Part I

Introduction
Introduction

1.1 Humans and the Coastal Zone

The coastal zone is a dynamic environment influenced by atmospheric, oceanographic and terrestrial processes. The combination of processes operating in these systems shapes the coastal zone and determines whether dunes, cliffs or marshes are the primary landform along a particular section of coast. These coastal features evolve in response to variations in natural factors such as sea level, wave climate and sediment transfers between the land and ocean, as well as those due to human activities such as harbour construction and sand mining. In some areas, the accumulation of sediments or sea level fall may cause the land to advance seaward, while areas experiencing a net loss of sediment or a rising sea level may be eroded. Our changing climate means that coastal systems will experience significant change over the next century and there is a need to predict the nature and extent of coastal alternation based on a sound understanding of the physical and biological processes involved.

This book describes and explains the physical processes, and some biological ones, that act to shape our coast, and the unique landforms that develop in response to those processes. As in any other branch of applied science, these process–form interactions can be studied for their own interest. However, there are often aspects of this study which are of particular importance to human life and activities. For example, a large proportion of the world population is concentrated in the coastal zone, including almost all of the major cities such as New York, Tokyo, Amsterdam and Shanghai. The coastal zone is used for fishing, transportation, recreation, waste disposal, cooling and drinking water, and is a source of energy from wave and tidal power. Many of these activities pose an environmental threat to coastal systems, both physical and biological, through pollution, siltation, dredging, infilling and a host of other activities that alter the way natural systems operate. In recent years there has been increasing pressure from leisure activities focused on water sports, and recreation at the seashore (Figure 1.1). In addition, natural processes often pose a hazard to human occupation and utilisation of the coastal zone through wave action, flooding, storm surge, tsunami inundation, as well as through coastal erosion and sedimentation. Because of the threats to human life and activities posed by both environmental impact and natural hazards, there is a strong economic incentive to improve our understanding of processes operating in the coastal zone so that the effects of these hazards can be minimised. Such knowledge is also invaluable in the development of comprehensive coastal zone management planning.

Each maritime country has a unique perspective of their coastline, shaped by history and culture, and by the physical and biological nature of the coast itself. There are commonalities among great differences; for example, the people
of the Netherlands and of the Maldives both face a similar threat posed by a dense coastal population and rising sea level, even though one nation is situated on a large delta that has had a significant proportion of its area reclaimed by dyking, while the other sits on a small coral atoll. In popular tourist locations around the world and in particular in the Caribbean, the coast is quickly being developed and altered leading to new and unprecedented challenges for countries that are particularly vulnerable to sea level rise but lack the resources or the appropriate management agencies. In contrast, in the United States the US Army Corps of Engineers, a federal agency, has played a key role in coastal development and the management of coastal hazards and they have been in the forefront of applied research on coastal processes and engineering. In Canada there is no equivalent federal agency and the relatively small population and limited resources has left a much greater proportion of the coast relatively pristine.

Canada has one of the longest marine coastlines in the world and within it four distinct regions can be recognised (Figure 1.2). Almost all of the population of Canada lives within 50 km of one of these coasts, and more than half along the Great Lakes–St Lawrence system. The Pacific coast is dominated by swell waves and is generally ice free, while the Arctic coast is dominated by the presence of ice year-round and, in the eastern Arctic by ongoing post-glacial isostatic uplift. The east coast experiences strong mid-latitude storms as well as the effects of one or two hurricanes a year, and much of it is influenced by a seasonal ice cover. Along this coast, the tidal range is < 1 m in parts of the Gulf of St Lawrence and may be over 15 m in the Bay of Fundy. Finally, the Great Lakes are freshwater, but act as small seas, with tides being replaced by seasonal and long-term water level fluctuations. Like the Atlantic coast, seasonal ice foot development occurs in all the lakes and there is considerable surface ice cover on Lakes Erie and Huron.

The potential impact of oil exploration and exploitation off the Arctic and Atlantic coasts, destruction of coastal wetlands and interference with longshore sediment transport, as well as the effects of coastal erosion and storm-wave damage are examples of some of the conflicts that exist in the Canadian coastal zone and that provide a stimulus for developing an improved
knowledge and understanding of the features and processes.

1.2 Approaches to the Study of Coasts

Coastal geomorphology focuses on the morphology of the coastal zone and on processes such as waves, tides and currents that act to shape features as disparate as high rock cliffs, low coral atolls, muddy deltas and sandy beach and dune systems. Many of these landforms are formed through a combination of coastal, fluvial and aeolian processes, requiring close collaboration, and the sharing of paradigms, instrumentation, field methodology and modelling approaches across those areas of geomorphology.

The coastal zone and coastal processes are also the subject of study by a number of other disciplines, each of which brings a different focus or approach. In particular, there is considerable overlap of interest between coastal geomorphologists, sedimentologists, coastal oceanographers and coastal engineers in the study of waves and currents, and coastal erosion and deposition. While the ultimate objectives of the different disciplinary groups may be somewhat divergent, they share a common interest in expanding our understanding of these physical processes on Earth. Indeed, some coastal scientists and engineers are working with astronomers to help interpret the landscape history of Mars (e.g., Parker et al., 1993; Citron et al., 2018; Goudge et al., 2018). In recent decades, many of the artificial barriers that often separated these groups have disappeared. This is evident in the range of disciplines represented at international coastal conferences, in the groups of collaborators carrying out large projects, and in the contributors to most of the journals that appear in the reference lists at the end of each chapter in this book.

There are also areas of overlap between coastal geomorphologists and biologists studying the aquatic ecology of beaches, estuaries and marshes. For example, the development of coastal dunes is dependent on the presence and diversity of vegetation, which are in turn stressed by the waves and currents that accompany elevated...
INTRODUCTION

Water levels during large storms. Similarly, seagrass and marsh vegetation promote sediment deposition and substrate stability through the attenuation of waves and currents but are also susceptible to erosion by storm waves and currents. Estuaries and marshes play a significant role as nurseries for juvenile fish, and fisheries biologists have an interest in the functioning and conservation of these systems. The coastal zone provides habitat for many species of fish and shellfish, and some open water species may breed in coastal waters. Waves and currents are important for the dispersal of organisms and influence the presence and survival of shellfish, and a variety of other organisms that live in surface sediments of the sandy beach and nearshore environment. Coral reefs create unique and ecologically important environments because they attenuate swell and storm waves, but these systems are vulnerable to erosion by waves, sea level rise and ocean acidification. Globally, the loss of coral reefs will result in dramatic changes to the coast in tropical environments and a loss of ecological diversity.

1.3 Information Sources

There is a long history of the study of coastal processes and landforms. In the past 100 years or so there have been a number of textbooks, published in English, aimed at various levels of undergraduate and graduate instruction, and as resources for researchers of all kinds. Two books by D.W. Johnson (Johnson, 1919, 1925) provide a wealth of information about the coast of the United States and approaches to the study of coasts in the early twentieth century. An understanding of coastal geomorphology was important to the Allied invasion of Normandy in Operation Overlord during World War II. The position of the nearshore bars, influenced by the balance of storm and fair-weather waves, determined the distance that soldiers were exposed to the enemy as they stormed the beach. After World War II there was a rapid growth in studies of coastal geomorphology, marked by the appearance of the first edition of *Beaches and Coasts* by Cuchlaine King (1959) and a popular book by Willard Bascom (Bascom, 1964). Both of these highlighted the research that began in World War II. An English translation of a text by Zenkovitch (1967) provided access to a considerable body of literature from what was then the Soviet Union over the same period. This was followed in the early 1970s by the publishing of the *Coastal Engineering Manual* by the US Army Corps of Engineers through the Beach Erosion Board and later the Coastal Engineering Research Centre. This manual provided a background on coastal processes (particularly waves, wave hindcasting and sediment transport) that has guided coastal engineering and management. While designed primarily to support practising coastal engineers, it proved a useful source for people interested in physical processes in the coastal zone.

The past 40 years have seen a number of textbooks that provide a variety of different perspectives and many of these still provide a good source for information and insights on both processes and coastal landforms. Included in these are books by Davis, (1984), Carter (1988), Carter and Woodroffe (1994), Trenhaile (1997), Komar (1998), Short (1999), Bird (2000) and Woodroffe (2002), which were all generally aimed at senior undergraduates, graduate students, and researchers. Books by Pethick (1984), Masselink and Hughes (2003) and Davis and FitzGerald (2004) were aimed at providing an introduction to the subject that was accessible to undergraduates, both in terms of content and affordability. There are also a number of texts that are devoted to a specific aspect of coastal engineering (Kamphuis, 2000) or coastal geomorphology (Trenhaile, 1987; Sunamura, 1992; Nordstrom, 2000).

Much of the material in this book is drawn from articles published in journals and conference proceedings as well as some of the specialist texts noted above. While each chapter in this book can be read independently, one of our aims is to provide sufficient basic information on vocabulary, methods and processes to make exploring this literature much easier. Almost all the journals are now available online, and provide access to issues that go back to the journal.
inception. Increasingly, they provide a number of routes to access related publications. For example, the *Journal of Coastal Research* provides broad coverage of all the material covered in this book and includes physical and biological processes, aspects of coastal management and case studies from around the world. There is also considerable coverage in *Marine Geology, Continental Shelf Research, Coastal Engineering* and the *Journal of Estuarine, Coastal and Shelf Science*. Both *Geomorphology and Earth Surface Processes and Landforms* encourage papers on coastal geomorphology. Useful updates can be found in *Progress in Physical Geography* and substantial reviews often appear in *Earth Science Reviews, Annual Review of Fluid Mechanics* and *Annual Review of Earth and Planetary Sciences*. Google Scholar provides an easy way to search journal papers and conference proceedings to explore almost every aspect of coastal geomorphology.

Conferences provide a major forum for the exchange of information and ideas, and published conference proceedings still provide a useful source of new information. The *Coastal Engineering Conferences* sponsored by the American Society of Civil Engineers (ASCE) began just after World War II and are held every two years, with additional and specialised conferences such as *Coastal Sediments* and *Coastal Dynamics* held every four years. The Coastal Education Research Foundation, which sponsors the *Journal of Coastal Research*, also sponsors an International Coastal Symposium (ICS), which is held every two or three years in countries around the world. In Canada the first Canadian Coastal Conference was held in Halifax in 1978 (McCann, 1980) under the auspices of the Geological Survey of Canada. Beginning in 1980, Canadian Coastal Conferences were held every two or three years, sponsored initially through a committee of the National Research Council and later by its successor the Canadian Coastal Science and Engineering Association (CCSEA). In the past two decades meetings of Coastal Zone Canada have highlighted most work on coastal management and processes in Canada. In addition to these specialised conferences, coastal geomorphology has become an important focus with dedicated sessions at the annual conferences of the Geological Society of America (GSA), American Association of Geographers (AAG), and the American Geophysical Union (AGU). Aeolian processes are discussed at the International Conference on Aeolian Research, which is now held every two years, and aeolian manuscripts are published in *Aeolian Research*, the *Journal of Geophysical Research*, and most other geomorphology journals.

There is, of course, a vast amount of material available on the Internet, from real-time access to data from wave buoys and cameras set up at various beaches, to data and information provided by a host of government departments and agencies, and from websites of individual organisations and researchers. A good search engine will open up a huge range of possibilities and the problem is to determine what is relevant and what is not. This is why texts like this are important to training the generation of coastal geomorphologists and scientists who will need to respond to a rapidly changing coastal system. The intense media coverage of natural disasters in the coastal zone such as the December 2004 tsunami in the Pacific and Indian oceans, and Hurricane Katrina (2005) in the United States focused our attention on vulnerability and adaptation to these and other coastal hazards. Recent events such Hurricane Ike (2008), Superstorm Sandy (2012) and an increasing frequency of nor’easters along the Atlantic Seaboard of the United States have maintained and even elevated this focus on coastal geomorphology, particularly given the threat of rapid sea level rise predicted over the next century. Given that several hundred million people live along, at or close to the coast, sea level rise and storm erosion pose a significant socio-economic threat in the future. As a consequence, there is a growing acknowledgement of the need for some comprehensive system of coastal zone management to facilitate adaptation to natural hazards and to reduce human impact on natural coastal systems. It is hoped that the material presented in this book can be used to provide coastal managers with background on the physical processes and features of the coastal zone which need to be considered in developing effective management strategies and plans to ensure resiliency of the coastal environment.
References

