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1 Introduction

The earth is round. This may at one point have been hard to believe, but we have

grown accustomed to it even though our everyday experience is that the earth is

(fairly) flat. Still, the most effective way to illustrate it is by means of maps: a

globe (Figure 1.1) is a very neat device, but its global(!) character makes it less

than practical if you want to represent fine details.

This phenomenon is quite common: locally you can represent things by means

of “charts”, but the global character can’t be represented by a single chart. You

need an entire atlas, and you need to know how the charts are to be assembled, or,

even better, the charts overlap so that we know how they all fit together. The mathe-

matical framework for working with such situations is manifold theory. Before we

start off with the details, let us take an informal look at some examples illustrating

the basic structure.

1.1 A Robot’s Arm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To illustrate a few points which will be important later on, we discuss a concrete

situation in some detail. The features that appear are special cases of general phe-

nomena, and the example should provide the reader with some déjà vu experiences

later on, when things are somewhat more obscure.

Figure 1.1. A globe. Photo by DeAgostini/Getty Images.

www.cambridge.org/9781108425797
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-42579-7 — A Short Course in Differential Topology
Bjørn Ian Dundas
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction

y

z

x

Figure 1.2.

A

A

B B

Figure 1.3.

Consider a robot’s arm. For simplicity, assume that it moves in the plane, and

has three joints, with a telescopic middle arm (see Figure 1.2).

Call the vector defining the inner arm x , that for the second arm y and that for

the third arm z. Assume |x | = |z| = 1 and |y| ∈ [1, 5]. Then the robot can reach

anywhere inside a circle of radius 7. But most of these positions can be reached in

several different ways.

In order to control the robot optimally, we need to understand the various

configurations, and how they relate to each other.

As an example, place the robot at the origin and consider all the possible posi-

tions of the arm that reach the point P = (3, 0) ∈ R
2, i.e., look at the set T of all

triples (x, y, z) ∈ R
2 × R

2 × R
2 such that

x + y + z = (3, 0), |x | = |z| = 1, |y| ∈ [1, 5].

We see that, under the restriction |x | = |z| = 1, x and z can be chosen arbitrarily,

and determine y uniquely. So T is “the same as” the set

{(x, z) ∈ R
2 × R

2 | |x | = |z| = 1}.

Seemingly, our space T of configurations resides in four-dimensional space

R
2 × R

2 ∼= R
4, but that is an illusion – the space is two-dimensional and

turns out to be a familiar shape. We can parametrize x and z by angles if we

remember to identify the angles 0 and 2π . So T is what you get if you con-

sider the square [0, 2π] × [0, 2π] and identify the edges as in Figure 1.3. See
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Figure 1.4.
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Figure 1.5.

www.it.brighton.ac.uk/staff/jt40/MapleAnimations/Torus.html

for a nice animation of how the plane model gets glued.

In other words, the set T of all positions such that the robot reaches P = (3, 0)

may be identified with the torus in Figure 1.4. This is also true topologically in the

sense that “close configurations” of the robot’s arm correspond to points close to

each other on the torus.

1.1.1 Question

What would the space S of positions look like if the telescope got stuck at |y| = 2?

Partial answer to the question: since y = (3, 0) − x − z we could try to get an

idea of what points of T satisfy |y| = 2 by means of inspection of the graph of |y|.

Figure 1.5 is an illustration showing |y| as a function of T given as a graph over

[0, 2π] × [0, 2π], and also the plane |y| = 2.

The desired set S should then be the intersection shown in Figure 1.6. It looks

a bit weird before we remember that the edges of [0, 2π] × [0, 2π ] should be

identified. On the torus it looks perfectly fine; and we can see this if we change our

perspective a bit. In order to view T we chose [0, 2π ]×[0, 2π] with identifications

along the boundary. We could just as well have chosen [−π, π ] × [−π, π ], and

then the picture would have looked like Figure 1.7. It does not touch the boundary,
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Figure 1.7.

so we do not need to worry about the identifications. As a matter of fact, S is

homeomorphic to the circle (homeomorphic means that there is a bijection between

S and the circle, and both the function from the circle to S and its inverse are

continuous. See Definition A.2.8).

1.1.2 Dependence on the Telescope’s Length

Even more is true: we notice that S looks like a smooth and nice curve. This will

not happen for all values of |y|. The exceptions are |y| = 1, |y| = 3 and |y| = 5.

The values 1 and 5 correspond to one-point solutions. When |y| = 3 we get a

picture like Figure 1.8 (the solution really ought to touch the boundary).

We will learn to distinguish between such circumstances. They are qualitatively

different in many aspects, one of which becomes apparent if we view the exam-

ple shown in Figure 1.9 with |y| = 3 with one of the angles varying in [0, 2π]

while the other varies in [−π, π ]. With this “cross” there is no way our solution

space is homeomorphic to the circle. You can give an interpretation of the picture
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above: the straight line is the movement you get if you let x = z (like two wheels of

equal radius connected by a coupling rod y on an old-fashioned train), whereas the

curved line corresponds to x and z rotating in opposite directions (very unhealthy

for wheels on a train).

Actually, this cross comes from a “saddle point” in the graph of |y| as a function

of T : it is a “critical” value at which all sorts of bad things can happen.

1.1.3 Moral

The configuration space T is smooth and nice, and we get different views on it

by changing our “coordinates”. By considering a function on T (in our case the

length of y) and restricting to the subset of T corresponding to a given value of

our function, we get qualitatively different situations according to what values we

are looking at. However, away from the “critical values” we get smooth and nice

subspaces, see in particular Theorem 4.4.3.
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6 Introduction

1.2 The Configuration Space of Two Electrons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consider the situation where two electrons with the same spin are lonesome in

space. To simplify matters, place the origin at the center of mass. The Pauli exclu-

sion principle dictates that the two electrons cannot be at the same place, so the

electrons are somewhere outside the origin diametrically opposite of each other

(assume they are point particles). However, you can’t distinguish the two electrons,

so the only thing you can tell is what line they are on, and how far they are from

the origin (you can’t give a vector v saying that this points at a chosen electron: −v

is just as good).

Disregarding the information telling you how far the electrons are from each

other (which anyhow is just a matter of scale), we get that the space of possible

positions may be identified with the space of all lines through the origin in R
3.

This space is called the (real) projective plane RP2. A line intersects the unit sphere

S2 = {p ∈ R
3 | |p| = 1} in exactly two (antipodal) points, and so we get that RP2

can be viewed as the sphere S2
but with p ∈ S2 identified with −p. A point in RP2

represented by p ∈ S2 (and −p) is written [p].

The projective plane is obviously a “manifold” (i.e., can be described by means

of charts), since a neighborhood around [p] can be identified with a neighbor-

hood around p ∈ S2 – as long as they are small enough to fit on one hemisphere.

However, I cannot draw a picture of it in R
3 without cheating.

On the other hand, there is a rather concrete representation of this space: it is

what you get if you take a Möbius band (Figure 1.10) and a disk (Figure 1.11),

and glue them together along their boundary (both the Möbius band and the disk

have boundaries a copy of the circle). You are asked to perform this identification

in Exercise 1.5.3.

1.2.1 Moral

The moral in this subsection is this: configuration spaces are oftentimes manifolds

that do not in any natural way live in Euclidean space. From a technical point of

view they often are what can be called quotient spaces (although this example was

a rather innocent one in this respect).

Figure 1.10. A Möbius band: note that its boundary is a circle.
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Figure 1.11. A disk: note that its boundary is a circle.

1.3 State Spaces and Fiber Bundles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following example illustrates a phenomenon often encountered in physics, and

a tool of vital importance for many applications. It is also an illustration of a key

result which we will work our way towards: Ehresmann’s fibration theorem, 8.5.10

(named after Charles Ehresmann, 1905–1979)1.

It is slightly more involved than the previous example, since it points forward

to many concepts and results we will discuss more deeply later, so if you find the

going a bit rough, I advise you not to worry too much about the details right now,

but come back to them when you are ready.

1.3.1 Qbits

In quantum computing one often talks about qbits. As opposed to an ordinary bit,

which takes either the value 0 or the value 1 (representing “false” and “true” respec-

tively), a qbit, or quantum bit, is represented by a complex linear combination

(“superposition” in the physics parlance) of two states. The two possible states of

a bit are then often called |0� and |1�, and so a qbit is represented by the “pure

qbit state” α|0� + β|1�, where α and β are complex numbers and |α|2 + |β|2 = 1

(since the total probability is 1, the numbers |α|2 and |β|2 are interpreted as the

probabilities that a measurement of the qbit will yield |0� and |1� respectively).

Note that the set of pairs (α, β) ∈ C
2 satisfying |α|2 + |β|2 = 1 is just another

description of the sphere S3 ⊆ R
4 = C

2. In other words, a pure qbit state is a point

(α, β) on the sphere S3.

However, for various reasons phase changes are not important. A phase change

is the result of multiplying (α, β) ∈ S3 by a unit-length complex number. That is,

if z = eiθ ∈ S1 ⊆ C, the pure qbit state (zα, zβ) is a phase shift of (α, β), and

these should be identified. The state space is what you get when you identify each

pure qbit state with the other pure qbit states you get by a phase change.

So, what is the relation between the space S3 of pure qbit states and the state

space? It turns out that the state space may be identified with the two-dimensional

sphere S2 (Figure 1.12), and the projection down to state space η : S3 → S2 may

then be given by

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 https://en.wikipedia.org/wiki/Charles_Ehresmann
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8 Introduction

Figure 1.12. The state space S2.

Piece of qbit space

State space

U

U × S
1

Figure 1.13. The pure qbit states represented in a small open neighborhood U in state space form

a cylinder U × S
1 (dimension reduced by one in the picture).

η(α, β) = (|α|2 − |β|2, 2αβ̄) ∈ S2 ⊆ R
3 = R × C.

Note that η(α, β) = η(zα, zβ) if z ∈ S1, and so η does indeed send all the phase

shifts of a given pure qbit to the same point in state space, and conversely, any two

pure qbits in preimage of a given point in state space are phase shifts of each other.

Given a point in state space p ∈ S2, the space of pure qbit states representing p

can be identified with S1 ⊆ C: choose a pure qbit state (α, β) representing p, and

note that any other pure qbit state representing p is of the form (zα, zβ) for some

unique z ∈ S1.

So, can a pure qbit be given uniquely by its associated point in the state space

and some point on the circle, i.e., is the space of pure qbit states really S2 × S1

(and not S3 as I previously claimed)? Without more work, it is not at all clear how

these copies of S1 lying over each point in S2 are to be glued together: how does

this “circle’s worth” of pure qbit states change when we vary the position in state

space slightly?

The answer comes through Ehresmann’s fibration theorem, 8.5.10. It turns out

that η : S3 → S2 is a locally trivial fibration, which means that, in a small neigh-

borhood U around any given point in state space, the space of pure qbit states

does look like U × S1. See Figure 1.13. On the other hand, the global structure

is different. In fact, η : S3 → S2 is an important mathematical object for many

reasons, and is known as the Hopf fibration.
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1.4 Further Examples 9

The input to Ehresmann’s theorem comes in two types. First we have some point

set information, which in our case is handled by the fact that S3 is “compact” A.7.1.

Secondly, there is a condition which sees only the linear approximations, and which

in our case boils down to the fact that any “infinitesimal” movement on S2 is the

shadow of an “infinitesimal” movement in S3. This is a question which – given the

right language – is settled through a quick and concrete calculation of differentials.

We’ll be more precise about this later (this is Exercise 8.5.16).

1.3.2 Moral

The idea is the important thing: if you want to understand some complicated model

through some simplification, it is often so that the complicated model locally (in

the simple model) can be built out of the simple model through multiplying with

some fixed space.

How these local pictures are glued together to give the global picture is another

matter, and often requires other tools, for instance from algebraic topology. In the

S3
→ S2 case, we see that S3 and S2

× S1 cannot be identified since S3 is simply

connected (meaning that any closed loop in S3 can be deformed continuously to a

point) and S2
× S1 is not.

An important class of examples (of which the above is one) of locally trivial

fibrations arises from symmetries: if M is some (configuration) space and you have

a “group of symmetries” G (e.g., rotations) acting on M , then you can consider the

space M/G of points in M where you have identified two points in M if they can

be obtained from each other by letting G act (e.g., one is a rotated copy of the

other). Under favorable circumstances M/G will be a manifold and the projection

M → M/G will be a locally trivial fibration, so that M is built by gluing together

spaces of the form U × G, where U varies over the open subsets of M/G.

1.4 Further Examples
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A short bestiary of manifolds available to us at the moment might look like this.

● The surface of the earth, S2, and higher-dimensional spheres, see Exam-

ple 2.1.5.

● Space-time is a manifold: general relativity views space-time as a four-

dimensional “pseudo-Riemannian” manifold. According to Einstein its curva-

ture is determined by the mass distribution. (Whether the large-scale structure

is flat or not is yet another question. Current measurements sadly seem to be

consistent with a flat large-scale structure.)

● Configuration spaces in physics (e.g., the robot in Example 1.1, the two elec-

trons of Example 1.2 or the more abstract considerations at the very end of

Section 1.3.2 above).
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● If f : R
n → R is a map and y a real number, then the inverse image

f −1(y) = {x ∈ R
n | f (x) = y}

is often a manifold. For instance, if f : R
2 → R is the norm function f (x) =

|x |, then f −1(1) is the unit circle S1 (c.f. the discussion of submanifolds in

Chapter 4).

● The torus (c.f. the robot in Example 1.1).

● “The real projective plane” RP2 = {All lines in R
3 through the origin} (see the

two-electron case in Example 1.2, but also Exercise 1.5.3).

● The Klein bottle2 (see Section 1.5).

We end this introduction by studying surfaces in a bit more detail (since they

are concrete, and this drives home the familiar notion of charts in more exotic sit-

uations), and also come up with some inadequate words about higher-dimensional

manifolds in general.

1.4.1 Charts

The space-time manifold brings home the fact that manifolds must be represented

intrinsically: the surface of the earth is seen as a sphere “in space”, but there is no

space which should naturally harbor the universe, except the universe itself. This

opens up the question of how one can determine the shape of the space in which

we live.

One way of representing the surface of the earth as the two-dimensional space

it is (not referring to some ambient three-dimensional space), is through an

atlas. The shape of the earth’s surface is then determined by how each map

in the atlas is to be glued to the other maps in order to represent the entire

surface.

Just like the surface of the earth is covered by maps, the torus in the robot’s

arm was viewed through flat representations. In the technical sense of the word,

the representation was not a “chart” (see Definition 2.1.1) since some points were

covered twice (just as Siberia and Alaska have a tendency to show up twice on some

European maps). It is allowed to have many charts covering Fairbanks in our atlas,

but on each single chart it should show up at most once. We may fix this problem

at the cost of having to use more overlapping charts. Also, in the robot example

(as well as the two-electron and qbit examples) we saw that it was advantageous to

operate with more charts.

Example 1.4.2 To drive home this point, please play Jeff Weeks’ “Torus Games”

on www.geometrygames.org/TorusGames/ for a while.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 www-groups.dcs.st-and.ac.uk/∼history/Biographies/Klein.html
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