Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

LIQUID CRYSTALS AND THEIR COMPUTER SIMULATIONS

Standing as the first unified textbook on the subject, *Liquid Crystals and Their Computer Simulations*, provides a comprehensive and up-to-date treatment of liquid crystals and of their Monte Carlo and Molecular Dynamics computer simulations. Liquid crystals have a complex physical nature, and, therefore, computer simulations are a key element of research in this field. This modern text develops a uniform formalism for addressing various spectroscopic techniques and other experimental methods for studying phase transitions of liquid crystals and emphasizes the links between their molecular organization and observable static and dynamic properties. Aided by the inclusion of a set of Appendices containing detailed mathematical background and derivations, this book is accessible to a broad and multidisciplinary audience. Primarily intended for graduate students and academic researchers, it is also an invaluable reference for industrial researchers working on the development of liquid crystal display technology.

CLAUDIO ZANNONI obtained his PhD in Chemical Physics from Southampton University in 1975 and has been Professor of Physical Chemistry (now Emeritus) at the University of Bologna since 1987. He has extensive experience in the field, having published some 300 papers and delivered over 350 lectures worldwide on computer simulations and molecular theories of liquid crystals. He is also past president (2012–2016) of the International Liquid Crystal Society. In 1998 he founded, and since then directs, the International School of Liquid Crystals in Erice.

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

LIQUID CRYSTALS AND THEIR COMPUTER SIMULATIONS

CLAUDIO ZANNONI

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108424059 DOI: 10.1017/9781108539630

© Claudio Zannoni 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Zannoni, Claudio, author. Title: Liquid crystals and their computer simulations / Claudio Zannoni. Description: New York : Cambridge University Press, 2022. | Includes bibliographical references and index. Identifiers: LCCN 2021058085 (print) | LCCN 2021058086 (ebook) | ISBN 9781108424059 (hardback) | ISBN 9781108539630 (epub) Subjects: LCSH: Liquid crystals. | Liquid crystals–Computer simulation. | BISAC: SCIENCE / Physics / General Classification: LCC QD923 .Z36 2022 (print) | LCC QD923 (ebook) | DDC 530.4/29–dc23/eng20220208 LC record available at https://lccn.loc.gov/2021058085 LC ebook record available at https://lccn.loc.gov/2021058086

ISBN 978-1-108-42405-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

> To my wife, Nicoletta, for her support over all these years and for believing that I would finish this project even when I doubted it.

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

Contents

Preface		<i>page</i> xiii	
1	Phases and Mesophases		1
	1.1	Introduction	1
	1.2	Nematics	4
	1.3	Polymeric Nematics	16
	1.4	Chiral Nematics	18
	1.5	Twist-Bend Nematic Phase	26
	1.6	Biaxial Nematics	26
	1.7	Orthogonal Smectics	28
	1.8	Tilted Smectics	34
	1.9	Smectic Liquid Crystal Polymers	38
	1.10	Discotic and Columnar Phases	38
	1.11	Lyotropics	44
	1.12	Chromonics	51
	1.13	Ionic Liquid Crystals	52
	1.14	Colloidal Suspensions	53
	1.15	Lyotropic Liquid Crystal Polymers	56
	1.16	Liquid Crystal Elastomers	57
	1.17	Active Liquid Crystals	59
2	Phase Transitions		61
	2.1	Transitions between Phases	61
	2.2	Phase Diagrams for One-Component Systems	62
	2.3	Ehrenfest Classification of Phase Transitions	69
	2.4	The Clausius–Clapeyron Equation	73
	2.5	Empirical Order Parameters	75
	2.6	Critical Exponents	77
	2.7	Landau Theory	79
	2.8	Lattice Models	85

viii		Contents	
	2.9	The Nematic-Isotropic Transition	90
	2.10	Blue Phases	92
	2.11	Columnar Liquid Crystals	93
	2.12	Smectic Transitions	94
	2.13	Liquid Crystal Polymers	98
	2.14	Lyotropics	99
	2.15	Phase Diagrams for Colloidal Suspensions	103
3	Order	Parameters	107
	3.1	Single Particle Distributions	107
	3.2	Positional Order	111
	3.3	Orientational Order for Uniaxial Molecules	114
	3.4	Experimental Determination of Orientational Order Parameters	117
	3.5	Orientational Order from Computer Simulations	124
	3.6	Landau-deGennes Q-Tensor Approach	127
	3.7	Physical Significance of Order Parameters	129
	3.8	Maximum Entropy	131
	3.9	Orientational Order Parameters from X-ray Diffraction	140
	3.10	Non-Cylindrical Molecules in Uniaxial Phases	143
	3.11	Orientational Order in Biaxial Phases	155
	3.12	Flexible Molecules	162
	3.13	Order in Smectics	170
	3.14	Columnar Phases	173
4	Distril	outions	174
	4.1	Phase Space Distributions	174
	4.2	Canonical Conditions	176
	4.3	Isobaric-Isothermal Ensemble	181
	4.4	Grand Canonical Ensemble	182
	4.5	Microcanonical Conditions	182
	4.6	Structural Properties	183
	4.7	The Pair Distribution in Various Phases	188
	4.8	Invariant Expansion of the Pair Distribution	189
	4.9	Reduced Distributions	199
	4.10	Some Thermodynamic Properties	204
	4.11	Pretransitional Behaviour	212
	4.12	Pair Correlations and X-ray Scattering	214
5	Partic	e–Particle Interactions	219
	5.1	Intermolecular Interactions	219
	5.2	Spherical Particles	223

		Contents	ix
	5.3	Buckingham Potential	230
	5.4	Atomistic Force Fields	231
	5.5	Hard Anisotropic Particles (Shape Matters!)	242
	5.6	Attractive-Repulsive Rigid Particles	246
	5.7	Electrostatic Multipoles	258
	5.8	Inductive and Dispersive Interactions	269
	5.9	Distributed Effective Charges	280
	5.10	Chiral Interactions	282
	5.11	Hydrogen Bonds	283
6	Dynamics and Dynamical Properties		288
	6.1	Introduction	288
	6.2	Dynamic Evolution of Molecular Properties	288
	6.3	Single Particle Dynamics	290
	6.4	Orientational Correlation Functions	291
	6.5	Orientational Joint Distributions	292
	6.6	Correlations at Short and Long Times	295
	6.7	Translational Diffusion	301
	6.8	Time Correlation Functions from Trajectories	305
	6.9	Contact with Experiment: Linear Response Theory	307
	6.10	Dielectric Properties	309
	6.11	Ionic Conductivity	315
	6.12	Thermal Conductivity	316
	6.13	Viscosities	318
	6.14	Molecular Reorientation as a Stochastic Process	320
7	Mole	cular Theories	332
	7.1	Molecular Fields	332
	7.2	Maier-Saupe Theory: A Simple Introduction	333
	7.3	Generalized Mean Field Theory for Uniaxial Nematics	338
	7.4	Biaxial Nematic Phases	346
	7.5	Uniaxial Smectic Phases	348
	7.6	Density Functional Onsager Theory	350
	7.7	Generalized Onsager Theories	356
8	Mont	e Carlo Methods	359
	8.1	Introduction	359
	8.2	Metropolis Method	360
	8.3	Simulations in Non-Canonical Ensembles	369
	8.4	Calculation of Thermodynamic Observables	370
	8.5	Pair Correlation Coefficients	375

х		Contents	
	8.6	The Cluster Monte Carlo Method	376
	8.7	Reweighting Techniques	378
9	The N	Iolecular Dynamics Method	379
	9.1	Introduction	379
	9.2	Equations of Motion for Atomistic Systems	380
	9.3	Integration of the Atomistic Equations of Motion	381
	9.4	Equations of Motion for Rigid Anisotropic Particles	387
	9.5	Constant Temperature Molecular Dynamics	393
	9.6	Constant Pressure Molecular Dynamics	395
	9.7	Calculation of Static and Dynamic Properties	396
	9.8	Hybrid Molecular Dynamics-Monte Carlo Methods	397
	9.9	Simulation Packages	398
10	Lattic	e Models	401
	10.1	Introduction	401
	10.2	Lebwohl–Lasher Model	402
	10.3	Biaxial Lattice Models	411
	10.4	Confined Nematics: Films, Droplets,	414
	10.5	Polarized Optical Microscopy Textures	415
	10.6	Topological Defects	416
	10.7	Nematic Films	418
	10.8	Polymer-Dispersed Liquid Crystal Droplets	425
	10.9	Liquid Crystal Shells	431
11	Mole	cular Simulations	434
	11.1	Empirical Anisotropic Models	434
	11.2	Anisotropic Spherical Particles	435
	11.3	Anisotropic Aggregates of Spherical Particles	438
	11.4	Anisotropic Hard Particles	441
	11.5	Gay–Berne Models	445
	11.6	Adding Electrostatic Contributions to Gay-Berne Models	465
	11.7	Biaxial Nematics	471
	11.8	Rigid Multisite Gay–Berne	472
	11.9	Flexible Multisite Gay–Berne and Liquid Crystal Polymers	475
	11.10	Liquid Crystal Elastomers	480
12	Atom	istic Simulations	487
	12.1	Introduction	487
	12.2	Quinquephenyl and the Rigid Rod Approximation	488
	12.3	Odd-Even Effect in Cinnamates	497
	12.4	Cyano-biphenyls	499

	Contents	xi
12.5 12.6 12.7 12.8	Surface Anchoring Discotics and Columnar Phases Lyotropics Some Comments and an Outlook	508 523 525 534
Appendix A	A Modicum of Linear Algebra	537
Appendix B	Tensors and Rotations	547
Appendix C	Taylor Series	555
Appendix D	The Dirac Delta Function	558
Appendix E	Fourier Series and Transforms	562
Appendix F	Wigner Rotation Matrices and Angular Momentum	566
Appendix G	Molecular and Mesophase Symmetry	574
Appendix H	Quaternions and Rotations	587
Appendix I	Nuclear Magnetic Resonance	592
Appendix J	X-ray Diffraction	596
Appendix K	Stochastic Processes	602
Appendix L	Simulating Polarized Optical Microscopy Textures	604
Appendix M	Units and Conversion Factors	607
Appendix N	Acronyms and Symbols	608
References Index		622 675

Preface

There are two main approaches to the theoretical study of liquid crystals: continuum and molecular.

The first, well covered in various good books [Chandrasekhar, 1992; de Gennes and Prost, 1993; Virga, 1994; Kleman and Lavrentovich, 2003; Stewart, 2004; Oswald and Pieranski, 2005, 2006; Barbero and Evangelista, 2006], considers anisotropic systems at macroscopic level and typically deals with optical and elastic properties as well as with many practical electro-optical applications of liquid crystals. At the continuum level, liquid crystals are assumed to exist and their properties (e.g. elastic constants and viscosities) to be known, insofar as they are needed to parameterize the relevant equations. Molecules, phase transitions and spectroscopic properties are not normally taken into consideration. In this line of work computer simulations typically refer to a determination of the preferred orientation (director) or of the ordering tensor field that minimize the elastic free energy under a variety of boundary conditions, while dynamics is normally related to the solution of hydrodynamics equations for anisotropic fluids.

The other main line of investigation deals with the molecular organization of liquid crystals and how their macroscopic behaviour can be understood in terms of constituent molecules (or colloidal particles, as appropriate) and their interactions, particularly with the help of computer simulation techniques. It is definitely this microscopic approach that we shall follow in this book, discussing in some detail the main types of liquid crystal phases as well as theoretical and computer simulation approaches. I believe that such a book does not exist at the moment and that it might be useful to have one. On one hand, books dealing with liquid crystals [de Gennes, 1974; Chandrasekhar, 1992; Chaikin and Lubensky, 1995; Collings and Hird, 1997; Khoo, 2007; Blinov, 2011] hardly talk of computer simulations, since they are focussed on other aspects or, possibly, because their development is relatively recent. On the other, good textbooks on computer simulations also exist [Frenkel and Smit, 2002; Berendsen, 2007; Allen and Tildesley, 2017], but none deals specifically with liquid crystals. This is a major problem, since computer simulations of liquid crystals need to go beyond the standard calculations of thermodynamics properties or radial distributions and should relate to relevant experiments in the field. In particular, this requires developing appropriate methodologies to calculate the anisotropic, tensorial, observables, order parameters, space and time correlation functions, director field and defects, that are characteristic

xiii

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

xiv

Preface

features of liquid crystals, and to make contact with what is actually measurable, e.g. from spectroscopic or diffraction experiments. Some of these aspects have been addressed in multi-author books [Luckhurst and Gray, 1979; Pasini and Zannoni, 2000; Lavrentovich et al., 2001; Pasini et al., 2005b], some of which I have co-edited. However, these books are now at least 15 years old, while very many new applications, e.g. all the predictive atomistic simulations of liquid crystals, have been developed more recently. It is also worth stressing that liquid crystals are an intrinsically interdisciplinary topic and many of the background tools needed for their understanding are drawn from different curricula, especially physics and chemistry, but also mathematics, biology, etc. A similar problem arises even within a single discipline when we wish to treat different anisotropic materials like low-molar-mass liquid crystals, polymers and membranes. At the moment, these topics are presented separately in reviews or book chapters. While these have the advantage of a detailed treatment of specific advanced topics, we aim here at a consistent approach that tries to amalgamate the various topics. For example, much of the background required to understand the application to liquid crystals of different spectroscopic techniques, such as Nuclear Magnetic Resonance (NMR), Fluorescence Depolarization (FD), Dielectric Relaxation (DR), X-ray, etc., is largely similar, even though the different fields have developed independently and often with a different jargon and notation for the same quantities, so that a unified treatment should now be timely. Such an approach, in terms of order parameters and correlation functions, is also key to predicting observables from computer simulations and comparing with experimental results. The book provides the basic conceptual and technical tools needed by a student towards the end of an undergraduate curriculum or at the beginning of a postgraduate course (in physics, chemistry, material sciences, engineering or mathematics), or more generally by someone starting research in liquid crystals. The book has grown from undergraduate and graduate courses that I have taught for a number of years at Bologna University as well as from lectures that I have given at a number of summer schools and at universities around the world, from Southampton to Kuala Lumpur. On the basis of this experience, I have made an effort to put together some of the contents useful for a fairly gentle introduction to liquid crystals at molecular level.

In summary, the organization of the book is as follows. The first part of the book introduces the various kinds of mesophases and their phase transitions from the thermodynamic point of view (Chapters 1 and 2) as well as in terms of order parameters (Chapter 3). The essentials of how various experimental techniques (Linear Dichroism (LD), FD, NMR, etc.) can be employed to determine order parameters are introduced. Pair correlations and their relation to various experimental quantities (elastic constants, X-ray scattering) are presented in Chapter 4, while the reorientational dynamics of molecules in liquid crystals is described in Chapter 6, with a detailed discussion of orientational correlation functions and of their properties. The calculation of these time dependent correlation functions using stochastic models (rotational diffusion in particular) is also presented. Connection with experiments providing information on dynamic properties is introduced with Linear Response Theory and some important cases (DR, ionic transport, thermal conductivity, viscosities) examined in some detail. Given the huge variety of liquid crystal phases, the systems are chosen with modelling and simulations in mind. Simulations are also viewed as a set of 'computer

Cambridge University Press & Assessment 978-1-108-42405-9 — Liquid Crystals and Their Computer Simulations Claudio Zannoni Frontmatter <u>More Information</u>

Preface

experimental' techniques able to generate 'configurations', i.e. snapshots of the positions and orientations of a sample of N molecules at equilibrium. The availability of these sets of configurations or of trajectories, i.e. of their time evolution, will, perhaps unconventionally, be assumed to be available, at least in principle. even in the first part of the book, so as to connect the various concepts introduced to characterize the liquid crystal phases to simulations. However, the details of how to perform the simulations will only be given in the second part of the book. Intermolecular and more generally particle-particle interactions are introduced in Chapter 5 and Molecular Field and Onsager theories, the most important approximate statistical mechanical approaches currently used, are discussed in Chapter 7. We then turn to computer simulation techniques. Both Monte Carlo (MC) and Molecular Dynamics (MD) methodologies are introduced in Chapter 8 and in Chapter 9, respectively, with special attention given to the calculation of anisotropic properties. The following chapters are devoted to the application of computer simulation techniques to liquid crystals at multiple length scale: Lattice (Chapter 10), Off Lattice Molecular (Chapter 11) and fully Atomistic models (Chapter 12). Most of the required mathematics is covered in a series of Appendices, hopefully making the book fairly self contained. Thus, spherical tensors, Wigner matrices, quaternions and other tools useful for dealing with rotations, which have normally to be extracted from books on angular momentum and quantum mechanics, are treated here with our applications in mind. Even simpler topics, like orthogonal basis sets, Dirac delta functions and Fourier transforms, typically treated in a physics curriculum, but not always in chemistry courses, are covered, with an eye to the practical user. The majority of chapters also have a detailed treatment of some 'simple' but relevant cases (sections) that can be read independently from the rest and could be used, e.g. for undergraduate courses. If the huge increase in computer performance and resources continues (it has been of a factor of the order of 10^5 in the last 20 years), the vision is that computer simulations will become very widespread and used more and more by industry and by non-specialists in the field. Knowing the basic ingredients of computer simulations thus seem important even for potential users, rather than just for developers, even when dealing with materials as complex as liquid crystals.

In closing I wish to thank the many friends, students and colleagues that have helped providing advice and support. I am particularly grateful to Lara Querciagrossa, also for much essential help with the figures, and to Sergio Cataliotti who have both carefully read and corrected all the chapters. I am indebted to Andy Emerson, Alessandro Porreca and Riccardo Tarroni for some figures and to Matteo Babbi, Gianni Bendazzoli, Roberto Berardi, Martin Čopič, Raffaele della Valle, Juho Lintuvuori, Luca Muccioli, Silvia Orlandi, Guido Raos, Matteo Ricci, Lorenzo Soprani, Marco Mazza and Francesco Spinozzi for reading, correcting and commenting on some parts of the draft. All remaining errors are of course my responsibility. I am also very grateful to Oleg Lavrentovich for the beautiful image of a liquid crystal texture used for the cover and last, but certainly not least, to Roberto Berardi (unfortunately now prematurely deceased) and to Geoffrey Luckhurst for many essential discussions over the last few decades.

Part of this book was written at the Isaac Newton Institute, Cambridge, UK, and I am extremely grateful for the hospitality and for the stimulating atmosphere and the discussions with many colleagues that I thoroughly enjoyed there.

XV