

Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications

Discover a modern approach to the analysis, modeling and design of high sensitivity phased arrays. Network theory, numerical methods and computational electromagnetic simulation techniques are uniquely combined to enable full system analysis and design optimization. Beamforming and array signal processing theory are integrated into the treatment from the start. Digital signal processing methods such as polyphase filtering and RFI mitigation are described, along with technologies for real time hardware implementation. Key concepts from interferometric imaging used in radio telescopes are also considered. A basic development of theory and modeling techniques is accompanied by problem sets that guide readers in developing modeling codes that retain the simplicity of the classical array factor method while incorporating mutual coupling effects and interactions between elements. Combining current research trends with pedagogical material suitable for a first-year graduate course, this is an invaluable resource for students, teachers, researchers, and practicing RF/microwave and antenna design engineers.

Karl F. Warnick is a Professor in the Department of Electrical and Computer Engineering at Brigham Young University, and a Fellow of the IEEE.

Rob Maaskant is an Associate Professor at Chalmers University of Technology and the Eindhoven University of Technology.

Marianna V. Ivashina is a Professor in the Department of Electrical Engineering at Chalmers University of Technology.

David B. Davidson is the Director of Engineering at the International Centre for Radio Astronomy Research and the Chair of Radio Astronomy Engineering, both at Curtin University, and Professor Extraordinary at the University of Stellenbosch. He is a Fellow of the IEEE.

Brian D. Jeffs is a Professor in the Department of Electrical and Computer Engineering at Brigham Young University

Cambridge University Press

978-1-108-42392-2 — Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications Karl F. Warnick , Rob Maaskant , Marianna V. Ivashina , David B. Davidson , Brian D. Jeffs

More Information

EuMA High Frequency Technologies Series

Series Editor

Peter Russer, Technical University of Munich

Homayoun Nikookar, Wavelet Radio

Thomas Zwick, Werner Wiesbeck, Jens Timmermann, and Grzegorz Adamiuk (Eds), *Ultra-wideband RF System Engineering*

Er-Ping Li and Hong-Son Chu, Plasmonic Nanoelectronics and Sensing

Luca Roselli (Ed), Green RFID Systems

Vesna Crnojević-Bengin, Advances in Multi-band Microstrip Filters

Natalia Nikolova, Introduction to Microwave Imaging

Karl F. Warnick, Rob Maaskant, Marianna V. Ivashina, David B. Davidson, and Brian D. Jeffs, *Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications*

Forthcoming

Peter Russer, Johannes Russer, Uwe Siart, and Andreas Cangellaris, *Interference and Noise in Electromagnetics*

Maurizio Bozzi, Apostolos Georgiadis, and Ke Wu, Substrate Integrated Waveguides Luca Pierantoni, Fabio Coccetti, and Davide Mencarelli, Radiofrequency Nanoelectronics Engineering

Alexander Yarovoy, Introduction to UWB Wireless Technology and Applications
Philippe Ferrari, Rolf Jakoby, Onur Karabey, Gustavo Rehder, and Holger Maune,
Reconfigurable Circuits and Technologies for Smart Millimeter-Wave Systems

Luca Roselli, Enabling Technologies for The Internet of Things

Costas Sarris and Andrew Austin, *Uncertainty Quantification in Computational Electromagnetics*

Nuno Borges Carvalho, Alessandra Costanzo, Apostolos Georgiadis, and Franco Mastri, *Wireless Power Transfer*

"Anyone interested in phased arrays should read this book - it provides an excellent insight into this technology and while aimed at principally at the imaging community has widespread application. The treatment of noise in a mutual coupled array is particularly useful."

Professor Tony Brown, Manchester University

"Many headline discoveries in radio astronomy are products of phased arrays. This book deals with new-generation arrays born of the revolution in information processing systems and enabled by contemporary electromagnetic design tools. Covering real exemplar instruments, the book is broad in scope and detailed in its presentation of array design theory, allied signal processing and practical implementations. The authors' cross-disciplinary approach extends to remote sensing and satellite applications, and they provide much-needed links to mainstream antenna engineering. Aimed at research engineers, the book is also invaluable to graduate students and professionals seeking an overview of leading-edge practice."

Peter J. Hall, Emeritus Professor of Radio Astronomy Engineering, Curtin University

Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications

KARL F. WARNICK

Brigham Young University, Provo, Utah, USA

ROB MAASKANT

Chalmers University of Technology, Gothenburg, Sweden, and Eindhoven University of Technology, Netherlands

MARIANNA V. IVASHINA

Chalmers University of Technology, Gothenburg, Sweden

DAVID B. DAVIDSON

University of Stellenbosch, South Africa, and Curtin University, Perth, Australia

BRIAN D. JEFFS

Brigham Young University, Provo, Utah, USA

More Information

Cambridge University Press 978-1-108-42392-2 — Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications Karl F. Warnick , Rob Maaskant , Marianna V. Ivashina , David B. Davidson , Brian D. Jeffs Frontmatter

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108423922

DOI: 10.1017/9781108539258

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-42392-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

	Preface		
	Ackn	nowledgements	xiii
	Nota	tion and Units	xv
1	Phased Arrays for High-sensitivity Receiver Applications		
	1.1	Contemporary Design Methods for Phased Arrays	2
	1.2	Phased Arrays in Radio Astronomy	4
	1.3	Phased Arrays for Passive Remote Sensing	18
	1.4	Phased Arrays for Satellite Communications	22
	1.5	System Requirements, Figures of Merit, and Antenna Terms	24
	1.6	Summary	32
2	Active Antenna Receivers		
	2.1	Voltage, Current, and Field Phasors	39
	2.2	Coordinate Systems	40
	2.3	Transmitting Antennas	42
	2.4	Receiving Antennas	51
	2.5	Equivalent Circuit Models	53
	2.6	Spectral Output Noise Power	57
	2.7	Single Active Antenna SNR Model	70
	2.8	Summary	76
3	Ante	nna Examples	80
	3.1	Isotropic Radiator	80
	3.2	Hertzian Dipole	81
	3.3	Linear Antenna	83
	3.4	Loop Antenna	86
	3.5	Comparison of Dipole and Loop Antennas	89
	3.6	Patch Antennas	92
	3.7	Aperture Antennas	96
	3.8	Summary	103
4	Trans	smitting Arrays, Network Analysis, and Pattern Overlap Integrals	106
	4.1	The Array Factor and Classical Array Analysis	107

More Information

viii **Contents**

	4.2	Network Analysis Methods for Phased Arrays	120
	4.3	Transmitting Array Model	122
	4.4	Network Theory Model and the Impedance Matrix Representation	123
	4.5	Active Impedances	124
	4.6	Embedded Element Patterns	125
	4.7	Beamformer Weight Vector	130
	4.8	Pattern Overlap Integrals	132
	4.9	Directivity Optimization	137
	4.10	The Overlap Matrix and Mutual Resistance	141
	4.11	Antenna Losses and Radiation Efficiency	143
	4.12	Gain for Transmitting Arrays	144
	4.13	Modeling Antenna Arrays in the Network Theory Framework	145
	4.14	The Lossless, Resonant, Minimum Scattering Approximation	146
	4.15	Summary	149
5	Array	Receiver Theory and Modeling	154
	5.1	Receiving Array Network Model	154
	5.2	Receiving Pattern Directivity and Reciprocity for Active Arrays	161
	5.3	Signal and Noise Correlation Matrices	163
	5.4	Signal and Noise Model for Receiving Arrays	166
	5.5	Fundamental Noise Theorem for Phased Arrays	175
	5.6	Active Receiving Array SNR Model	175
	5.7	Summary	176
6	Figure	es of Merit for Active Receiving Arrays	179
	6.1	Array Gain (SNR Gain)	181
	6.2	Antenna Terms for Active Receiving Arrays	185
	6.3	Isotropic Noise Response	186
	6.4	Active Antenna Available Gain	189
	6.5	Active Antenna Available Power	190
	6.6	Receiving Efficiency	191
	6.7	Active Antenna Effective Area	194
	6.8	Antenna Efficiency and Aperture Efficiency for Active Receiving Arrays	196
	6.9	Reciprocity for Receiving Arrays and the Equivalent Transmitting Array	196
	6.10	Active Antenna Noise Temperature	197
	6.11	Receiver Noise Temperature and Noise Figure	199
	6.12	Noise Matching Efficiency	202
	6.13	Minimization of Receiver Noise	204
	6.14	Sensitivity Model for an Active Receiving Array	207
	6.15	Array Y-factor Measurement Technique	208
	6.16	LRMSA Example: Half-Wave Dipole Array	211
	6.17	Summary	217

More Information

		Contents	ix	
7	_	n and Optimization of Phased Array Antennas	221	
	7.1	General Considerations for Aperture Arrays	222	
	7.2	System and Design Considerations for Aperture Arrays	226	
	7.3	Phased Array Feed Design Aspects	235	
	7.4	Design Optimization Methods	244	
8	Nume	erical Modeling of Phased Array Antennas	253	
	8.1	Numerical Methods and Full Array System Modeling	254	
	8.2	The Standard Method of Moments (MoM) Approach	255	
	8.3	Surface Impedance Formulation of Imperfect Conductors	259	
	8.4	Fast Direct MoM Methods – Macro Basis Function Approaches	262	
	8.5	Fast Iterative MoM Methods	273	
	8.6	Physical Optics Approximation	278	
	8.7	Feed–reflector Interaction Analysis	280	
	8.8	Differential Equation Based Methods – FDTD and FEM	285	
	8.9	System SNR Modeling in the Noise Wave Representation	286	
	8.10	Comments and Caveats on Numerical Modeling	290	
9	Analog Front End, Array Elements, and Receiver Electronics			
	9.1	Frequency and Bandwidth	300	
	9.2	Resonant Antennas	301	
	9.3	Broadband Antennas	302	
	9.4	Electrically Small Antennas and Bandwidth Limitations	307	
	9.5	Baluns and Feeding	309	
	9.6	Planar Arrays and Microstrip Patch Antennas	310	
	9.7	Receiver Electronics	313	
	9.8	Low Noise Amplifiers for Astronomical Arrays	313	
	9.9	Cryogenic PAFs	314	
	9.10	Front End to Back End Signal Transport	318	
	9.11	Downconversion and Sampling	319	
10	Array	Signal Processing, Calibration, and Beamforming	325	
	10.1	Beamforming	325	
	10.2	Array Calibration	333	
	10.3	Beamformer Weight Calculation Algorithms	336	
	10.4	Relationships Among Beamforming Algorithms	355	
	10.5	Array Sensitivity Map	356	
	10.6	Polarimetric Calibration and Beamforming	359	
	10.7	RFI Mitigation with Array Receivers	369	
	10.8	Analog and Digital Beamforming Implementations	389	
11	Interf	erometric Arrays and Synthesis Imaging	396	
	11.1	Introduction	396	
	11.2	The Classical Theory of Interferometry: Overview and Literature Survey	397	

X	Contents				
	11.3	Radio Interferometry Measurement Equation (RIME)	412		
	11.4	Recent Developments and Open Challenges	415		
	11.5	Summary	416		
12	Real Time Digital Signal Processing 4				
	12.1	Introduction	420		
	12.2	Interferometry and Spectroscopy - Frequency Domain	421		
	12.3	Beamformers	425		
	12.4	Polyphase Filters	427		
	12.5	Hardware Implementations	431		
	12.6	Summary	441		
	Index		444		

Preface

Many excellent books on phased array antennas are already in print. The theoretical and mathematical content commonly found in books on this topic has stabilized in the last decade or two, but the past ten years has seen a dramatic departure from classical analytical tools in the methodologies used to design and optimize phased arrays. Our goal is to gather in one place recent advances in the mathematical framework for phased array analysis and create a book for which the theoretical treatment reflects the state-of-the-art in the academic literature and is equal to the task of designing antenna arrays for applications with demanding performance requirements.

One of the themes of this book is the design of phased arrays based on computer simulation. The last few decades have seen enormous progress in computational electromagnetics (CEM), which has revolutionized our ability to analyze antennas rigorously. The framework developed in this book can be used either with analytical approximations for the antenna response, or with computational electromagnetics tools for more accurate results.

Another theme is the dedicated analysis of active receiving arrays using network theory and the signal correlation matrix formulation. Most antenna textbooks focus almost exclusively on the antenna as a transmitting system, and then mention that the reciprocity theorem extends this analysis to receiving systems. Modern phased array systems involve active front ends, with low noise amplifiers in close proximity to the antenna or even integrated into the antenna feed. The system in this case is nonreciprocal, and some conventional antenna concepts no longer apply. Many systems use digital beamforming, which provides additional degrees of freedom when compared to classical analog beamformers. These systems require a new vocabulary and new figures of merit to properly describe them; where possible, we reconcile these with traditional antenna terms.

The authors have been closely involved in modern developments in phased arrays, computational electromagnetics, and array signal processing for applications in challenging fields such as radio astronomy for many years. This text represents the first synthesis of these modern design methods as a book; this is complemented by a review of classical methods such as the array factor approximation. Big-picture array design considerations, types of antenna elements, and components in the analog front end are reviewed. Both aperture type arrays and phased array feeds, used in conjunction with a reflector, are covered. Array signal processing is considered in detail and the theory of interferometric arrays (widely used in radio astronomy) is outlined. The book

xii Preface

concludes with some selected topics on real time digital signal processing. While many of the methods presented in this book were developed in the astronomical phased array community, the set of tools presented is equally applicable to other fields requiring high performance phased arrays. In particular, we outline remote sensing and satellite communications applications.

This book is inherently interdisciplinary. Some of the most far-reaching insights in the phased array community have come from exploring the connection between antenna design, microwave network analysis, and signal processing theory. Modern systems require joint optimization of all subsystems, from the antenna elements to the analog electronics and digital signal processing. This conjunction of disciplines is readily apparent in the table of contents and material in this book. Bringing together disciplines in new ways always brings uncomfortable collisions of notation, terminology, and mindset. We have, with just a few not easily avoidable exceptions, ironed out these inconsistencies in the material. As the book was conceived, we purposefully declined the easier path of an edited collection, as we hoped for a more pedagogically streamlined and logically organized treatment than collections of papers generally can achieve. The highest purpose of this book is to present a seamless synthesis of antenna theory, network analysis, signal processing theory, and application-specific concepts.

Finally, this is also a textbook. Most chapters include problem sets suitable for a course in phased array design and modeling. Many of the problems build on each other to aid the reader in creating a simple but powerful software tool that uses the overlap matrix formulation, network analysis, and correlation matrix framework to implement the array modeling and design methods covered in this book. It will help the reader in comprehending the content of the book to understand that there are two ways to use the analytical framework: (1) with analytical approximations for antenna element patterns, based on the lossless, resonant, minimum scattering approximation (LRMSA), and (2) using numerical simulations based on computational electromagnetics tools for the antenna array. These two approaches yield an equivalent network source for the array. The equivalent source from either approach can be used to initialize the network theory, overlap matrix, and correlation matrix formulations for the array system's signal response, external noise, antenna loss noise, and receiver noise by which the full array system is modeled.

We hope that this book inspires a new generation of researchers to combine techniques from the different disciplines brought together in the book in new and creative ways, and to continue to push forward the frontier of research in phased array receivers and other multiantenna systems in an expanding range of applications.

Karl F. Warnick Rob Maaskant Marianna V. Ivashina David B. Davidson Brian D. Jeffs

Acknowledgements

We acknowledge support from our families while pursuing the research upon which much of this book is based, the outstanding students we have been privileged to work with and who have contributed many key ideas and innovative developments, and the incredible working environment provided by our colleagues at Brigham Young University and its sponsoring organization, the Church of Jesus Christ of Latter-day Saints.

We gratefully recognize Michael A. Jensen for pioneering work on the network analysis of multiantenna systems, his personal mentoring and friendship, and for many formative and enlightening conversations with him over the years.

The work upon which this book is based has been supported by nearly 20 years of continuous funding from the U.S. National Science Foundation. We thank the program managers we have worked with during this time for their courtesy, hard work, and professionalism.

Karl F. Warnick and Brian D. Jeffs

I gratefully acknowledge support from my family during my research career, as well as the contributions of many excellent students, and the support of my colleagues and research administrators at Stellenbosch University.

I would specifically like to recognize Johannes H. Cloete, with whom I worked for around 25 years at Stellenbosch University, for his dedication to research in antenna systems, metrology and electromagnetic analysis, and for bringing radio astronomy into my field of interest.

The South African National Research Foundation has supported my work for over two decades, most recently via a generous grant for the Square Kilometre Array (SKA) Research Chair, and I acknowledge this support, as well as many very useful interactions with the engineers and scientists of the South African SKA project.

David B. Davidson

xiv Acknowledgements

We are grateful to our remarkably knowledgeable colleagues at ASTRON for involving us in their unique radio astronomy instrumentation building practice as well as for the many inspiring discussions which crossed the boundaries of multiple disciplines. We greatly thank ASTRON's management and Wim van Cappellen in particular for offering us the opportunity to carry out world-leading research in our science field for almost a decade, and for three years after leaving ASTRON by financially supporting Ivashina's VINNMER Fellowship jointly with Onsala Space Observatory. We further thank our students for their dedication and hard work, as well as our international colleagues within the SKA consortium. As always, there are so many people to thank, but special mention must go to: Professors Anton Tijhuis, Raj Mittra, the late Per-Simon Kildal, Christophe Craeye, Arnold van Ardenne, and John Conway; Drs. Kees van 't Klooster, Bert Woestenburg, Jan-Geralt bij de Vaate, Tobia Carozzi, and Miroslav Pantaleev; our former roommate Michel Arts; our former PhD students Oleg Iupikov, André Young, and David Prinsloo; and MSc student Bill Yang. Special thanks go to TICRA (Cecilia and Knud), DTU-Space (Niels), and ESA (Kees and Benedetta) for a very pleasant recent collaboration on the SKA-inspired array antenna research for Earth observation applications.

We also acknowledge the financial support of our funding agencies: the Netherlands Organisation for Scientific Research NWO, the Swedish VINNOVA Agency, the Swedish Research Council VR, the Swedish National Space Board, the European Space Agency, and the European Commission.

A cooperation lasting over a decade with the expert co-authors of this book has been a key source of inspiration and driving source of many scientific endeavors; it has resulted in a life-proven friendship which is of great value to us!

Last but not least, we mention our lovely children Daniëlla (2004) and Anton (2014) for – as it appears – accepting our peculiar domestic working culture and inheriting our passion for research and innovation.

Rob Maaskant and Marianna V. Ivashina

Notation and Units

Throughout this book, the following notation is used. Spatial vectors are indicated as \overline{E} (in this case, the electric field). Vectors in the linear algebra sense are indicated as \mathbf{x} , and matrices as \mathbf{A} , using bold lower and upper case roman font respectively. The individual elements of a vector or matrix are indicated as x_i or A_{ij} respectively. Otherwise, the notation is as generally encountered in engineering books on this topic. A summary is presented below.

The time convention used for phasor quantities is $e^{j\omega t}$, hence, the phasor wave e^{-jkr} propagates in the direction of increasing r. (Physics books often adopt the $e^{-i\omega t}$ convention, in which case the sign changes in the wave's phasor representation.) Phasors represent peak values.

abla imes	the curl operation		
$ abla \cdot$	divergence operation		
×	vector cross product of two vectors		
\overline{E}	three-dimensional (field) vector E		
ϵ_0	permittivity of free space ($\approx 8.854 \times 10^{-12} \text{ F/m}$)		
ϵ_r	relative permittivity of a dielectric material (dimensionless)		
μ_0	permeability of free space $(4\pi \times 10^{-7} \text{ H/m})$		
μ_r	relative permeability of a magnetic material (dimensionless)		
c	the speed of light in free space ($\approx 2.9979 \times 10^8 \text{ m/s}$)		
\overline{r}	compact vector notation for the point (x, y, z) , in rectangular		
	coordinates, $\bar{r} = x\hat{x} + y\hat{y} + z\hat{x}$		
r	unit vector in the direction \overline{r} , equivalent to the spherical point (θ, ϕ)		
k	electromagnetic wavenumber (rad/m)		
\overline{k}	electromagnetic wave vector		
λ	electromagnetic wavelength		
$O(M^n)$	of the order of M^n , formally,		
	$\mathcal{N} = O(M^n) \Rightarrow \lim_{M \to \infty} \log \mathcal{N} / \log M = n$		
(u, v, w)	orthogonal coordinates normalized to wavelength		
	in the easterly, northerly, and source directions respectively		
(l, m, n)	direction cosines		
E[·]	statistical expected value operation		
Ω	Solid angle, or an alternate notation for the spherical point (θ, ϕ)		
$d\Omega$	differential solid angle, in spherical coordinates, $d\Omega = \sin\theta d\theta d\phi$		

Cambridge University Press

978-1-108-42392-2 — Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications Karl F. Warnick, Rob Maaskant, Marianna V. Ivashina, David B. Davidson, Brian D. Jeffs

Frontmatter

More Information

xvi Notation and Units

$d\overline{r}$	differential volume element, surface element, or line element		
	(depending on the domain of integration)		
dS	differential area element		
$d\overline{A}$	differential area element with unit vector, $\hat{n} dS$		
v, y, etc.	N-dimensional vector quantity (e.g., array output signals)		
R, A, etc.			
$\mathbf{v}^H,\mathbf{R}^H$	\mathbf{R}^{H} complex conjugate transpose of vector \mathbf{v} and matrix \mathbf{R} respectively		
\mathbf{v}^T , \mathbf{R}^T	T , \mathbf{R}^{T} conventional transpose of vector \mathbf{v} and matrix \mathbf{R} respectively		
$\mathbf{v}\odot\mathbf{y}$			
$\mathbf{A} \otimes \mathbf{B}$	matrix Kronecker product		
$vec{A}$	matrix to vector operator. In $\mathbf{a} = \text{vec}\{\mathbf{A}\}$, \mathbf{a} is a vector formed by		
	stacking (column-ordered scanning) all the columns of A		
unvec{a}	vector to matrix operator. $unvec{vec{A}} = A$		
$ \mathbf{y} $	Conventional L_2 vector norm, $ \mathbf{y} = \sqrt{\sum_i y_i ^2}$		
\approx, \propto, \equiv respectively "approximately equal to," "proportional to," a			
	defined as"		
C^N	N-dimensional complex vector space		
\cup , \cap	set (or vector space) union and intersection operations respectively		
$\mathbf{v} \in C^N$	vector \mathbf{v} is an element of C^N		
$S \subset C^N$	vector space S is a subset (subspace) of N -dimensional vector space		
	C^N		
S^{\perp}	vector subspace perpendicular (complementary) to S . If S and $S^{\perp} \subset$		
	C^N then $S \cap S^{\perp} = \phi$, the empty set, and $S \cup S^{\perp} = C^N$		

This book uses the SI system of units.

Name	Symbol	Unit	Equivalent units or notes
Electric field intensity	E	V/m	
Magnetic field intensity	H	A/m	
Brightness	${\mathcal B}$	$W m^{-2} Hz^{-1} rad^{-2}$	
Spectral flux density	$\mathcal S$	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{Hz}^{-1}$	1 Jansky (Jy) = $10^{-26} \mathrm{Wm^{-2}Hz^{-1}}$
Poynting flux density	S	$ m W~m^{-2}$	In one polarization
Temperature	T	K	Physical or equivalent temperature
Temporal frequency	f	Hz	(f is also reflector focal length)
Angular frequency	ω	$rad s^{-1}$	$2\pi f$
Bandwidth	B	Hz	Typically for one filterbank output