the modified lifting problem, and hence the orig-

inal lifting problem, has an equivariant solution.

(iii)=⇒(i) We let G be a compact Lie group, V a G-representation, k ≥ 0

and (α : ∂Dk −→ X(V)G, β : Dk −→ Y(V)G) a lifting problem, i.e., such that

β|∂Dk = f (V)G◦α. We choose an exhaustive sequence {Vi} of G-representations;

then we can embed V into some Vn by a linear isometric G-map and thereby

assume without loss of generality that V = Vn.

We let in : X(Vn) −→ teli X(Vi) and in : Y(Vn) −→ teli Y(Vi) be the canonical

maps. Since teli f (Vi) : teli X(Vi) −→ teli Y(Vi) is a G-weak equivalence, there

is a continuous map λ : Dk −→ (teli X(Vi))
G such that λ|∂Dk = iGn ◦ α and

(teli f (Vi))
G ◦ λ is homotopic, relative to ∂Dk, to iGn ◦ β. Since fixed points

commute with mapping telescopes, and since Dk is compact, there is an m ≥ n

such that λ and the relative homotopy that witnesses the relation (teli f (Vi))
G ◦

λ ≃ iGn ◦ β both have image in tel[0,m] X(Vi)
G, the truncated telescope of the

G-fixed points. The following diagram commutes

X(Vn)G
can

��

f (Vn)G

��

X(incl)G

		
tel[0,n] X(Vi)

G

incl
��

tel f (Vi)
G

��

tel[0,m] X(Vi)
G

proj
��

tel f (Vi)
G

��

X(Vm)G

f (Vm)G

��
Y(Vn)G can ��

Y(incl)G



tel[0,n] Y(Vi)
G incl �� tel[0,m] Y(Vi)

G
proj

�� Y(Vm)G,

where the right horizontal maps are the projections of the truncated telescope to
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