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1
INTRODUCTION

Optimization is an innate human behavior. On an individual level, we

all strive to better ourselves and our surroundings. On a collective level,

societies struggle to allocate limited resources seeking to improve the

welfare of their members, and optimization has been an engine of societal

progress since the domestication of crops through selective breeding

over 12 000 years ago – an effort that continues to this day.

Given its pervasiveness, it should perhaps not be surprising that

optimization is also difficult. While searching for an optimal design,

we must spend – sometimes quite significant – resources evaluating

suboptimal alternatives along the way. This observation compels us to

seek methods of optimization that, when necessary, can carefully allocate

resources to identify optimal parameters as efficiently as possible. This

is the goal of mathematical optimization.

Since the 1960s, the statistics and machine learning communities

have refined a Bayesian approach to optimization that we will develop

and explore in this book. Bayesian optimization routines rely on a statis-

tical model of the objective function, whose beliefs guide the algorithm

in making the most fruitful decisions. These models can be quite so-

phisticated, and maintaining them throughout optimization may entail

significant cost of its own. However, the reward for this effort is unparal-

leled sample efficiency. For this reason, Bayesian optimization has found

a niche in optimizing objectives that:

• are costly to compute, precluding exhaustive evaluation,

• lack a useful expression, causing them to function as “black boxes,”

• cannot be evaluated exactly, but only through some indirect or noisy

mechanism, and/or

• offer no efficient mechanism for estimating their gradient.

Let us consider an example setting motivating the machine learn-

ing community’s recent interest in Bayesian optimization. Consider a

data scientist crafting a complex machine learning model – say a deep

neural network – from training data. To ensure success, the scientist

must carefully tune the model’s hyperparameters, including the network

architecture and details of the training procedure, which have massive

influence on performance. Unfortunately, effective settings can only be

identified via trial-and-error: by training several networks with different

settings and evaluating their performance on a validation dataset.

The search for the best hyperparameters is of course an exercise

in optimization. Mathematical optimization has been under continual

development for centuries, and numerous off-the-shelf procedures are

available. However, these procedures usually make assumptions about

the objective function that may not always be valid. For example, we

might assume that the objective is cheap to evaluate, that we can easily

compute its gradient, or that it is convex, allowing us to reduce from

global to local optimization.
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1 r. turner et al. (2021). Bayesian Optimization
Is Superior to Random Search for Machine
Learning Hyperparameter Tuning: Analysis of
the Black-Box Optimization Challenge 2020.
Proceedings of the Neurips 2020 Competition

and Demonstration Track.

2 a. gelman and a. vehtari (2021). What Are
the Most Important Statistical Ideas of the Past
50 Years? Journal of the American Statistical

Association 116(536):2087–2097.

𝑥∗

𝑓 ∗

An objective function with the location, 𝑥∗,
and value, 𝑓 ∗, of the global optimum marked.

3 A skeptical reader may object that, without
further assumptions, a global maximum may
not exist at all! We will sidestep this issue for
now and pick it up again in § 2.7, p. 34.

In hyperparameter tuning, all of these assumptions are invalid. Train-

ing a deep neural network can be extremely expensive in terms of both

time and energy. When some hyperparameters are discrete – as many

features of network architecture naturally are – the gradient does not

even exist. Finally, the mapping from hyperparameters to performance

may be highly complex and multimodal, so local refinement may not

yield an acceptable result.

The Bayesian approach to optimization allows us to relax all of these

assumptions when necessary, and Bayesian optimization algorithms can

deliver impressive performance even when optimizing complex “black

box” objectives under severely limited observation budgets. Bayesian

optimization has proven successful in settings spanning science, engi-

neering, and beyond, including of course hyperparameter tuning.1 In

light of this broad success, gelman and vehtari identified adaptive

decision analysis – and Bayesian optimization in particular – as one of

the eight most important statistical ideas of the past 50 years.2

Covering all these applications and their nuances could easily fill a

separate volume (although we do provide an overview of some impor-

tant application domains in an annotated bibliography), so in this bookAnnotated Bibliography of Applications:
Appendix d, p. 313 we will settle for developing the mathematical foundation of Bayesian

optimization underlying its success. In the remainder of this chapter we

will lay important groundwork for this discussion. We will first establish

the precise formulation of optimization we will consider and important

conventions of our presentation, then outline and illustrate the key as-

pects of the Bayesian approach. The reader may find an outline of andoutline and reading guide: p. x

reading guide for the chapters to come in the Preface.

1.1 formalization of optimization

Throughout this book we will consider a simple but flexible formulation

of sequential global optimization outlined below. There is nothing inher-

ently Bayesian about this model, and countless solutions are possible.

We begin with a real-valued objective function defined on someobjective function, 𝑓

domain X ; 𝑓 : X → ℝ. We make no assumptions regarding the naturedomain of objective function, X

of the domain. In particular, it need not be Euclidean but might instead,

for example, comprise a space of complex structured objects. The goal

of optimization is to systematically search the domain for a point 𝑥∗

attaining the globally maximal value 𝑓 ∗:3

𝑥∗ ∈ argmax
𝑥 ∈X

𝑓 (𝑥); 𝑓 ∗ = max
𝑥 ∈X

𝑓 (𝑥) = 𝑓 (𝑥∗). (1.1)

Before we proceed, we note that our focus on maximization rather

than minimization is entirely arbitrary; the author simply judges max-

imization to be the more optimistic choice. If desired, we can freely

transform one problem to the other by negating the objective function.

We caution the reader that some translation may be required when com-

paring expressions derived here to what may appear in parallel texts

focusing on minimization.
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1.1. formalization of optimization 3

input: initial dataset D ◮ can be empty

repeat

𝑥 ← policy(D) ◮ select the next observation location

𝑦 ← observe(𝑥) ◮ observe at the chosen location

D← D ∪
{

(𝑥,𝑦)
}

◮ update dataset

until termination condition reached ◮ e.g., budget exhausted

return D

Algorithm 1.1: Sequential optimization.

4 Of course, we do not require but merely allow

that the objective function act as a black box.
Access to a closed-form expression does not
preclude a Bayesian approach!

5 Here “policy” has the same meaning as in
other decision-making contexts: it maps our
state (indexed by our data,D) to an action (the
location of our next observation, 𝑥 ).

In a significant departure from classical mathematical optimization,

we do not require that the objective function have a known functional

form or even be computable directly. Rather, we only require access to a

mechanism revealing some information about the objective function at

identified points on demand. By amassing sufficient information from

this mechanism, we may hope to infer the solution to (1.1). Avoiding

the need for an explicit expression for 𝑓 allows us to consider so-called

“black box” optimization, where a system is optimized through indirect

measurements of its quality. This is one of the greatest strengths of

Bayesian optimization.4

Optimization policy

Directly solving for the location of global optima is infeasible except in

exceptional circumstances. The tools of traditional calculus are virtually

powerless in this setting; for example, enumerating and classifying every

stationary point in the domain would be tedious at best and perhaps

even impossible. Mathematical optimization instead takes an indirect

approach: we design a sequence of experiments to probe the objective

function for information that, we hope, will reveal the solution to (1.1).

The iterative procedure in Algorithm 1.1 formalizes this process. We

begin with an initial (possibly empty) dataset D that we grow incremen-

tally through a sequence of observations of our design. In each iteration,

an optimization policy inspects the available data and selects a point

𝑥 ∈ X where we make our next observation.5 This action in turn reveals

a corresponding value 𝑦 provided by the system under study. We append

the newly observed information to our dataset and finally decide whether

to continue with another observation or terminate and return the current

data. When we inevitably do choose to terminate, the returned data can

be used by an external consumer as desired, for example to inform a

subsequent decision. terminal recommendations: § 5.1, p. 90

We place no restrictions on how an optimization policy is imple-

mented beyond mapping an arbitrary dataset to some point in the do-

main for evaluation. A policy may be deterministic or stochastic, as

demonstrated respectively by the prototypical examples of grid search

and random search. In fact, these popular policies are nonadaptive and

completely ignore the observed data. However, when observations only

come at significant cost, we will naturally prefer policies that adapt their

behavior in light of evolving information. The primary challenge in opti-
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Inexact observations of an objective function
corrupted by additive noise.

𝜙

𝑦

𝑝 (𝑦 | 𝑥,𝜙)

Additive Gaussian noise: the distribution
of the value 𝑦 observed at 𝑥 is Gaussian,
centered on the objective function value 𝜙 .

mization is designing policies that can rapidly optimize a broad class of

objective functions, and intelligent policy design will be our focus for

the majority of this book.

Observation model

For optimization to be feasible, the observations we obtain must provide

information about the objective function that can guide our search and in

aggregate determine the solution to (1.1). A near-universal assumption in

mathematical optimization is that observations yield exact evaluations of

the objective function at our chosen locations. However, this assumption

is unduly restrictive: many settings feature inexact measurements due

to noisy sensors, imperfect simulation, or statistical approximation. A

typical example featuring additive observation noise is shown in the

margin. Although the objective function is not observed directly, the

noisy measurements nonetheless constrain the plausible options due to

strong dependence on the objective.

We thus relax the assumption of exact observation and instead as-

sume that observations are realized by a stochastic mechanism depending

on the objective function. Namely, we assume that the value 𝑦 resultingmeasured value, 𝑦

from an observation at some point 𝑥 is distributed according to an ob-observation location, 𝑥

servation model depending on the underlying objective function value

𝜙 = 𝑓 (𝑥):objective function value, 𝜙 = 𝑓 (𝑥)

𝑝 (𝑦 | 𝑥, 𝜙). (1.2)

Through judicious design of the observation model, we may consider a

wide range of observation mechanisms.

As with the optimization policy, we do not make any assumptionsconditional independence of observations
given objective values about the nature of the observation model, save one. Unless otherwise

mentioned, we assume that a set of multiple measurements y are condi-

tionally independent given the corresponding observation locations x

and objective function values 𝝓 = 𝑓 (x):

𝑝 (y | x, 𝝓) =
∏

𝑖

𝑝 (𝑦𝑖 | 𝑥𝑖 , 𝜙𝑖 ). (1.3)

This is not strictly necessary but is overwhelmingly common in practice

and will simplify our presentation considerably.

One particular observation model will enjoy most of our attention in

this book: additive Gaussian noise. Here we model the value 𝑦 observed

at 𝑥 as

𝑦 = 𝜙 + 𝜀,

where 𝜀 representsmeasurement error. Errors are assumed to be Gaussian

distributed with mean zero, implying a Gaussian observation model:

𝑝 (𝑦 | 𝑥, 𝜙, 𝜎𝑛) = N (𝑦;𝜙, 𝜎2
𝑛). (1.4)

Here the observation noise scale𝜎𝑛 may optionally depend on 𝑥 , allowingobservation noise scale, 𝜎𝑛

us to model both homoskedastic or heteroskedastic errors.heteroskedastic noise: § 2.2, p. 25
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1.2. the bayesian approach 5

𝜙

𝑦

𝑝 (𝑦 | 𝜙)

Exact observations: every value measured
equals the corresponding function value,
yielding a Dirac delta observation model.

If we take the noise scale to be identically zero, we recover the

special case of exact observation, where we simply have 𝑦 = 𝜙 and the

observation model collapses to a Dirac delta distribution:

𝑝 (𝑦 | 𝜙) = 𝛿 (𝑦 − 𝜙).

Although not universally applicable, many settings do feature exact

observations such as optimizing the output of a deterministic computer

simulation. We will sometimes consider the exact case separately as

some results simplify considerably in the absence of measurement error.

We will focus on additive Gaussian noise as it is a reasonably faithful

model for many systems and offers considerable mathematical conve-

nience. This observation model will be most prevalent in our discussion

on Gaussian processes in the next three chapters and on the explicit

computation of Bayesian optimization policies with this model class inference with non-Gaussian observations:
§ 2.8, p. 35in Chapter 8. However, the general methodology we will build in the

remainder of this book is not contingent on this choice, and we will optimization with non-Gaussian
observations: § 11.11, p. 282occasionally address alternative observation mechanisms.

Termination

The final decision we make in each iteration of optimization is whether

to terminate immediately or continue with another observation. As with

the optimization policy, we do not assume any particular mechanism by

which this decision is made. Termination may be deterministic – such

as stopping after reaching a certain optimization goal or exhausting

a preallocated observation budget – or stochastic, and may optionally

depend on the observed data. In many cases, the time of termination

may in fact not be under the control of the optimization routine at all

but instead decided by an external agent. However, we will also consider

scenarios where the optimization procedure can dynamically choose optimal termination: § 5.4, p. 103

when to return based upon inspection of the available data. practical termination: § 9.3, p. 210

1.2 the bayesian approach

Bayesian optimization does not refer to one particular algorithm but

rather to a philosophical approach to optimization grounded in Bayes-

ian inference from which an extensive family of algorithms have been

derived. Although these algorithms display significant diversity in their

details, they are bound by common themes in their design.

Optimization is fundamentally a sequence of decisions: in each it-

eration, we must choose where to make our next observation and then

whether to terminate depending on the outcome. As the outcomes of

these decisions are governed by the system under study and outside our

control, the success of optimization rests entirely on effective decision

making.

Increasing the difficulty of these decisions is that they must be made

under uncertainty, as it is impossible to know the outcome of an observa-

tion before making it. The optimization policymust therefore design each

www.cambridge.org/9781108425780
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-42578-0 — Bayesian Optimization
Roman Garnett 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 introduction

6 The literature is vast. The following references
are excellent, but no list can be complete:

d. j. c. mackay (2003). Information Theory, In-

ference, and Learning Algorithms. Cambridge
University Press.

a. o’hagan and j. forster (2004). Kendall’s
Advanced Theory of Statistics. Vol. 2b: Bayes-
ian Inference. Arnold.

j. o. berger (1985). Statistical Decision Theory

and Bayesian Analysis. Springer–Verlag.

7 Here we assume the location of interest 𝑥 is
known, hence our conditioning the prior on
its value.

observation with some measure of faith that the outcome will ultimately

prove beneficial and justify the cost of obtaining it. The sequential nature

of optimization further compounds the weight of this uncertainty, as the

outcome of each observation not only has an immediate impact, but also

forms the basis on which all future decisions are made. Developing an

effective policy requires somehow addressing this uncertainty.

The Bayesian approach systematically relies on probability and Bayes-

ian inference to reason about the uncertain quantities arising during

optimization. This critically includes the objective function itself, which

is treated as a random variable to be inferred in light of our prior ex-

pectations and any available data. In Bayesian optimization, this belief

then takes an active role in decision making by guiding the optimiza-

tion policy, which may evaluate the merit of a proposed observation

location according to our belief about the value we might observe. We

introduce the key ideas of this process with examples below, starting

with a refresher on Bayesian inference.

Bayesian inference

To frame the following discussion, we offer a quick overview of Bayesian

inference as a reminder to the reader. This introduction is far from

complete, but there are numerous excellent references available.6

Bayesian inference is a framework for inferring uncertain features of

a system of interest from observations grounded in the laws of probability.

To illustrate the basic ideas, we may begin by identifying some unknown

feature of a given system that we wish to reason about. In the context of

optimization, this might represent, for example, the value of the objective

function at a given location, or the location 𝑥∗ or value 𝑓 ∗ of the global

optimum (1.1). We will take the first of these as a running example:

inferring about the value of an objective function at some arbitrary point

𝑥 , 𝜙 = 𝑓 (𝑥). We will shortly extend this example to inference about the

entire objective function.

In the Bayesian approach to inference, all unknown quantities are

treated as random variables. This is a powerful convention as it allows us

to represent beliefs about these quantities with probability distributions

reflecting their plausible values. Inference then takes the form of an

inductive process where these beliefs are iteratively refined in light of

observed data by appealing to probabilistic identities.

As with any induction, wemust start somewhere. Here we begin with

a so-called prior distribution (or simply prior) 𝑝 (𝜙 | 𝑥), which encodesprior distribution, 𝑝 (𝜙 | 𝑥)

what we consider to be plausible values for 𝜙 before observing any

data.7 The prior distribution allows us to inject our knowledge about and

experience with the system of interest into the inferential process, saving

us from having to begin “from scratch” or entertain patently absurd

possibilities. The left panel of Figure 1.1 illustrates a prior distribution

for our example, indicating support over a range of values.

Once a prior has been established, the next stage of inference is

to refine our initial beliefs in light of observed data. Suppose in our

www.cambridge.org/9781108425780
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1.2. the bayesian approach 7

𝜙

prior, 𝑝 (𝜙 | 𝑥)

𝑦

𝜙

likelihood, 𝑝 (𝑦 | 𝑥, 𝜙)

𝑦

𝜙

posterior, 𝑝 (𝜙 | D)

Figure 1.1: Bayesian inference for an unknown function value � = � (�). Left: a prior distribution over � ; middle: the

likelihood of the marked observation � according to an additive Gaussian noise observation model (1.4) (prior

shown for reference); right: the posterior distribution in light of the observation and the prior (prior and

likelihood shown for reference).

example we make an observation of the objective function at � , revealing

a measurement �. In our model of optimization, the distribution of this

measurement is assumed to be determined by the value of interest �

through the observationmodel � (� | �, �) (1.2). In the context of Bayesian

inference, a distribution explaining the observed values (here �) in terms

of the values of interest (here �) is known as a likelihood function or

simply a likelihood. The middle panel of Figure 1.1 shows the likelihood likelihood function (observation model),
� (� | �,�)– as a function of � – for a given measurement �, here assumed to be

generated by additive Gaussian noise (1.4).

Finally, given the observed value �, we may derive the updated poste-

rior distribution (or simply posterior) of � by appealing to Bayes’ theorem: posterior distribution, � (� | �, �)

� (� | �,�) =
� (� | �) � (� | �, �)

� (� | �)
. (1.5)

The posterior is proportional to the prior weighted by the likelihood of

the observed value. The denominator is a constant with respect to � that

ensures normalization:

� (� | �) =

∫
� (� | �, �) � (� | �) d�. (1.6)

The right panel of Figure 1.1 shows the posterior resulting from the

measurement in themiddle panel. The posterior represents a compromise

between our experience (encoded in the prior) and the information

contained in the data (encoded in the likelihood).

Throughout this book we will use the catchall notation D to repre- data informing posterior belief, D

sent all the information influencing a posterior belief; here the relevant

information isD = (�,�), and the posterior distribution is then � (� | D).

As mentioned previously, Bayesian inference is an inductive process

whereby we can continue to refine our beliefs through additional ob-

servation. At this point, the induction is trivial: to incorporate a new
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𝑦

𝑦
′

posterior predictive, 𝑝 (𝑦′ | 𝑥,D)

Posterior predictive distribution for a repeated
measurement at � for our running example.
The location of our first measurement � and
the posterior distribution of � are shown for
reference. There is more uncertainty in �′

than � due to the effect of observation noise.

8 This expression takes the same form as (1.6),
which is simply the (prior) predictive distribu-
tion evaluated at the actual observed value.

observation, what was our posterior serves as the prior in the context

of the new information, and multiplying by the likelihood and renor-

malizing yields a new posterior. We may continue in this manner as

desired.

The posterior distribution is not usually the end result of Bayesian

inference but rather a springboard enabling follow-on tasks such as

prediction or decision making, both of which are integral to Bayesian

optimization. To address the former, suppose that after deriving the

posterior (1.5), we wish to predict the result of an independent, repeated

noisy observation at � , � ′. Treating the outcome as a random variable,

we may derive its distribution by integrating our posterior belief about

� against the observation model (1.2):8

� (� ′ | �,D) =

∫
� (� ′ | �, �) � (� | �,D) d� ; (1.7)

this is known as the posterior predictive distribution for � ′. By integrating

over all possible values of � weighted by their plausibility, the posterior

predictive distribution naturally accounts for uncertainty in the unknown

objective function value; see the figure in the margin.

The Bayesian approach to decision making also relies on a posterior

belief about unknown features affecting the outcomes of our decisions,

as we will discuss shortly.

Bayesian inference of the objective function

At the heart of any Bayesian optimization routine is a probabilistic belief

over the objective function. This takes the form of a stochastic process, a

probability distribution over an infinite collection of random variables –stochastic process

here the objective function value at every point. The reasoning behind

this inference is, in essence, the same as our single-point example above.

We begin by encoding any assumptions we may have about the ob-

jective function, such as smoothness or other features, in a prior process

� (� ). Conveniently, we can specify a stochastic process via the distribu-objective function prior, � (� )

tion of the function values � corresponding to an arbitrary finite set of

locations x:

� (� | x) . (1.8)

The family of Gaussian processes – where these finite-dimensional distri-Chapter 2: Gaussian Processes, p. 15

Chapter 3: Modeling with Gaussian Processes,
p. 45

Chapter 4: Model Assessment, Selection, and
Averaging, p. 67

butions are multivariate Gaussian – is especially convenient and widely

used in Bayesian optimization. We will explore this model class in depth

in the following three chapters; here we provide a motivating illustration.

Figure 1.2 shows a Gaussian process prior on a one-dimensional

objective function, constructed to reflect a minimal set of assumptions

we will elaborate on later in the book:

• that the objective function is smooth (that is, infinitely differentiable),differentiability: § 2.6, p. 30

• that correlations among function values have a characteristic scale, andcharacteristic length scales: § 3.4, p. 56

• that the function’s expected behavior does not depend on location (thatstationarity: § 3.2, p. 50

is, the prior process is stationary).
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1.2. the bayesian approach 9

prior mean prior 95% credible interval samples

Figure 1.2: An example prior process for an objective defined on an interval. We illustrate the marginal belief at every

location with its mean and a 95% credible interval and also show three example functions sampled from the

prior process.

9 The given expression sweeps some details un-
der the rug. A careful derivation of the pos-
terior process proceeds by finding the poste-
rior of an arbitrary finite-dimensional vector
𝝓∗ = 𝑓 (x∗) :

𝑝 (𝝓∗ | x∗,D) =
∫

𝑝 (𝝓∗ | x∗, x,𝝓) 𝑝 (𝝓 | D) d𝝓,

which specifies the process. The distributions
on the right-hand side are known: the pos-
terior on 𝝓 is in (1.9), and the posterior on
𝝓∗ given the exact function values 𝝓 can be
found by computing their joint prior (1.8) and
conditioning.

We summarize the marginal belief of the model, for each point in the

domain showing the prior mean and a 95% credible interval for the cor-

responding function value. We also show three functions sampled from

the prior process, each exhibiting the assumed behavior. We encourage

the reader to become comfortable with this plotting convention, as we

will use it throughout this book. In particular we eschew axis labels, as plotting conventions

they are always the same: the horizontal axis represents the domain X

and the vertical axis the function value. Further, we do not mark units on

axes to stress relative rather than absolute behavior, as scale is arbitrary

in this illustration.

We can encode a vast array of information into the prior process

and can model significantly more complex structure than in this sim-

ple example. We will explore the world of possibilities in Chapter 3,

including interaction at different scales, nonstationarity, low intrinsic nonstationarity, warping: § 3.4, p. 56

dimensionality, and more. low intrinsic dimensionality: § 3.5, p. 61

With the prior process in hand, suppose we now make a set of

observations at some locations x, revealing corresponding values y; we

aggregate this information into a dataset D = (x, y). Bayesian inference observed data, D = (x, y)

accounts for these observations by forming the posterior process 𝑝 (𝑓 | D). objective function posterior, 𝑝 (𝑓 | D)

The derivation of the posterior process can be understood as a two-

stage process. First we consider the impact of the data on the correspond-

ing function values 𝝓 alone (1.5):

𝑝 (𝝓 | D) ∝ 𝑝 (𝝓 | x) 𝑝 (y | x, 𝝓) . (1.9)

The quantities on the right-hand side are known: the first term is given

by the prior process (1.8), and the second by the observation model (1.3),

which serves the role of a likelihood. We now extend the posterior on 𝝓

to all of 𝑓 :9

𝑝 (𝑓 | D) =

∫

𝑝 (𝑓 | x, 𝝓) 𝑝 (𝝓 | D) d𝝓 . (1.10)

The posterior encapsulates our belief regarding the objective in light of

the data, incorporating both the assumptions of the prior process and

the information contained in the observations.

We illustrate an example posterior in Figure 1.3, where we have

conditioned our prior from Figure 1.2 on three exact observations. As the
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observations posterior mean posterior 95% credible interval samples

Figure 1.3: The posterior process for our example scenario in Figure 2.1 conditioned on three exact observations.

acquisition function next observation location

Figure 1.4: A prototypical acquisition function corresponding to our example posterior from Figure 1.3.

observations are assumed to be exact, the objective function posterior

collapses onto the observed values. The posterior mean interpolates

through the data, and the posterior credible intervals reflect increased

certainty regarding the function near the observed locations. Further,

the posterior continues to reflect the structural assumptions encoded

in the prior, demonstrated by comparing the behavior of the samples

drawn from the posterior process to those drawn from the prior.

Uncertainty-aware optimization policies

Bayesian inference provides an elegant means of reasoning about an

uncertain objective function, but the success of optimization is measured

not by the fidelity of our beliefs but by the outcomes of our actions.

These actions are determined by the optimization policy, which exam-

ines available data to design each successive observation location. Each

of these decisions is fraught with uncertainty, as we must commit to each

observation before knowing its result, which will form the context of all

following decisions. Bayesian inference enables us to express this uncer-

tainty, but effective decision making additionally requires us to establish

preferences over outcomes and act to maximize those preferences.

To proceed we need to establish a framework for decision makingChapter 5: Decision Theory for Optimization,
p. 87

Chapter 6: Utility Functions for Optimization,
p. 109

Chapter 7: Common Bayesian Optimization
Policies, p. 123

under uncertainty, an expansive subject with a world of possibilities.

A natural and common choice is Bayesian decision theory, the subject

of Chapters 5–6. We will discuss this and other approaches to policy

construction at length in Chapter 7 and derive popular optimization

policies from first principles.

Ignoring details in policy design, a thread running through all Bayes-

ian optimization policies is a uniform handling of uncertainty in the

objective function and the outcomes of observations via Bayesian infer-
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