The Cambridge Handbook of Cognitive Development

How does cognition develop in infants, children and adolescents? This handbook presents a cutting-edge overview of the field of cognitive development, spanning basic methodology, key domain-based findings and applications. Part I covers the neurobiological constraints and laws of brain development, while Part II covers the fundamentals of cognitive development from birth to adulthood: object, number, categorization, reasoning, decision-making and socioemotional cognition. Part III covers educational and school-learning domains, including numeracy, literacy, scientific reasoning skills, working memory and executive skills, metacognition, curiosity-driven active learning and more. Featuring chapters written by the world's leading scholars in experimental and developmental psychology, as well as in basic neurobiology, cognitive neuroscience, computational modelling and developmental robotics, this collection is the most comprehensive reference work to date on cognitive development of the twenty-first century. It will be a vital resource for scholars and graduate students in developmental psychology, neuroeducation and the cognitive sciences.

OLIVIER HOUDÉ is Professor of Psychology at the University of Paris, where he is the honorary director of the Laboratory of Psychology at the Sorbonne. He is an academician at the Institut de France. One of the world's leading specialists of cognitive development, he is Editor in Chief of the *Dictionary of Cognitive Science* (2004).

GRÉGOIRE BORST is Professor of Psychology at the University of Paris, where he is the director of the Laboratory of Psychology at the Sorbonne. A rising star in the areas of cognitive development and neuroeducation, he is also a member of the board of the *Journal of Experimental Child Psychology*.

CAMBRIDGE

Cambridge University Press 978-1-108-42387-8 — The Cambridge Handbook of Cognitive Development Edited by Olivier Houdé , Grégoire Borst Frontmatter <u>More Information</u>

The Cambridge Handbook of Cognitive Development

Edited by Olivier Houdé University of Paris

Grégoire Borst University of Paris

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108423878 DOI: 10.1017/9781108399838

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Houdé, Olivier, editor. | Borst, Grégoire, 1977- editor. Title: The Cambridge handbook of cognitive development / edited by Olivier Houdé, Université de Paris V, Grégoire Borst, Université de Paris V.

Description: 1 Edition. | New York, NY : Cambridge University Press, 2022. | Series: Cambridge handbooks in psychology | Includes bibliographical references and index.

Identifiers: LCCN 2021033329 (print) | LCCN 2021033330 (ebook) | ISBN 9781108423878 (hardback) | ISBN 9781108436632 (paperback) | ISBN 9781108399838 (epub)

Subjects: LCSH: Cognition in children. | Developmental psychology. | Piaget, Jean, 1896-1980.

Classification: LCC BF723.C5 C36 2022 (print) | LCC BF723.C5 (ebook) | DDC 155.4/13-dc23 LC record available at https://lccn.loc.gov/2021033329

LC ebook record available at https://lccn.loc.gov/2021033330

ISBN 978-1-108-42387-8 Hardback ISBN 978-1-108-43663-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of Figures List of Tables List of Contributors	<i>page</i> ix xiii xiv
	Introduction: Cognitive Development Studies: From the History of Psychology to the Current Trends in Cognitive Sciences OLIVIER HOUDÉ AND GRÉGOIRE BORST	1
	Part I Neurobiological Constraints and Laws of Cognitive Development	
1	How Life Regulation and Feelings Motivate the Cultural Mind: A Neurobiological Account	15
2	Epigenesis, Synapse Selection, Cultural Imprints, and Human Brain Development: From Molecules to Cognition JEAN-PIERRE CHANGEUX	27
3	Mapping the Human Brain from the Prenatal Period to Infancy Using 3D Magnetic Resonance Imaging: Cortical Folding and Early Grey and White Maturation Processes ARNAUD CACHIA, JEAN-FRANÇOIS MANGIN, AND JESSICA DUBOIS	50
4	Development and Maturation of the Human Brain, from Infancy to Adolescence томáš Paus	85
5	Genetic and Experiential Factors in Brain Development: The Examples of Executive Attention and Self-regulation MICHAEL I. POSNER AND MARY K. ROTHBART	105
6	The Brain Basis Underlying the Transition from Adolescence to Adulthood beatriz luna, orma ravindranath, bart larsen, and ashley parr	122

vi	Contents	
	Part II Fundamentals of Cognitive Development from Infancy to Adolescence and Young Adulthood	
	Introduction: Assembling the Building Blocks of Cognition in a Non-linear Dynamical System of Development grégoire borst and olivier houdé	141
	Subpart II.1 Infancy: The Roots of Human Thinking	
7	Differences between Humans, Great Apes and Monkeys in Cognition, Communication, Language and Morality JACQUES VAUCLAIR	151
8	Infants' Physical Reasoning and the Cognitive Architecture that Supports It YI LIN, MAAYAN STAVANS, AND RENÉE BAILLARGEON	168
9	Infant Categorization DAVID H. RAKISON, DEON T. BENTON, AND PHUONG NGOC DINH	195
10	Foundational Considerations: Does Primitive Number Sense Provide a Foothold for Learning Formal Mathematics? KRISTY VANMARLE	216
11	How Sophisticated Is Infants' Theory of Mind? Rose M. Scott, erin roby, and renée baillargeon	242
12	Social Cognition and Moral Evaluation in Early Human Childhood ANDREAS FALCK, BRENT STRICKLAND, AND PIERRE JACOB	269
13	Scientific Thinking and Reasoning in Infants and Young Children MARIEL K. GODDU AND ALISON GOPNIK	299
14	Computational Approaches to Cognitive Development: Bayesian and Artificial-Neural-Network Models ARDAVAN S. NOBANDEGANI AND THOMAS R. SHULTZ	318
	Subpart II.2 Childhood and Adolescence: The Development of Human Thinking	
15	Development of Qualitative Thinking: Language and Categorization SUSAN A. GELMAN	341
16	Development of Numerical Knowledge ROBERT S. SIEGLER	361
17	Numerical Cognition and Executive Functions: Development As Progressive Inhibitory Control of Misleading Visuospatial Dimensions MARGOT ROELL, OLIVIER HOUDÉ, GRÉGOIRE BORST,	
	AND ARNAUD VIAROUGE	383

	Contents	vii
18	Developing Theory of Mind and Counterfactual Reasoning in Children JOSEF PERNER, EUGENIA KULAKOVA, AND EVA RAFETSEDER	408
19	Development of Executive Function Skills in Childhood: Relevance for Important Life Outcomes KEITH HAPPANEY AND PHILIP DAVID ZELAZO	427
20	Developing Cognitive Control and Flexible Adaptation during Childhood NICOLAS CHEVALIER AND AGNÈS BLAYE	452
21	Reasoning Bias and Dual Process Theory: Developmental Considerations and Current Directions	472
22	Social Cognitive Development: The Intergroup Context LISA CHALIK, ANTONIA MISCH, AND YARROW DUNHAM	481
23	Behavioral and Neural Development of Cognitive Control and Risky Decision-Making across Adolescence NEELTJE E. BLANKENSTEIN, JISKA S. PEPER, AND EVELINE A. CRONE	500
24	The Triadic Neural Systems Model through a Machine-Learning Mill MONIQUE ERNST, JOSH GOWIN, AND CLAUDIE GAILLARD	516
	Part III Education and School-Learning Domains	
25	Linking Cognitive Neuroscientific Research to Educational Practice in the Classroom NATHAN T. T. LAU AND DANIEL ANSARI	537
26	Literacy: Understanding Normal and Impaired Reading Development through Personalized Large-Scale Neurocomputational Models	
	JOHANNES C. ZIEGLER, CONRAD PERRY, AND MARCO ZORZI	554
27	Reasoning in Mathematical Development: Neurocognitive Foundations and Their Implications for the Classroom JÉRÔME PRADO AND MARIE-LINE GARDES	566
28	Children's Scientific Reasoning Skills in Light of General Cognitive Development PETER A. EDELSBRUNNER, RALPH SCHUMACHER, AND ELSBETH STERN	585
29	Working Memory Training: From the Laboratory to Schools TORKEL KLINGBERG AND BRUNO SAUCE	606
30	Interventions for Improving Executive Functions during Development: Working Memory, Cognitive Flexibility, and Inhibition NIKOLAUS STEINBEIS AND CLAIRE ROSALIE SMID	623

viii	Contents	
31	Curiosity-Driven Learning in Development: Computational Theories and Educational Applications PIERRE-YVES OUDEYER	644
32	Neurocomputational Methods: From Models of Brain and Cognition to Artificial Intelligence in Education	
	MICHAEL S. C. THOMAS AND KASKA PORAYSKA-POMSTA	662
	Index	688

The plate section can be found between pp. 534 and 535.

CAMBRIDGE

Cambridge University Press 978-1-108-42387-8 — The Cambridge Handbook of Cognitive Development Edited by Olivier Houdé , Grégoire Borst Frontmatter <u>More Information</u>

Figures

The neurone and the interneuronal connections through the synapse in the	
human brain	page 30
Schematic representation of the hypothesis of epigenesis by selective	
stabilization of synapses	31
Structural changes of the brain during development	52
Cortical sulcation and cognitive efficiency	55
Structural changes of the white matter during development	58
Relationships between functional and structural markers of development	63
Top: Sulcus nomenclature and map of the standard sulcus interruptions.	
Bottom: The sulcus nomenclature projected on six different left hemispheres	69
White matter microstructure and connectivity with diffusion MRI	71
Neurovascular unit	86
Coronal slices of multimodal images of brain structure acquired in members	
of a birth cohort when they reached twenty years of age	89
The radial unit hypothesis	90
Estimated trajectories of cortical grey-matter and white-matter volumes	
during prenatal development, and cortical surface-area and thickness in	
post-natal development	91
Developmental trajectories of structural properties of white matter during	
infancy and early childhood, as revealed with multi-modal MRI	92
Myelin water fraction (MWF) and relaxation times in the developing brain	93
Total brain volume, as well as whole-brain (absolute) volumes of grey- and	
white-matter, derived from a combination of T1-weighted, T2-weighted and	
Proton Density-weighted images obtained in the NIH Paediatric Study	94
Decrease in cortical thickness between ten and twenty years of age	94
Cortical thickness and surface area in female $(n = 509)$ and male	
(n = 479) adolescents	95
Virtual histology. Lateral (first row) and medial (second row) views of	
cortical thickness (Saguenay Youth Study) and gene expression levels (the	
Allen Human Brain Atlas)	96
Individual tractography results for the superior longitudinal fasciculus	
(orange), inferior longitudinal fasciculus (magenta), and corticospinal tracts	
(green) are shown in three representative healthy individuals at different ages	98
(n = 476) adolescents	99
Multimodal imaging of the human corpus callosum: a comparison	
with histology	100
	human brain Schematic representation of the hypothesis of epigenesis by selective stabilization of synapses Structural changes of the brain during development Cortical sulcation and cognitive efficiency Structural changes of the white matter during development Relationships between functional and structural markers of development Top: Sulcus nomenclature and map of the standard sulcus interruptions. Bottom: The sulcus nomenclature projected on six different left hemispheres White matter microstructure and connectivity with diffusion MRI Neurovascular unit Coronal slices of multimodal images of brain structure acquired in members of a birth cohort when they reached twenty years of age The radial unit hypothesis Estimated trajectories of cortical grey-matter and white-matter volumes during prenatal development, and cortical surface-area and thickness in post-natal development Developmental trajectories of structural properties of white matter during infancy and early childhood, as revealed with multi-modal MRI Myelin water fraction (MWF) and relaxation times in the developing brain Total brain volume, as well as whole-brain (absolute) volumes of grey- and white-matter, derived from a combination of T1-weighted, T2-weighted and Proton Density-weighted images obtained in the NIH Paediatric Study Decrease in cortical thickness between ten and twenty years of age Cortical thickness and surface area in female (n = 509) and male (n = 479) adolescents Virtual histology. Lateral (first row) and medial (second row) views of cortical thickness (Saguenay Youth Study) and gene expression levels (the Allen Human Brain Atlas) Individual tractography results for the superior longitudinal fasciculus (orange), inferior longitudinal fasciculus (magenta), and corticospinal tracts (green) are shown in three representative healthy individuals at different ages Volume of white matter (cerebral lobes) in female (n = 509) and male (n = 476) adolescents

List of Figures

х

II.1	Three-systems theory of the cognitive brain	145
10.1	Example items from the number sets task	233
11.1	Familiarization and test trials shown in the false-belief condition of Scott and Baillargeon. The order of the two test events was counterbalanced	200
	across infants	249
11.2	Familiarization and test trials shown in the deception condition of	,
	Scott et al.	250
12.1	Example of a moral dilemma used by Haidt and colleagues in their "moral	
	dumbfounding" experiments	287
14.1	A simple neural network with three layers. Units are represented as circles,	
	connection weights as arrows	319
14.2	The first five phases of a CC network with four input units and two output	
	units. Frozen input weights are represented by solid lines, trainable weights	
	by dashed lines	321
14.3	An SDCC network with two inputs, two layers of hidden units, and one	
	output unit	322
14.4	Example of a KBCC network that first recruited a previously-learnt source	
	network and then a single hidden unit	322
14.5	Example balance-scale problem, with four weights placed one peg from the	
	fulcrum on the left side and three weights placed two pegs from the fulcrum	222
14.6	on the right side	323
14.0	Proportion of LCA rule frequencies across stages, revealing overlapping waves in development	326
14.7	An example joint-attention event in word learning	320
14.8	Architecture and information flow in the TRACX2 neural-network model	329
16.1	Development of understanding of different types of symbolic numbers,	527
10.1	including the age range in which development is most dramatic	364
16.2	The overlapping waves model	365
19.1	Performance on the NIH Toolbox DCCS test and the Toolbox Flanker	
	Inhibitory Control ("Flanker EF") and Attention ("Flanker Attention") test	
	across age groups	433
19.2	Neurocognitive processes (and structures) involved in deliberate fluid	
	reasoning, intentional action, emotion regulation, and social function	435
23.1	(a) Sagittal (left), coronal (middle), and axial (right) views of frontostriatal	
	white matter bundles of one random participant. (b) Sagittal (left), coronal	
	(middle), and axial (right) views of areas of activation involved in cognitive	
	control and risky decision-making	502
24.1	The triadic model	517
24.2	Overall strategy for testing the triadic neural systems model	523
24.3	Strategy for addressing Question 1, Step-1: Behavioral data reduction	
.	and organization	524
24.4	Strategy for addressing Question 1, Step-2 & Step-3: Supervised ML step	525
24.5	Two examples of solutions using classification tree algorithms	526

	List of Figures	xi
24.6	Strategy for Addressing Question 2, Step-1 to Step-3: Extraction of neural	
24.0	predictors, unsupervised ML clustering, and supervised ML to predict	
	behavioral factors aF and vF	528
24.7	Fictitious results to Question 3: Decision trees across development	531
25.1	The intraparietal sulcus	542
25.2	Two scenarios where ANS acuity will be related to the highlighted topic if	
	prerequisite topics are not entered as a covariate to topic performance	547
26.1 26.2	An implementation of the phonological decoding self-teaching hypothesis Simulations of learning to read through phonological decoding and self-	557
	teaching	558
26.3	The use of decoding versus direct instruction as a function of reading skill	559
26.4	The individual-deficit simulation approach	560
26.5	Predicted versus actual reading performance	561
26.6	Predicting intervention outcomes through 'personalized' simulations	562
27.1	Example of materials used in the problem about transitive relations	578
27.2	Example of materials used in the patterning problem	578
27.3	Examples of line configurations with different values of n in the	
	geometry problem	579
28.1	Setup of the pendulum task with the variables string length (two pendulums	
	on the left: shorter; two pendulums on the right: longer) and heaviness of the	
	weight (grey weights: lighter; black weights: heavier)	586
28.2	Can you help Paul to solve this riddle by providing your domain-general	
	scientific reasoning skills?	588
28.3	Item demanding domain-specific scientific thinking	589
28.4	Main components of the SDDS model of scientific reasoning	590
28.5	Schematic depiction of significant associations (all with positive regression	
	weights) found in multivariate models of Osterhaus et al. (a) and van der	
	Graaf et al. (b)	599
31.1	Open-source baby robots	646
31.2	The playground experiment	649
31.3	Educational game used in Clement et al.: a scenario where elementary school children have to learn to manipulate money is used to teach them the	
	decomposition of integer and decimal numbers	656
31.4	Example of the evolution of the zone-of-proximal development (ZPD) based	
	on the empirical results of the student	657
32.1	Architecture of the Harm and Seidenberg model of reading, showing the	,
0211	specified representations (semantics, phonology, and orthography), pathways	
	and directions of activation flow between them	670
32.2	Summary of dynamic causal modelling of functional magnetic resonance	570
	imaging data, showing which brain regions involved in reading appeared to	
	causally drive other regions	671
32.3	Long and Aleven's skills meter bars indicating the level of student	571
	skill mastery	677
		511

32.4	TARDIS scrutable OLM showing synchronized recordings of the learners interacting with the AI agents along with the interpretation of the learner's	
	low-level social signals such as gaze patterns, gestures and voice activation in	
	terms of higher-level judgements about the quality of those behaviours, e.g.,	
	energy in voice	678
32.5	Four conditions examined by Krach et al.	680
32.6	Regions associated with 'theory of mind' grow more active as the appearance	
	of a technological opponent becomes more human-like, even when it is	
	clearly not human	680
32.7	A child playing with the ECHOES agent through the multi-touch screen	
	interface (Left). The agent points to a flower that it wants a child to pick and	
	put in the basket in a bid for attention and interaction with the child (Right)	681

CAMBRIDGE

Cambridge University Press 978-1-108-42387-8 — The Cambridge Handbook of Cognitive Development Edited by Olivier Houdé , Grégoire Borst Frontmatter <u>More Information</u>

Tables

1.1	Stages of life	page 16
5.1	Correlations between temperament measures at seven months and ANT	
	scores at seven years	111
5.2	Brain attention networks, anatomy, dominant modulators, and genetic alleles	112
10.1	Sequence of tasks and approximate mean ages and ranges over four years	226
18.1	Overview of replication success of early belief understanding studies from	
	Kulke and Rakoczy	415
23.1	Overview of paradigms to measure cognitive control and risky decision-	
	making across adolescence	501
32.1	Components of two different types of computational model, those used to	
	simulate cognitive mechanisms and those used as theoretically informed	
	artificial intelligence tools to support learning and teaching	667

Contributors

DANIEL ANSARI, University of Western Ontario, Canada RENÉE BAILLARGEON, University of Illinois, USA DEON T. BENTON, Carnegie Mellon University, USA NEELTJE E. BLANKENSTEIN, Leiden University, the Netherlands AGNÈS BLAYE, Aix-Marseille University, France GRÉGOIRE BORST, University of Paris, France ARNAUD CACHIA, University of Paris, France LISA CHALIK, Yeshiva University, USA JEAN-PIERRE CHANGEUX, Collège de France and Pasteur Institute, France NICOLAS CHEVALIER, University of Edinburgh, UK EVELINE A. CRONE, Leiden University, the Netherlands ANTONIO DAMASIO, University of Southern California, USA HANNA DAMASIO, University of Southern California, USA WIM DE NEYS, University of Paris and CNRS, France JESSICA DUBOIS, University of Paris and INSERM, France YARROW DUNHAM, Yale University, USA PETER A. EDELSBRUNNER, ETH Zürich, Switzerland MONIQUE ERNST, NIMH, USA ANDREAS FALCK, Institut Jean Nicod, ENS-Ulm, PSL, CNRS, Paris, France and Lund University, Sweden DARREN FREY, University of Paris and CNRS, France CLAUDIE GAILLARD, NIMH, USA MARIE-LINE GARDES, University Lyon-1 and CNRS, France SUSAN A. GELMAN, University of Michigan, USA MARIEL K. GODDU, University of California, Berkeley, USA

ALISON GOPNIK, University of California, Berkeley, USA JOSH GOWIN, University of Colorado School of Medicine, USA KEITH HAPPANEY, City University of New York OLIVIER HOUDÉ, University of Paris, France PIERRE JACOB, Institut Jean Nicod, ENS-Ulm, PSL and CNRS, Paris, France TORKEL KLINGBERG, Karolinska Institute, Sweden EUGENIA KULAKOVA, University College London, UK BART LARSEN, University of Pittsburgh, USA NATHAN T. T. LAU, University of Western Ontario, Canada YI LIN, University of Illinois, USA BEATRIZ LUNA, University of Pittsburgh, USA JEAN-FRANÇOIS MANGIN, University Paris-Saclay and INSERM, France ANTONIA MISCH, Ludwig Maximilian University of Munich, Germany PHUONG NGOC DINH, Carnegie Mellon University, USA ARDAVAN S. NOBANDEGANI, McGill University, Canada PIERRE-YVES OUDEYER, INRIA, France ASHLEY PARR, University of Pittsburgh, USA томáš paus, University of Montreal, Canada JISKA S. PEPER, Leiden University, the Netherlands JOSEF PERNER, University of Salzburg, Austria CONRAD PERRY, Swinburne University of Technology, Australia KASKA PORAYSKA-POMSTA, Centre for Educational Neuroscience, UCL Institute of Education, UK MICHAEL I. POSNER, University of Oregon, USA JÉRÔME PRADO, University Lyon-1 and CNRS, France EVA RAFETSEDER, University of Stirling, UK DAVID H. RAKISON, Carnegie Mellon University, USA ORMA RAVINDRANATH, University of Pittsburgh, USA ERIN ROBY, NYU Grossman School of Medicine

List of Contributors

xv

xvi List of Contributors

MARGOT ROELL, University of Paris and CNRS, France MARY K. ROTHBART, University of Oregon, USA BRUNO SAUCE, Karolinska Institute, Sweden RALPH SCHUMACHER, ETH Zürich, Switzerland ROSE M. SCOTT, University of California, Merced, USA THOMAS R. SHULTZ, McGill University, Canada ROBERT S. SIEGLER, Carnegie Mellon University, USA CLAIRE DE SMID, University College London, UK MAAYAN STAVANS, University of Illinois, USA NIKOLAUS STEINBEIS, University College London, UK ELSBETH STERN, ETH Zürich, Switzerland BRENT STRICKLAND, Institut Jean Nicod, ENS-Ulm, PSL, CNRS, Paris, France and ABS, SCI, UM6P, Rabat, Morocco MICHAEL S. C. THOMAS, Birkbeck, University of London, UK, KRISTY VANMARLE, University of Missouri - Columbia, USA JACQUES VAUCLAIR, Aix-Marseille University, France ARNAUD VIAROUGE, University of Paris and CNRS, France PHILIP DAVID ZELAZO, University of Minnesota, USA JOHANNES C. ZIEGLER, Aix-Marseille University and CNRS, France MARCO ZORZI, University of Padova, Italy