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Justification Logic

Classical logic is concerned, loosely, with the behavior of truths. Epistemic logic

similarly is about the behavior of known or believed truths. Justification logic is a

theory of reasoning that enables the tracking of evidence for statements and therefore

provides a logical framework for the reliability of assertions. This book, the first in the

area, is a systematic account of the subject, progressing from modal logic through to

the establishment of an arithmetic interpretation of intuitionistic logic. The

presentation is mathematically rigorous but in a style that will appeal to readers from a

wide variety of areas to which the theory applies. These include mathematical logic,

artificial intelligence, computer science, philosophical logic and epistemology,

linguistics, and game theory.
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B. BOLLOBÁS, W. FULTON, F. KIRWAN,

P. SARNAK, B. SIMON, B. TOTARO

A complete list of books in the series can be found at www.cambridge.org/mathematics.

Recent titles include the following:

181. Totally Positive Matrices. By A. Pinkus

182. Nonlinear Markov Processes and Kinetic Equations. By V. N. Kolokoltsov

183. Period Domains over Finite and p-adic Fields. By J.-F. Dat, S. Orlik, and M. Rapoport

184. Algebraic Theories. By J. Adámek, J. Rosický, and E. M. Vitale
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197. Induced Representations of Locally Compact Groups. By E. Kaniuth and K. F. Taylor

198. Topics in Critical Point Theory. By K. Perera and M. Schechter

199. Combinatorics of Minuscule Representations. By R. M. Green

200. Singularities of the Minimal Model Program. By J. Kollár

201. Coherence in Three-Dimensional Category Theory. By N. Gurski

202. Canonical Ramsey Theory on Polish Spaces. By V. Kanovei, M. Sabok, and J. Zapletal

203. A Primer on the Dirichlet Space. By O. El-Fallah, K. Kellay, J. Mashreghi,

and T. Ransford

204. Group Cohomology and Algebraic Cycles. By B. Totaro

205. Ridge Functions. By A. Pinkus

206. Probability on Real Lie Algebras. By U. Franz and N. Privault

207. Auxiliary Polynomials in Number Theory. By D. Masser

208. Representations of Elementary Abelian p-Groups and Vector Bundles. By D. J. Benson

209. Non-homogeneous Random Walks. By M. Menshikov, S. Popov, and A. Wade

210. Fourier Integrals in Classical Analysis (Second Edition). By C. D. Sogge

211. Eigenvalues, Multiplicities and Graphs. By C. R. Johnson and C. M. Saiago

212. Applications of Diophantine Approximation to Integral Points and Transcendence.

By P. Corvaja and U. Zannier

213. Variations on a Theme of Borel. By S. Weinberger

214. The Mathieu Groups. By A. A. Ivanov

215. Slender Modules and Rings I: Foundations. By R. Dimitric

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Justification Logic

Reasoning with Reasons

SERGEI ARTEM OV

Graduate Center, City University of New York

M ELVIN FITTING

Graduate Center, City University of New York

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108424912

DOI: 10.1017/9781108348034

© Sergei Artemov and Melvin Fitting 2019

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Artemov, S. N., author. | Fitting, Melvin, 1942- author.

Title: Justification logic : reasoning with reasons / Sergei Artemov

(Graduate Center, City University of New York), Melvin Fitting (Graduate

Center, City University of New York).

Description: Cambridge ; New York, NY : Cambridge University Press, 2019. |

Series: Cambridge tracts in mathematics ; 216 | Includes bibliographical

references and index.

Identifiers: LCCN 2018058431 | ISBN 9781108424912 (hardback : alk. paper)

Subjects: LCSH: Logic, Symbolic and mathematical. | Inquiry (Theory of

knowledge) | Science–Theory reduction. | Reasoning.

Classification: LCC QA9 .A78 2019 | DDC 511.3–dc23

LC record available at https://lccn.loc.gov/2018058431

ISBN 978-1-108-42491-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

To our wives, Lena and Roma.

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Introduction page x

1 What Is This Book About? xii

2 What Is Not in This Book? xvii

1 Why Justification Logic? 1

1.1 Epistemic Tradition 1

1.2 Mathematical Logic Tradition 4

1.3 Hyperintensionality 8

1.4 Awareness 9

1.5 Paraconsistency 10

2 The Basics of Justification Logic 11

2.1 Modal Logics 11

2.2 Beginning Justification Logics 12

2.3 J0, the Simplest Justification Logic 14

2.4 Justification Logics in General 15

2.5 Fundamental Properties of Justification Logics 20

2.6 The First Justification Logics 23

2.7 A Handful of Less Common Justification Logics 27

3 The Ontology of Justifications 31

3.1 Generic Logical Semantics of Justifications 31

3.2 Models for J0 and J 36

3.3 Basic Models for Positive and Negative Introspection 38

3.4 Adding Factivity: Mkrtychev Models 39

3.5 Basic and Mkrtychev Models for the Logic of Proofs LP 42

3.6 The Inevitability of Possible Worlds: Modular Models 42

3.7 Connecting Justifications, Belief, and Knowledge 45

3.8 History and Commentary 46

vii

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

4 Fitting Models 48

4.1 Modal Possible World Semantics 48

4.2 Fitting Models 49

4.3 Soundness Examples 52

4.4 Canonical Models and Completeness 60

4.5 Completeness Examples 65

4.6 Formulating Justification Logics 72

5 Sequents and Tableaus 75

5.1 Background 75

5.2 Classical Sequents 76

5.3 Sequents for S4 79

5.4 Sequent Soundness, Completeness, and More 81

5.5 Classical Semantic Tableaus 84

5.6 Modal Tableaus for K 90

5.7 Other Modal Tableau Systems 91

5.8 Tableaus and Annotated Formulas 93

5.9 Changing the Tableau Representation 95

6 Realization – How It Began 100

6.1 The Logic LP 100

6.2 Realization for LP 103

6.3 Comments 108

7 Realization – Generalized 110

7.1 What We Do Here 110

7.2 Counterparts 112

7.3 Realizations 113

7.4 Quasi-Realizations 116

7.5 Substitution 118

7.6 Quasi-Realizations to Realizations 120

7.7 Proving Realization Constructively 126

7.8 Tableau to Quasi-Realization Algorithm 128

7.9 Tableau to Quasi-Realization Algorithm Correctness 131

7.10 An Illustrative Example 133

7.11 Realizations, Nonconstructively 135

7.12 Putting Things Together 138

7.13 A Brief Realization History 139

8 The Range of Realization 141

8.1 Some Examples We Already Discussed 141

8.2 Geach Logics 142

8.3 Technical Results 144

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

8.4 Geach Justification Logics Axiomatically 147

8.5 Geach Justification Logics Semantically 149

8.6 Soundness, Completeness, and Realization 150

8.7 A Concrete S4.2/JT4.2 Example 152

8.8 Why Cut-Free Is Needed 155

9 Arithmetical Completeness and BHK Semantics 158

9.1 Arithmetical Semantics of the Logic of Proofs 158

9.2 A Constructive Canonical Model for the Logic of Proofs 161

9.3 Arithmetical Completeness of the Logic of Proofs 165

9.4 BHK Semantics 174

9.5 Self-Referentiality of Justifications 179

10 Quantifiers in Justification Logic 181

10.1 Free Variables in Proofs 182

10.2 Realization of FOS4 in FOLP 186

10.3 Possible World Semantics for FOLP 191

10.4 Arithmetical Semantics for FOLP 212

11 Going Past Modal Logic 222

11.1 Modeling Awareness 223

11.2 Precise Models 225

11.3 Justification Awareness Models 226

11.4 The Russell Scenario as a JAM 228

11.5 Kripke Models and Master Justification 231

11.6 Conclusion 233

References 234

Index 244

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

Why is this thus? What is the reason of this thusness?1

Modal operators are commonly understood to qualify the truth status of a

proposition: necessary truth, proved truth, known truth, believed truth, and so

on. The ubiquitous possible world semantics for it characterizes things in uni-

versal terms: �X is true in some state if X is true in all accessible states,

where various conditions on accessibility are used to distinguish one modal

logic from another. Then �(X → Y) → (�X → �Y) is valid, no matter what

conditions are imposed, by a simple and direct argument using universal quan-

tification. Suppose both �(X → Y) and �X are true at an arbitrary state. Then

both X and X → Y are true at all accessible states, whatever “accessible” may

mean. By the usual understanding of →, Y is true at all accessible states too,

and so �Y is true at the arbitrary state we began with. Although arguments like

these have a strictly formal nature and are studied as modal model theory, they

also give us some insights into our informal, everyday use of modalities. Still,

something is lacking.

Suppose we think of � as epistemic, and to emphasize this we use K instead

of � for the time being. For some particular X, if you assert the colloquial

counterpart of KX, that is, if you say you know X, and I ask you why you know

X, you would never tell me that it is because X is true in all states epistemically

compatible with this one. You would, instead, give me some sort of explicit

reason: “I have a mathematical proof of X,” or “I read X in the encyclopedia,”

or “I observed that X is the case.” If I asked you why K(X → Y) → (KX →

KY) is valid you would probably say something like “I could use my reason

for X and combine it with my reason for X → Y , and infer Y .” This, in effect,

would be your reason for Y , given that you had reasons for X and for X → Y .

1 Charles Farrar Browne (1834–1867) was an American humorist who wrote under the pen
name Artemus Ward. He was a favorite writer of Abraham Lincoln, who would read his
articles to his Cabinet. This quote is from a piece called Moses the Sassy, Ward (1861).

x
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Introduction xi

Notice that this neatly avoids the logical omniscience problem: that we know

all the consequences of what we know. It replaces logical omniscience with the

more acceptable claim that there are reasons for the consequences of what we

know, based on the reasons for what we know, but reasons for consequences are

more complicated things. In our example, the reason for Y has some structure

to it. It combines reasons for X, reasons for X → Y , and inference as a kind of

operation on reasons. We will see more examples of this sort; in fact, we have

just seen a fundamental paradigm.

In place of a modal operator, �, justification logics have a family of justifi-

cation terms, informally intended to represent reasons, or justifications. Instead

of �X we will see t:X, where t is a justification term and the formula is read “X

is so for reason t,” or more briefly, “t justifies X.” At a minimum, justification

terms are built up from justification variables, standing for arbitrary justifica-

tions. They are built up using a set of operations that, again at a minimum,

contains a binary operation ·. For example, x · (y · x) is a justification term,

where x and y are justification variables. The informal understanding of · is

that t · u justifies Y provided t justifies an implication with Y as its consequent,

and u justifies the antecedent. In justification logics the counterpart of

�(X → Y)→ (�X → �Y)

is

t:(X → Y)→ (u:X → [t · u]:Y)

where, as we will often do, we have added square brackets to enhance read-

ability. Note that this exactly embodies the informal explanation we gave in

the previous paragraph for the validity of K(X → Y) → (KX → KY). That

is, Y has a justification built from justifications for X and for X → Y using an

inference that amounts to a modus ponens application—we can think of the

· operation as an abstract representation of this inference. Other behaviors of

modal operators, �X → ��X for instance, will require operators in addition

to ·, and appropriate postulated behavior, in order to produce justification log-

ics that correspond to modal logics in which �X → ��X is valid. Examples,

general methods for doing this, and what it means to “correspond” all will be

discussed during the course of this book.

One more important point. Suppose X and Y are equivalent formulas, that is,

we have X ↔ Y . Then in any normal modal logic we will also have �X ↔ �Y .

Let us interpret the modal operator epistemically again, and write KX ↔ KY .

In fact, KX ↔ KY , when read in the usual epistemic way, can sometimes be

quite an absurd assertion. Consider some astronomically complicated tautol-

ogy X of classical propositional logic. Because it is a tautology, it is equivalent
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xii Introduction

to P ∨ ¬P, which we may take for Y . Y is hardly astronomically complicated.

However, because X ↔ Y , we will have KX ↔ KY . Clearly, we know Y es-

sentially by inspection and hence KY holds, while KX on the other hand will

involve an astronomical amount of work just to read it, let alone to verify it.

Informally we see that, while both X and Y are tautologies, and so both are

knowable in principle, any justification we might give for knowing one, com-

bined with quite a lot of formula manipulation, can give us some justification

for knowing the other. The two justifications may not, indeed will not, be the

same. One is simple, the other very complex.

Modal logic is about propositions. Propositions are, in a sense, the content

of formulas. Propositions are not syntactical objects. “It’s good to be the king”

and “Being the king is good” express the same proposition, but not in the same

way. Justifications apply to formulas. Equivalent formulas determine the same

proposition, but can be quite different as formulas. Syntax must play a funda-

mental role for us, and you will see that it does, even in our semantics. Consider

one more very simple example. A→ (A∧A) is an obvious tautology. We might

expect KA → K(A ∧ A). But we should not expect t:A → t:(A ∧ A). If t does,

in fact, justify A, a justification of A ∧ A may involve t, but also should in-

volve facts about the redundancy of repetition; t by itself cannot be expected

to suffice.

Modal logics can express, more or less accurately, how various modal opera-

tors behave. This behavior is captured axiomatically by proofs, or semantically

using possible world reasoning. These sorts of justifications for modal operator

behavior are not within a modal logic, but are outside constructs. Justification

logics, on the other hand, can represent the whys and wherefores of modal

behavior quite directly, and from within the formal language itself. We will

see that most standard modal logics have justification counterparts that can be

used to give a fine-grained, internal analysis of modal behavior. Perhaps, this

will help make clear why we used the quotation we did at the beginning of this

Introduction.

1 What Is This Book About?

How did justification logics originate? It is an interesting story, with reveal-

ing changes of direction along the way. Going back to the days when Gödel

was a young logician, there was a dream of finding a provability interpretation

for intuitionistic logic. As part of his work on that project, in Gödel (1933),

Gödel showed that one could abstract some of the key features of provabil-

ity and make a propositional modal logic using them. Then, remarkably but

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction xiii

naturally, one could embed propositional intuitionistic logic into the resulting

system. C. I. Lewis had pioneered the modern formal study of modal logics

(Lewis, 1918; Lewis and Langford, 1932), and Gödel observed that his system

was equivalent to the Lewis system S4. All modern axiomatizations of modal

logics follow the lines pioneered in Gödel’s note, while Lewis’s original for-

mulation is rarely seen today. Gödel showed that propositional intuitionistic

logic embedded into S4 using a mapping that inserted � in front of every sub-

formula. In effect, intuitionistic logic could be understood using classical logic

plus an abstract notion of provability: a propositional formula X is an intuition-

istic theorem if and only if the result of applying Gödel’s mapping is a theo-

rem of S4. (This story is somewhat simplified. There are several versions of

the Gödel translation—we have used the simplest one to describe. And Gödel

did not use the symbol � but rather an operator Bew, short for beweisbar, or

provability in the German language. None of this affects our main points.) Un-

fortunately, the story breaks off at this point because Gödel also noted that S4

does not behave like formal provability (e.g., in arithmetic), by using the meth-

ods he had pioneered in his work on incompleteness. Specifically, S4 validates

�X → X, so in particular we have �⊥ → ⊥ (where ⊥ is falsehood). This is

equivalent to ¬�⊥, which is thus provable in S4. If we had an embedding of

S4 into formal arithmetic under which � corresponded to Gödel’s arithmetic

formula representing provability, we would be able to prove in arithmetic that

falsehood was not provable. That is, we would be able to show provability of

consistency, violating Gödel’s second incompleteness theorem. So, work on an

arithmetic semantics for propositional intuitionistic logic paused for a while.

Although it did not solve the problem of a provability semantics for in-

tuitionistic logic, an important modal/arithmetic connection was eventually

worked out. One can define a modal logic by requiring that its validities are

those that correspond to arithmetic validities when reading � as Gödel’s prov-

ability formula. It was shown in Solovay (1976) that this was a modal logic

already known in the literature, though as noted earlier, it is not S4. Today, the

logic is called GL, standing for Gödel–Löb logic. GL is like S4 except that the

T axiom �X → X, an essential part of S4, is replaced by a modal formula

abstractly representing Löb’s theorem: �(�X → X) → �X. S4 and GL are

quite different logics.

By now the project for finding an arithmetic interpretation of intuitionistic

logic had reached an impasse. Intuitionistic logic embedded into S4, but S4

did not embed into formal arithmetic. GL embedded into formal arithmetic,

but the Gödel translation does not embed intuitionistic logic into GL.
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xiv Introduction

In his work on incompleteness for Peano arithmetic, Gödel gave a formula

Bew(x, y)

that represents the relation: x is the Gödel number of a proof of a formula with

Gödel number y. Then, a formal version of provability is

∃xBew(x, y)

which expresses that there is a proof of (the formula whose Gödel number is)

y. If this formula is what corresponds to � in an embedding from a modal lan-

guage to Peano arithmetic, we get the logic GL. But in a lecture in 1938 Gödel

pointed out that we might work with explicit proof representatives instead of

with provability (Gödel, 1938). That is, instead of using an embedding trans-

lating every occurrence of � by ∃xBew(x, y), we might associate with each oc-

currence of � some formal term t that somehow represents a particular proof,

allowing different occurrences of � to be associated with different terms t.

Then in the modal embedding, we could make the occurrence of � associated

with t correspond to Bew(ptq, y), where ptq is a Gödel number for t. For each

occurrence of � we would need to find some appropriate term t, and then each

occurrence of � would be translated into arithmetic differently. The existential

quantifier in ∃xBew(x, y) has been replaced with a meta-existential quantifier,

outside the formal language. We provide an explicit proof term, rather than

just asserting that one exists. Gödel believed that this approach should lead to

a provability embedding of S4 into Peano arithmetic.

Gödel’s proposal was not published until 1995 when Volume 3 of his col-

lected works appeared. By this time the idea of using a modal-like language

with explicit representatives for proofs had been rediscovered independently

by Sergei Artemov, see Artemov (1995, 2001). The logic that Artemov created

was called LP, which stood for logic of proofs. It was the first example of a

justification logic. What are now called justification terms were called proof

terms in LP.

Crucially, Artemov showed LP filled the gap between modal S4 and Peano

arithmetic. The connection with S4 is primarily embodied in a Realization

Theorem, which has since been shown to hold for a wide range of justification

logic, modal logic pairs. It will be extensively examined in this book. The con-

nection between LP and formal arithmetic is Artemov’s Arithmetic Complete-

ness Theorem, which also will be examined in this book. Its range is primarily

limited to the original justification logic, LP, and a few close relatives. This

should not be surprising, though. Gödel’s motivation for his formulation of S4

was that � should embody properties of a formal arithmetic proof predicate.

This connection with arithmetic provability is not present for almost all modal
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Introduction xv

logics and is consequently also missing for corresponding justification logics,

when they exist. Nonetheless, the venerable goal of finding a provability in-

terpretation for propositional intuitionistic logic had been attained. The Gödel

translation embeds propositional intuitionistic logic into the modal logic S4.

The Realization Theorem establishes an embedding of S4 into the justification

logic LP. And the Arithmetic Completeness Theorem shows that LP embeds

into formal arithmetic.

It was recognized from the very beginning that the connection between S4

and LP could be weakened to sublogics of S4 and LP. Thus, there were justi-

fication logic counterparts for the standard modal logics, K, K4, T, and a few

others. These justification logics had arithmetic connections because they were

sublogics of LP. The use of proof term was replaced with justification term. Al-

though the connection with arithmetic was weaker than it had been with LP,

justification terms still had the role of supplying explicit justifications for epis-

temically necessary statements. One can consult Artemov (2008) and Artemov

and Fitting (2012) for survey treatments, though the present book includes the

material found there.

Almost all of the early work on justification logics was proof-theoretically

based. Realization theorems were shown constructively, making use of a se-

quent calculus. The existence of an algorithm to compute what are called re-

alizers is important, but this proof-theoretic approach limits the field to those

logics known to have sequent calculus proof systems. For a time it was hoped

that various extensions of sequent and tableau calculi would be useful and,

to some extent, this has been the case. The most optimistic version of this

hope was expressed in Artemov (2001) quite directly, “Gabbay’s Labelled De-

ductive Systems, Gabbay (1994), may serve as a natural framework for LP.”

Unfortunately this seems to have been too optimistic. While the formats had

similarities, the goals were different, and the machinery did not interact well.

A semantics for LP and its near relatives, not based on arithmetic provabil-

ity, was introduced in Mkrtychev (1997) and is discussed in Chapter 3. (A con-

structive version of the canonical model for LP with a completeness theorem

can be found already in Artemov (1995).) Mkrtychev’s semantics did not use

possible worlds and had a strong syntactic flavor. Possible worlds were added

to the mix in Fitting (2005), producing something that potentially applied much

more broadly than the earlier semantics. This is the subject of Chapter 4. Us-

ing this possible world semantics, a nonconstructive, semantic-based, proof of

realization was given. It was now possible to avoid the use of a sequent cal-

culus, though the algorithmic nature of realization was lost. More recently, a

semantics with a very simple structure was created, Artemov’s basic semantics

(Artemov, 2012). It is presented in Chapter 3. Its machinery is almost minimal
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for the purpose. In this book, we will use possible world semantics to establish

very general realization results, but basic models will often be used when we

simply want to show some formula fails to be a theorem.

Though its significance was not properly realized at the time, in 2005 the

subject broadened when a justification logic counterpart of S5 was introduced

in Pacuit (2005) and Rubtsova (2006a, b), with a connecting realization theo-

rem. There was no arithmetical interpretation for this justification logic. Also

there is no sequent calculus for S5 of the standard kind, so the proof given for

realization was nonconstructive, using a version of the semantics from Fitting

(2005). The semantics needed some modification to what is called its evidence

function, and this turned out to have a greater impact than was first realized.

Eventually constructive proofs connecting S5 and its justification counterpart

were found. These made use of cut-free proof systems that were not exactly

standard sequent calculi. Still, the door to a larger room was beginning to open.

Out of the early studies of the logics of proofs and its variants a general

logical framework for reasoning about epistemic justification at large natu-

rally emerged, and the name, Justification Logic, was introduced (cf. Arte-

mov, 2008). Justification Logic is based on justification assertions, t:F, that are

read t is a justification for F, with a broader understanding of the word jus-

tification going beyond just mathematical proofs. The notion of justification,

which has been an essential component of epistemic studies since Plato, had

been conspicuously absent in the mathematical models of knowledge within

the epistemic logic framework. The Justification Logic framework fills in this

void.

In Fitting (2016a) the subject expanded abruptly. Using nonconstructive se-

mantic methods it was shown that the family of modal logics having justifica-

tion counterparts is infinite. The justification phenomenon is not the relatively

narrow one it first seemed to be. While that work was nonconstructive, there

are now cut-free proof systems of various kinds for a broader range of modal

logics than was once the case, and these have been used successfully to create

realization algorithms, in Kuznets and Goetschi (2012), for instance. It may be

that the very general proof methodologies of Fitting (2015) and especially Ne-

gri (2005) and Negri and von Plato (2001) will extend the constructive range

still further, perhaps even to the infinite family that nonconstructive methods

are known to work for. This is active current work.

Work on quantified justification logics exists, but the subject is considerably

behind its propositional counterpart. An important feature of justification log-

ics is that they can, in a very precise sense, internalize their own proofs. Doing

this for axioms is generally simple. Rules of inference are more of a problem.

Earlier we discussed a justification formula as a simple, representative exam-
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ple: t:(X → Y) → (u:X → [t · u]:Y). This, in effect, internalizes the axiomatic

modus ponens rule. The central problem in developing quantified justification

logics was how to internalize the rule of universal generalization. It turned out

that the key was the clear separation between two roles played by individual

variables. On the one hand, they are formal symbols, and one can simply infer

∀xϕ(x) from a proof of ϕ(x). On the other hand, they can be thought of as open

for substitution, that is, throughout a proof one can replace free occurrences

of x with a term t to produce a new proof (subject to appropriate freeness of

substitution conditions, of course). These two roles for variables are actually

incompatible. It was the introduction of specific machinery to keep track of

which role a variable occurrence had that made possible the internalization of

proofs, and thus a quantified justification logic.

An axiomatic version of first-order LP was introduced in Artemov and Ya-

vorskaya (Sidon) (2011) and a possible world semantics for it in Fitting (2011a,

2014b). A connection with formal arithmetic was established. There is a con-

structive proof of a Realization Theorem, connecting first-order LP with first-

order S4. Unlike propositionally, no nonconstructive proof is currently known

The possible world semantics includes the familiar monotonicity condition on

world domains. It is likely that all this can be extended to a much broader range

of quantified modal logics than just first-order S4, provided monotonicity is

appropriate. A move to constant domain models, to quantified S5 in particu-

lar, has been made, and a semantics, but not yet a Realization Theorem, can

be found in Fitting and Salvatore (2018). Much involving quantification is still

uncharted territory.

This book will cover the whole range of topics just described. It will not do

so in the historical order that was followed in this Introduction, but will make

use of the clearer understanding that has emerged from study of the subject

thus far. We will finish with the current state of affairs, standing on the edge of

unknown lands. We hope to prepare some of you for the journey, should you

choose to explore further on your own.

2 What Is Not in This Book?

There are several historical works and pivotal developments in justification

logic that will not be covered in the book due to natural limitations, and in this

section we will mention them briefly. We are confident that other books and

surveys will do justice to these works in more detail.

Apart from Gödel’s lecture, Gödel (1938), which remained unpublished
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until 1995 and thus could not influence development in this area, the first re-

sults and publications on the logic of proofs are dated 1992: a technical report,

Artemov and Straßen (1992), based on work done in January of 1992 in Bern,

and a conference presentation of this work at CSL’92 published in Springer

Lecture Notes in Computer Science as Artemov and Straßen (1993a). In this

work, the basic logic of proofs was presented: it had proof variables, and the

format t is a proof of F, but without operations on proofs. However, it already

had the first installment of the fixed-point arithmetical completeness construc-

tion together with an observation that, unlike provability logic, the logic of

proofs cannot be limited to one standard proof predicate “from the textbook”

or to any single-conclusion proof predicate.

This line was further developed in Artemov and Straßen (1993b), where the

logic of single-conclusion proof predicates (without operations on proofs) was

studied. This work introduced the unification axiom, which captures single-

conclusioness by propositional tools. After the full-scale logic of proofs with

operations had been discovered (Artemov, 1995), the logic of single-conclusion

proofs with operations was axiomatized in V. Krupski (1997, 2001). A similar

technique was used recently to characterize so-called sharp single-conclusion

justification models in Krupski (2018).

Another research direction pursued after the papers on the basic logic of

proofs was to combine provability and explicit proofs. Such a combination,

with new provability principles, was given in Artemov (1994). Despite its ti-

tle, this paper did not introduce what is known now as The Logic of Proofs,

but rather a fusion of the provability logic GL and the basic logic of proofs

without operations, but with new arithmetical principles combining proofs and

provability and an arithmetical completeness theorem. After the logic of proofs

paper (Artemov, 1995), the full-scale logic of provability and proofs (with op-

erations), LPP, was axiomatized and proved arithmetically complete in Sidon

(1997) and Yavorskaya (Sidon) (2001). A leaner logic combining provability

and explicit proofs, GLA, was introduced and proved arithmetically complete

in Nogina (2006, 2014b). Unlike LPP, the logic GLA did not use additional op-

erations on proofs other than those inherited from LP. Later, GLA was used to

find a complete classification of reflection principles in arithmetic that involve

provability and explicit proofs (Nogina, 2014a).

The first publication of the full-scale logic of proofs with operations, LP,

which became the first justification logic in the modern sense, was Artemov

(1995). This paper contains all the results needed to complete Gödel’s program

of characterizing intuitionistic propositional logic IPC and its BHK semantics

via proofs in classical arithmetic: internalization, the realization theorem for

S4 in LP, arithmetical semantics for LP, and the arithmetical completeness the-

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction xix

orem. It took six years for the corresponding journal paper to appear: Artemov

(2001). In Goris (2008), the completeness of LP for the semantics of proofs in

Peano arithmetic was extended to the semantics of proofs in Buss’s bounded

arithmetic S
1
2
. In view of applications in epistemology, this result shows that

explicit knowledge in the propositional framework can be made computation-

ally feasible. Kuznets and Studer (2016) extend the arithmetical interpretation

of LP from the original finite constant specifications to a wide class of con-

stant specifications, including some infinite ones. In particular, this “weak”

arithmetical interpretation captures the full logic of proofs LP with the total

constant specification.

Decidability of LP (with the total constant specification) was also estab-

lished in Mkrtychev (1997), and this opened the door to decidability and com-

plexity studies in justification logics using model-theoretic and other means.

Among the milestones are complexity estimates in Kuznets (2000), Brezh-

nev and Kuznets (2006), Krupski (2006a), Milnikel (2007), Buss and Kuznets

(2012), and Achilleos (2014a).

The arithmetical provability semantics for the Logic of Proofs, LP, natu-

rally generalizes to a first-order version with conventional quantifiers and to a

version with quantifiers over proofs. In both cases, axiomatizability questions

were answered negatively in Artemov and Yavorskaya (2001) and Yavorsky

(2001). A natural and manageable first-order version of the logic of proofs,

FOLP, has been studied in Artemov and Yavorskaya (Sidon) (2011), Fitting

(2014a), and Fitting and Salvatore (2018) and will be covered in Chapter 10.

Originally, the logic of proofs was formulated as a Hilbert-style axiomatic

system, but this has gradually broadened. Early attempts were tableau based

(which could equivalently be presented using sequent calculus machinery).

Tableaus generally are analytic, meaning that everything entering into a proof

is a subformula of what is being proved. This was problematic for attempts

at LP tableaus because of the presence of the · operation, which represented

an application of modus ponens, a rule that is decidedly not analytic. Suc-

cessful tableau systems, though not analytic, for LP and closely related logics

can be found in Fitting (2003, 2005) and Renne (2004, 2006). The analyticity

problem was overcome in Ghari (2014, 2016a). Broader proof systems have

been investigated: hypersequents in Kurokawa (2009, 2012), prefixed tableaus

in Kurokawa (2013), and labeled deductive systems in Ghari (2017). Indeed

some of this has led to new realization results (Artemov, 1995, 2001, 2002,

2006; Artemov and Bonelli, 2007; Ghari, 2012; Kurokawa, 2012).

Finding a computational reading of justification logics has been a natural

research goal. There were several attempts to use the ideas of LP for building

a lambda-calculus with internalization, cf. Alt and Artemov (2001), Artemov
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(2002), Artemov and Bonelli (2007), Pouliasis and Primiero (2014), and oth-

ers. Corresponding combinatory logic systems with internalization were stud-

ied in Artemov (2004), Krupski (2006b), and Shamkanov (2011). These and

other studies can serve as a ground for further applications in typed program-

ming languages. A version of the logic of proofs with a built-in verification

predicate was considered in Protopopescu (2016a, b).

The aforementioned intuition that justification logic naturally avoids the log-

ical omniscience problem has been formalized and studied in Artemov and

Kuznets (2006, 2009, 2014). The key idea there was to view logical omni-

science as a proof complexity problem: The logical omniscience defect oc-

curs if an epistemic system assumes knowledge of propositions, which have

no feasible proofs. Through this prism, standard modal logics are logically

omniscient (modulo some common complexity assumptions), and justification

logics are not logically omniscient. The ability of justification logic to track

proof complexity via time bounds led to another formal definition of logical

omniscience in Wang (2011a) with the same conclusion: Justification logic

keeps logical omniscience under control.

Shortly after the first paper on the logic of proofs, it became clear that the

logical tools developed are capable of evidence tracking in a general setting

and as such can be useful in epistemic logic. Perhaps, the first formal work in

this direction was Artemov et al. (1999), in which modal logic S5 was equiv-

alently modified and supplied with an LP-style explicit counterpart. Applica-

tions to epistemology have benefited greatly from Fitting semantics, which

connected justification logics to mainstream epistemology via possible worlds

models. In addition to applications discussed in this book, we would like to

mention some other influential work. Game semantics of justification logic

was studied in Renne (2008) and dynamic epistemic logic with justifications

in Renne (2008) and Baltag et al. (2014). In Sedlár (2013), Fitting semantics

for justification models was elaborated to a special case of the models of gen-

eral awareness. Multiagent justification logic and common knowledge has been

studied in Artemov (2006), Antonakos (2007), Yavorskaya (Sidon) (2008),

Bucheli et al. (2010, 2011), Bucheli (2012), Antonakos (2013), and Achilleos

(2014b, 2015a, b). In Dean and Kurokawa (2010), justification logic was used

for the analysis of Knower and Knowability paradoxes. A fast-growing and

promising area is probabilistic justification logic, cf. Milnikel (2014), Artemov

(2016b), Kokkinis et al. (2016), Ghari (2016b), and Lurie (2018).
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We are deeply indebted to all contributors to the exciting justification logic

project, without whom there would not be this book.

Very special thanks to our devoted readers for their sharp eyes and their

useful comments: Vladimir Krupski, Vincent Alexis Peluce, and Tatiana Ya-

vorskaya (Sidon).

I think there is no sense in forming an opinion when there is no evidence to form it

on. If you build a person without any bones in him he may look fair enough to the

eye, but he will be limber and cannot stand up; and I consider that evidence is the

bones of an opinion.2

2 Mark Twain (1835–1910). The quote is from his last novel, Personal Recollections of Joan of

Arc, Twain (1896).
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