Contents

Preface

1 Preliminary Concepts

1.1 Introduction 1
1.2 Historical Sketch 2
1.3 The Nonlinear Programming Problem 4
1.4 Optimization Problem Modeling 6
1.5 Graphical Solution of One- and Two-Variable Problems 17
1.6 Existence of a Minimum and a Maximum: Weierstrass Theorem 20
1.7 Quadratic Forms and Positive Definite Matrices 22
1.8 C^n Continuity of a Function 23
1.9 Gradient Vector, Hessian Matrix, and their Numerical Evaluation using Divided Differences 24
1.10 Taylor’s Theorem, Linear and Quadratic Approximations 29
1.11 Miscellaneous Topics 31
Chapter 1 Problems 34
Chapter 1 Computer Programs 37
Bibliography 38
A Few Leads to Optimization Software 41
Some Optimization Conferences 41
Some Optimization Specific Journals 42

2 One-Dimensional Unconstrained Minimization

2.1 Introduction 43
2.2 Theory Related to Single-Variable (Univariate) Minimization 43
2.3 Unimodality and Bracketing the Minimum 50
2.4 Fibonacci Method 52
2.5 Golden Section Search Method 58
2.6 Polynomial-Based Methods 62
2.7 Optimization of Non-unimodal Functions 69
2.8 Using MATLAB 76
2.9 Zero of a Function 76
Contents

Chapter 2 Problems 80
Chapter 2 Computer Programs 87
Bibliography 87

3 Unconstrained Optimization 88

3.1 Introduction 88
3.2 Necessary and Sufficient Conditions for Optimality 89
3.3 Convexity 92
3.4 Basic Concepts: Starting Design, Direction Vector, and Step Size 94
3.5 The Steepest Descent Method 96
3.6 The Conjugate Gradient Method 104
3.7 Newton’s Method 108
3.8 Quasi-Newton Methods 112
3.9 Approximate Line Search 117
3.10 Using MATLAB 119

Chapter 3 Problems 119
Chapter 3 Computer Programs 125
Bibliography 125

4 Linear Programming 127

4.1 Introduction 127
4.2 Linear Programming Problem 127
4.3 Problem Illustrating Modeling, Solution, Solution Interpretation, and Lagrange Multipliers 128
4.4 Problem Modeling 132
4.5 Geometric Concepts: Hyperplanes, Half-spaces, Polytopes, Extreme Points 137
4.6 Standard Form of an LP 138
4.7 The Simplex Method – Starting with LE (≤) Constraints 140
4.8 Treatment of GE and EQ Constraints 145
4.9 Revised Simplex Method 150
4.10 Duality in Linear Programming 153
4.11 The Dual Simplex Method 156
4.12 Criss-Cross Method 158
4.13 Sensitivity Analysis 161
4.14 Interior Approach 167
4.15 Quadratic Programming (QP) and the Linear Complementary Problem (LCP) 171

Chapter 4 Problems 174
Chapter 4 Computer Programs 180
Bibliography 180
5 Constrained Minimization

5.1 Introduction 182
5.2 Graphical Solution of Two-Variable Problems 185
5.3 Use of Excel SOLVER and MATLAB 186
5.4 Formulation of Problems in Standard NLP Form 188
5.5 Necessary Conditions for Optimality 189
5.6 Sufficient Conditions for Optimality 200
5.7 Convexity 204
5.8 Sensitivity of Optimum Solution to Problem Parameters 206
5.9 Rosen’s Gradient Projection Method for Linear Constraints 209
5.10 Zoutendijk’s Method of Feasible Directions (Nonlinear Constraints) 214
5.11 The Generalized Reduced Gradient Method (Nonlinear Constraints) 223
5.12 Sequential Quadratic Programming (SQP) 232
5.13 Features and Capabilities of Methods Presented in this Chapter 237

Chapter 5 Problems

Chapter 5 Computer Programs 252
Bibliography 252

6 Penalty Functions, Duality, and Geometric Programming

6.1 Introduction 254
6.2 Exterior Penalty Functions 254
6.3 Interior Penalty Functions 259
6.4 Extended Interior Penalty Functions 261
6.5 Duality 262
6.6 The Augmented Lagrangian Method 269
6.7 Geometric Programming 274

Chapter 6 Problems

Chapter 6 Computer Programs 285
Bibliography 285

7 Direct Search Methods for Nonlinear Optimization

7.1 Introduction 287
7.2 Cyclic Coordinate Search 287
7.3 Hooke and Jeeves Pattern Search Method 290
7.4 Rosenbrock’s Method 293
7.5 Powell’s Method of Conjugate Directions 296
7.6 Nelder and Mead Simplex Method 299
7.7 Simulated Annealing (SA) 305
7.8 Genetic Algorithm (GA) 309
Contents

7.9 Differential Evolution (DE) 314
7.10 Box’s Complex Method for Constrained Problems 315
7.11 Transformation of Variables to Remove some Bounds and Constraints 317
Chapter 7 Problems 319
Chapter 7 Computer Programs 326
Bibliography 326

8 Multiobjective Optimization 328

8.1 Introduction 328
8.2 Concept of Pareto Optimality 329
8.3 Significance and Generation of the Entire Pareto Surface 332
8.4 Methods to Identify a Single Best Compromise Solution 336
Chapter 8 Problems 345
Chapter 8 Computer Programs 349
Bibliography 349

9 Integer and Discrete Programming 351

9.1 Introduction 351
9.2 Zero–One Programming 353
9.3 Branch and Bound Algorithm for Mixed Integers (LP-based) 359
9.4 Gomory Cut Method 363
9.5 Farkas’ Method for Discrete Nonlinear Monotone Structural Problems 367
9.6 Genetic Algorithm for Discrete Programming 370
Chapter 9 Problems 370
Chapter 9 Computer Programs 374
Bibliography 374

10 Dynamic Programming 375

10.1 Introduction 375
10.2 The Dynamic Programming Problem and Approach 377
10.3 Problem Modeling and Computer Implementation 381
Chapter 10 Problems 385
Chapter 10 Computer Programs 387
Bibliography 388

11 Optimization Applications for Transportation, Assignment, and Network Problems 389

11.1 Introduction 389
11.2 Transportation Problem 389
11.3 Assignment Problems 396
11.4 Network Problems 400
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11 Problems</td>
<td>405</td>
</tr>
<tr>
<td>Chapter 11 Computer Programs</td>
<td>408</td>
</tr>
<tr>
<td>Bibliography</td>
<td>408</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 Finite Element and Simulation-Based Optimization</th>
<th>409</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>409</td>
</tr>
<tr>
<td>12.2 Derivative Calculations</td>
<td>412</td>
</tr>
<tr>
<td>12.3 Sizing (i.e. Parameter) Optimization via Optimality Criteria and</td>
<td>419</td>
</tr>
<tr>
<td>Nonlinear Programming Methods</td>
<td></td>
</tr>
<tr>
<td>12.4 Topology Optimization of Continuum Structures</td>
<td>423</td>
</tr>
<tr>
<td>12.5 Shape Optimization</td>
<td>426</td>
</tr>
<tr>
<td>12.6 Optimization With Dynamic Response</td>
<td>434</td>
</tr>
<tr>
<td>Chapter 12 Problems</td>
<td>440</td>
</tr>
<tr>
<td>Chapter 12 Computer Programs</td>
<td>445</td>
</tr>
<tr>
<td>Bibliography</td>
<td>446</td>
</tr>
</tbody>
</table>

Index

448