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The first of many “sausage plots” to come.

1 h. j. kushner (1962). A Versatile Stochastic
Model of a Function of Unknown and Time
Varying Form. Journal of Mathematical Analy-

sis and Applications 5(1):150–167.

PREFACE

My interest in Bayesian optimization began in 2007 at the start of my

doctoral studies. I was frustrated that there seemed to be a Bayesian

approach to every task I cared about, except optimization. Of course, as

was often the case at that time (not to mention now!), I was mistaken in

this belief, but one should never let ignorance impede inspiration.

Meanwhile, my labmate and soon-to-be frequent collaborator Mike

Osborne had a fresh copy of rasmussen and williams’s Gaussian Pro-

cesses for Machine Learning and just would not stop talking about gps at

our lab meetings. Through sheer brute force of repetition, I slowly built

a hand-wavy intuition for Gaussian processes – my mental model was

the “sausage plot” – without even being sure about their precise defi-

nition. However, I was pretty sure that marginals were Gaussian (what

else?), and one day it occurred to me that one could achieve Bayesian

optimization by maximizing the probability of improvement. This was

the algorithm I was looking for! In my excitement I shot off an email to

Mike that kicked off years of fruitful collaboration:

Can I ask a dumb question about gps? Let’s say that I’m doing

function approximation on an interval with a gp. So I’ve got this

mean function𝑚(𝑥) and a variance function 𝑣 (𝑥). Is it true that if
I pick a particular point 𝑥 , then 𝑝

(

𝑓 (𝑥)
)

∼ N
(

𝑚(𝑥), 𝑣 (𝑥)
)

? Please

say yes.

If this is true, then I think the idea of doing Bayesian optimization

using gps is, dare I say, trivial.

The hubris of youth!

Well, it turned out I was 45 years too late in proposing this algo-

rithm,1 and that it only seemed “trivial” because I had no appreciation for

its theoretical foundation. However, truly great ideas are rediscovered

many times, and my excitement did not fade. Once I developed a deeper

understanding of Gaussian processes and Bayesian decision theory, I

came to see them as a “Bayesian crank” I could turn to realize adaptive

algorithms for any task. I have been repeatedly astonished to find that

the resulting algorithms – seemingly by magic – automatically display

intuitive emergent behavior as a result of their careful design. My goal

with this book is to paint this grand picture. In effect, it is a gift to my

former self: the book I wish I had in the early years of my career.

In the context of machine learning, Bayesian optimization is an

ancient idea – kushner’s paper appeared only three years after the

term “machine learning” was coined! Despite its advanced age, Bayesian

optimization has been enjoying a period of revitalization and rapid

progress over the past ten years. The primary driver of this renaissance

has been advances in computation, which have enabled increasingly

sophisticated tools for Bayesian modeling and inference.

Ironically, however, perhaps the most critical development was not

Bayesian at all, but the rise of deep neural networks, another old idea

ix
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x preface

2 j. snoek et al. (2012). Practical Bayesian Op-
timization of Machine Learning Algorithms.
neurips 2012.

granted new life by modern computation. The extreme cost of training

these models demands efficient routines for hyperparameter tuning, and

in a timely and influential paper, snoek et al. demonstrated (dramati-

cally!) that Bayesian optimization was up to the task.2 Hyperparameter

tuning proved to be a “killer app” for Bayesian optimization, and the en-

suing surge of interest has yielded a mountain of publications developing

new algorithms and improving old ones, exploring countless variations

on the basic setup, establishing theoretical guarantees on performance,

and applying the framework to a huge range of domains.

Due to the nature of the computer science publication model, these

recent developments are scattered across dozens of brief papers, and the

pressure to establish novelty in a limited space can obscure the big picture

in favor of minute details. This book aims to provide a self-contained and

comprehensive introduction to Bayesian optimization, starting “from

scratch” and carefully developing all the key ideas along the way. This

bottom-up approach allows us to identify unifying themes in Bayesian

optimization algorithms that may be lost when surveying the literature.

The intended audience is graduate students and researchers in ma-intended audience

chine learning, statistics, and related fields. However, it is also my sincere

hope that practitioners from more distant fields wishing to harness the

power of Bayesian optimization will also find some utility here.

For the bulk of the text, I assume the reader is comfortable with differ-prerequisites

ential and integral calculus, probability, and linear algebra. On occasion

the discussion will meander to more esoteric areas of mathematics, and

these passages can be safely ignored and returned to later if desired. A

good working knowledge of the Gaussian distribution is also essential,

and I provide an abbreviated but sufficient introduction in Appendix a.

The book is divided into three main parts. Chapters 2–4 cover theo-Chapters 2–4: modeling the objective
function with Gaussian processes retical and practical aspects of modeling with Gaussian processes. This

class of models is the overwhelming favorite in the Bayesian optimiza-

tion literature, and the material contained within is critical for several

following chapters. It was daunting to write this material in light of

the many excellent references already available, in particular the afore-

mentioned Gaussian Processes for Machine Learning. However, I heavily

biased the presentation in light of the needs of optimization, and even

experts may find something new.

Chapters 5–7 develop the theory of sequential decision making andChapters 5–7: sequential decision making and
policy building its application to optimization. Although this theory requires a model

of the objective function and our observations of it, the presentation is

agnostic to the choice of model and may be read independently from the

preceding chapters on Gaussian processes.

These threads are unified in Chapters 8–10, which discuss the partic-Chapters 8–10: Bayesian optimization with
Gaussian processes ulars of Bayesian optimization with Gaussian process models. Chapters

8–9 cover details of computation and implementation, and Chapter 10

discusses theoretical performance bounds on Bayesian optimization al-

gorithms, where most results depend intimately on a Gaussian process

model of the objective function or the associated reproducing kernel

Hilbert space.
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2 3 4

567

8

9

10

11

A dependency graph for Chapters 2–11. Chap-
ter 1 is a universal dependency.

The nuances of some applications require modifications to the basic Chapter 11: extensions

sequential optimization scheme that is the focus of the bulk of the book,

and Chapter 11 introduces several notable extensions to this basic setup.

Each is systematically presented through the unifying lens of Bayesian

decision theory to illustrate how one might proceed when facing a novel

situation.

Finally, Chapter 12 provides a brief and standalone history of Bayesian Chapter 12: brief history of Bayesian
optimizationoptimization. This was perhaps the most fun chapter for me to write,

if only because it forced me to plod through old Soviet literature (in an

actual library! What a novelty these days!). To my surprise I was able to

antedate many Bayesian optimization policies beyond their commonly

attested origin, including expected improvement, knowledge gradient,

probability of improvement, and upper confidence bound. (A reader

familiar with the literature may be surprised to learn the last of these

was actually the first policy discussed by kushner in his 1962 paper.)

Despite my best efforts, there may still be stones left to be overturned

before the complete history is revealed.

Dependencies between the main chapters are illustrated in the mar-

gin. There are two natural linearizations of the material. The first is the

one I adopted and personally prefer, which covers modeling prior to

decision making. However, one could also proceed in the other order,

reading Chapters 5–7 first, then looping back to Chapter 2. After cov-

ering the material in these chapters (in either order), the remainder of

the book can be perused at will. Logical partial paths through the book

include:

• a minimal but self-contained introduction: Chapters 1–2, 5–7

• a shorter introduction requiring leaps of faith: Chapters 1 and 7

• a crash course on the underlying theory: Chapters 1–2, 5–7, 10

• a head start on implementing a software package: Chapters 1–9

A reader already quite comfortable with Gaussian processes might wish

to skip over Chapters 2–4 entirely.

I struggled for some time over whether to include a chapter on ap-

plications. On the one hand, Bayesian optimization ultimately owes its

popularity to its success in optimizing a growing and diverse set of dif-

ficult objectives. However, these applications often require extensive

technical background to appreciate, and an adequate coverage would

be tedious to write and tedious to read. As a compromise, I provide an

annotated bibliography outlining the optimization challenges involved Annotated Bibliography of Applications:
Appendix d, p. 313in notable domains of interest and pointing to studies where these chal-

lenges were successfully overcome with the aid of Bayesian optimization.

The sheer size of the Bayesian optimization literature – especially

the output of the previous decade – makes it impossible to provide a

complete survey of every recent development. This is especially true

for the extensions discussed in Chapter 11 and even more so for the

bibliography on applications, where work has proliferated in myriad

branching directions. Instead I settled for presenting what I considered
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xii preface

to be the most important ideas and providing pointers to entry points

for the relevant literature. The reader should not read anything into any

omissions; there is simply too much high-quality work to go around.

Additional information about the book, including a list of errata as

they are discovered, may be found at the companion webpage:

bayesoptbook.com

I encourage the reader to report any errata or other issues to the com-

panion GitHub repository for discussion and resolution:

github.com/bayesoptbook/bayesoptbook.github.io

Preparation of this manuscript was facilitated tremendously by nu-Thank you!

merous free and open source projects, and the creators, developers, and

maintainers of these projects have my sincere gratitude. The manuscript

was typeset in LATEX using the excellent and extremely flexible memoir

class. The typeface is Linux Libertine. Figures were laid out in matlab

and converted to TikZ/pgf/pgfplots for further tweaking and typeset-

ting via the matlab2tikz script. The colors used in figures were based

on www.colorbrewer.org by Cynthia A. Brewer, and I endeavored to the

best of my ability to ensure that the figures are colorblind friendly. The

colormap used in heat maps is a slight modification of the Matplotlib

viridis colormap where the “bright” end is pure white.

I would like to thank Eric Brochu, Nando de Freitas, Matt Hoffman,

Frank Hutter, Mike Osborne, Bobak Shahriari, Jasper Snoek, Kevin Swer-

sky, and Ziyu Wang, who jointly provided the activation energy for

this undertaking. I would also like to thank Eytan Bakshy, Ivan Barri-

entos, George De Ath, Neil Dhir, Peter Frazier, Lukas Fröhlich, Ashok

Gautam, Jake Gardner, Javier González, Ryan-Rhys Griffiths, Philipp

Hennig, Eugen Hotaj, Jungtaek Kim, Simon Kruse, Jack Liu, Bryan Low,

Ruben Martinez-Cantin, Keita Mori, Kevin Murphy, Matthias Poloczeck,

Jon Scarlett, Sebastian Tay, Sattar Vakili, Jiangyan Zhao, Qiuyi Zhang,

Xiaowei Zhang, and GitHub users cgoble001 and chaos-and-patterns

for their suggestions, corrections, and valuable discussions along the

way, as well as everyone at Cambridge University Press for their support

and patience as I continually missed deadlines. Finally, special thanks

are due to the students of two seminars run at Washington University

reading, discussing, and ultimately improving the book.

Funding support was provided by the United States National Science

Foundation (nsf) under award number 1845434. Any opinions, findings,

and conclusions or recommendations expressed in this book are those

of the author and do not necessarily reflect the views of the nsf.

This book took far more time than I initially anticipated, and I would

especially like to thank my wife Marion, my son Max (argMax?), and

my daughter Matilda (who escaped being named Minnie!) for their un-

derstanding and support during this long journey.

Roman Garnett

St. Louis, Missouri, November 2022
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NOTATION

All vectors are column vectors and are denoted in lowercase bold: x ∈ ℝ
𝑑. vectors and matrices

Matrices are denoted in uppercase bold: A.

We adopt the “numerator layout” convention for matrix calculus: matrix calculus convention

the derivative of a vector by a scalar is a (column) vector, whereas the

derivative of a scalar by a vector is a row vector. This results in the chain

rule proceeding from left-to-right; for example, if a vector x(𝜃 ) depends chain rule

on a scalar parameter 𝜃 , then for a function 𝑓 (x), we have:

𝜕𝑓

𝜕𝜃
=

𝜕𝑓

𝜕x

𝜕x

𝜕𝜃
.

When an indicator function is required, we use the Iverson bracket indicator functions

notation. For a statement 𝑠 , we have:

[𝑠] =
{

1 if 𝑠 is true;

0 otherwise.

The statement may depend on a parameter: [𝑥 ∈ 𝐴], [𝑥 ≥ 0], etc.
Logarithms are taken with respect to their natural base, 𝑒 . Quantities logarithms

in log units such as log likelihoods or entropy thus have units of nats, nats

the base-𝑒 analogue of the more familiar base-2 bits.

symbols with implicit dependence on location

There is one notational innovation in this book compared with the

Gaussian process and Bayesian optimization literature at large: we make

heavy use of symbols for quantities that depend implicitly on a putative

(and arbitrary) input location 𝑥 . Most importantly, to refer to the value

of an objective function 𝑓 at a given location 𝑥 , we introduce the symbol

𝜙 = 𝑓 (𝑥). This avoids clash with the name of the function itself, 𝑓, while

avoiding an extra layer of brackets. We use this scheme throughout the

book, including variations such as:

𝜙 ′
= 𝑓 (𝑥 ′); 𝝓 = 𝑓 (x); 𝛾 = 𝑔(𝑥); etc.

To refer to the outcome of a (possibly inexact) measurement at 𝑥 , we use

the symbol 𝑦; the distribution of 𝑦 presumably depends on 𝜙 .

We also allocate symbols to describe properties of the marginal pre-

dictive distributions for the objective function value 𝜙 and observed

value 𝑦, all of which also have implicit dependence on 𝑥 . These appear

in the following table.

comprehensive list of symbols

A list of important symbols appears on the following pages, arranged

roughly in alphabetical order.

xiii
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xiv notation

symbol description

≡ identical equality of functions; for a constant 𝑐 , 𝑓 ≡ 𝑐 is a constant function
∇ gradient operator

∅ termination option: the action of immediately terminating optimization

≺ either Pareto dominance or the Löwner order: for symmetric A,B, A ≺ B if and only if B − A

is positive definite

𝜔 ∼ 𝑝 (𝜔) is sampled according to: 𝜔 is a realization of a random variable with probability density 𝑝 (𝜔)
⊔

𝑖 X𝑖 disjoint union of {X𝑖 }:
⊔

𝑖 X𝑖 =
⋃

𝑖

{

(𝑥, 𝑖) | 𝑥 ∈ X𝑖
}

|A| determinant of square matrix A

|x| Euclidean norm of vector x; |x − y| is thus the Euclidean distance between vectors x and y

‖ 𝑓 ‖H𝐾
norm of function 𝑓 in reproducing kernel Hilbert spaceH𝐾

A−1 inverse of square matrix A

x⊤ transpose of vector x

0 vector or matrix of zeros

A action space for a decision

𝛼 (𝑥 ;D) acquisition function evaluating 𝑥 given data D

𝛼𝜏 (𝑥 ;D) expected marginal gain in 𝑢 (D) after observing at 𝑥 then making 𝜏 − 1 additional optimal

observations given the outcome

𝛼∗𝜏 (D) value of D with horizon 𝜏 : expected marginal gain in 𝑢 (D) from 𝜏 additional optimal obser-

vations

𝛼ei expected improvement

𝛼 𝑓 ∗ mutual information between 𝑦 and 𝑓 ∗

𝛼kg knowledge gradient

𝛼pi probability of improvement

𝛼𝑥∗ mutual information between 𝑦 and 𝑥∗

𝛼ucb upper confidence bound

𝛼ts Thompson sampling “acquisition function:” a draw 𝑓 ∼ 𝑝 (𝑓 | D)
𝛽 confidence parameter in Gaussian process upper confidence bound policy

𝛽 (x;D) batch acquisition function evaluating x given data D; may have modifiers analogous to 𝛼

C prior covariance matrix of observed values y: C = cov[y]
𝑐 (D) cost of acquiring data D

cholA Cholesky decomposition of positive definite matrix A: if 𝚲 = cholA, then A = 𝚲𝚲
⊤

corr[𝜔,𝜓 ] correlation of random variables 𝜔 and𝜓 ; with a single argument, corr[𝜔] = corr[𝜔,𝜔]
cov[𝜔,𝜓 ] covariance of random variables 𝜔 and𝜓 ; with a single argument, cov[𝜔] = cov[𝜔,𝜔]
D set of observed data, D = (x, y)
D′, D1 set of observed data after observing at 𝑥 : D′

= D ∪
{

(𝑥,𝑦)
}

= (x′, y′)
D𝜏 set of observed data after 𝜏 observations

𝐷kl [𝑝 ‖ 𝑞] Kullback–Leibler divergence between distributions with probability densities 𝑝 and 𝑞

Δ(𝑥,𝑦) marginal gain in utility after acquiring observation (𝑥,𝑦): Δ(𝑥,𝑦) = 𝑢 (D′) − 𝑢 (D)
𝛿 (𝜔 − 𝑎) Dirac delta distribution on 𝜔 with point mass at 𝑎

diag x diagonal matrix with diagonal x

𝔼,𝔼𝜔 expectation, expectation with respect to 𝜔

𝜀 measurement error associated with an observation at 𝑥 : 𝜀 = 𝑦 − 𝜙
𝑓 objective function; 𝑓 : X → ℝ

𝑓 |Y the restriction of 𝑓 onto the subdomain Y ⊂ X

𝑓 ∗ globally maximal value of the objective function: 𝑓 ∗ = max 𝑓

𝛾𝜏 information capacity of an observation process given 𝜏 iterations
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notation xv

symbol description

GP (𝑓 ; 𝜇, 𝐾) Gaussian process on 𝑓 with mean function 𝜇 and covariance function 𝐾

H𝐾 reproducing kernel Hilbert space associated with kernel 𝐾

H𝐾 [𝐵] ball of radius 𝐵 inH𝐾 : {𝑓 | ‖ 𝑓 ‖H𝐾
≤ 𝐵}

𝐻 [𝜔] discrete or differential entropy of random variable 𝜔

𝐻 [𝜔 | D] discrete or differential of random variable 𝜔 after conditioning on D

𝐼 (𝜔 ;𝜓 ) mutual information between random variables 𝜔 and𝜓

𝐼 (𝜔 ;𝜓 | D) mutual information between random variables 𝜔 and𝜓 after conditioning on D

I identity matrix

𝐾 prior covariance function: 𝐾 = cov[𝑓 ]
𝐾D posterior covariance function given data D: 𝐾D = cov[𝑓 | D]
𝐾m Matérn covariance function

𝐾se squared exponential covariance function

𝜅 cross-covariance between 𝑓 and observed values y: 𝜅 (𝑥) = cov[y, 𝜙 | 𝑥]
ℓ either a length-scale parameter or the lookahead horizon

𝜆 output-scale parameter

M space of models indexed by the hyperparameter vector 𝜽

m prior expected value of observed values y, m = 𝔼[y]
𝜇 either the prior mean function, 𝜇 = 𝔼[𝑓 ], or the predictivemean of𝜙 : 𝜇 = 𝔼[𝜙 | 𝑥,D] = 𝜇D (𝑥)
𝜇D posterior mean function given data D: 𝜇D = 𝔼[𝑓 | D]
N (𝝓; 𝝁, 𝚺) multivariate normal distribution on 𝝓 with mean vector 𝝁 and covariance matrix 𝚺

N measurement error covariance corresponding to observed values y

O is asymptotically bounded above by: for nonnegative functions 𝑓, 𝑔 of 𝜏 , 𝑓 = O(𝑔) if 𝑓 /𝑔 is
asymptotically bounded by a constant as 𝜏 → ∞

O∗ as above with logarithmic factors suppressed: 𝑓 = O∗ (𝑔) if 𝑓 (𝜏) (log𝜏)𝑘 = O(𝑔) for some 𝑘

Ω is asymptotically bounded below by: 𝑓 = Ω(𝑔) if 𝑔 = O(𝑓 )
𝑝 probability density

𝑞 either an approximation to probability density 𝑝 or a quantile function

Φ(𝑧) standard normal cumulative density function: Φ(𝑧) =
∫ 𝑧

−∞ 𝜙 (𝑧
′) d𝑧 ′

𝜙 value of the objective function at 𝑥 : 𝜙 = 𝑓 (𝑥)
𝜙 (𝑧) standard normal probability density function: 𝜙 (𝑧) = (

√
2𝜋)−1 exp(− 1

2
𝑧2)

Pr probability

ℝ set of real numbers

𝑅𝜏 cumulative regret after 𝜏 iterations

𝑅𝜏 [𝐵] worst-case cumulative regret after 𝜏 iterations on the rkhs ballH𝐾 [𝐵]
𝑟𝜏 simple regret after 𝜏 iterations

𝑟𝜏 [𝐵] worst-case simple regret after 𝜏 iterations on the rkhs ballH𝐾 [𝐵]
P a correlation matrix

𝜌 a scalar correlation

𝜌𝜏 instantaneous regret on iteration 𝜏

𝑠2 predictive variance of 𝑦; for additive Gaussian noise, 𝑠2 = var[𝑦 | 𝑥,D] = 𝜎2 + 𝜎2𝑛
𝚺 a covariance matrix, usually the Gram matrix associated with x: 𝚺 = 𝐾D (x, x)
𝜎2 predictive variance of 𝜙 : 𝜎2 = 𝐾D (𝑥, 𝑥)
𝜎2𝑛 variance of measurement error at 𝑥 : 𝜎2𝑛 = var[𝜀 | 𝑥]
std[𝜔] standard deviation of random variable 𝜔

T (𝜙 ; 𝜇, 𝜎2, 𝜈) Student-𝑡 distribution on 𝜙 with 𝜈 degrees of freedom, mean 𝜇, and variance 𝜎2

TN (𝜙 ; 𝜇, 𝜎2, 𝐼 ) truncated normal distribution, N (𝜙 ; 𝜇, 𝜎2) truncated to interval 𝐼
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xvi notation

symbol description

𝜏 either decision horizon (in the context of decision making) or number of optimization itera-

tions passed (in the context of asymptotic analysis)

Θ is asymptotically bounded above and below by: 𝑓 = Θ(𝑔) if 𝑓 = O(𝑔) and 𝑓 = Ω(𝑔)
𝜽 vector of hyperparameters indexing a model spaceM

trA trace of square matrix A

𝑢 (D) utility of data D

var[𝜔] variance of random variable 𝜔

𝑥 putative input location of the objective function

x either a sequence of observed locations x = {𝑥𝑖 } or (when the distinction is important) a

vector-valued input location

𝑥∗ a location attaining the globally maximal value of 𝑓 : 𝑥∗ ∈ argmax 𝑓 ; 𝑓 (𝑥∗) = 𝑓 ∗
X domain of objective function

𝑦 value resulting from an observation at 𝑥

y observed values resulting from observations at locations x

𝑧 𝑧-score of measurement 𝑦 at 𝑥 : 𝑧 = (𝑦 − 𝜇)/𝑠
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