Contents

Dive into the Data
Preface

1 Introduction

1.1 From Blue Marbles to Pale Blue Dots
1.2 Climate is a Coupled System
1.3 Our Common Framework
 1.3.1 The Budget Paradigm
 1.3.2 Vectors
 1.3.3 Partial Derivatives

2 The Heat Budget

2.1 Introduction to the Ocean Mixed Layer Heat Budget
 2.1.1 The Nexus of Ocean–Atmosphere Interaction
 2.1.2 Propelling the Global Ocean Circulation
 2.1.3 Diagnosing Observations and Predictions
 2.1.4 Structure of the Ocean Mixed Layer Heat Budget Equation

2.2 Exchange of Heat with the Atmosphere
 2.2.1 Radiative Fluxes
 2.2.2 Turbulent Fluxes
 2.2.3 Net Surface Heat Flux

2.3 Conveyance of Heat by the Ocean
 2.3.1 Temperature Advection
 2.3.2 Diffusion, Mixing, and Entrainment

2.4 Putting It Together
 2.4.1 Synthesis of Heat Budget Terms and Processes
 2.4.2 A Real-World Example

3 The Salt Budget

3.1 Introduction to the Ocean Mixed Layer Salinity Budget
 3.1.1 A Revolution in Observing our Ocean
 3.1.2 Climatic Importance of Salinity
 3.1.3 Structure of the Ocean Mixed Layer Salinity Budget Equation
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Exchange of Freshwater with the Atmosphere</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Conveyance of Salt by the Ocean</td>
<td>56</td>
</tr>
<tr>
<td>4 The Momentum Budget</td>
<td>68</td>
</tr>
<tr>
<td>4.1 Introduction to the Ocean’s Momentum Budget</td>
<td>68</td>
</tr>
<tr>
<td>4.1.1 Motivation and Linkages to Heat and Salt Budgets</td>
<td>68</td>
</tr>
<tr>
<td>4.1.2 Structure of the Momentum Budget</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Forces and Processes Driving Ocean Currents</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1 Gravity and Pressure</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2 The Coriolis Force</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3 Friction and Wind Stress</td>
<td>77</td>
</tr>
<tr>
<td>4.2.4 Advection of Momentum</td>
<td>80</td>
</tr>
<tr>
<td>4.2.5 Putting It Together and Breaking It Down</td>
<td>82</td>
</tr>
<tr>
<td>4.3 Geostrophic Currents: A Direct Application of the Momentum Budget</td>
<td>84</td>
</tr>
<tr>
<td>5 The Atmospheric Interface</td>
<td>96</td>
</tr>
<tr>
<td>5.1 Motivation and Scope of this Chapter</td>
<td>96</td>
</tr>
<tr>
<td>5.2 The Vertical Structure of the Atmosphere</td>
<td>98</td>
</tr>
<tr>
<td>5.3 The Global Energy Balance and Its Geographic Variation</td>
<td>100</td>
</tr>
<tr>
<td>5.4 The Atmospheric General Circulation</td>
<td>102</td>
</tr>
<tr>
<td>5.4.1 The Global, Zonally Symmetric Perspective</td>
<td>103</td>
</tr>
<tr>
<td>5.4.2 Zonal Asymmetry and Regional Circulations</td>
<td>109</td>
</tr>
<tr>
<td>5.4.3 The Global Distribution of Surface Wind and Wind Stress</td>
<td>113</td>
</tr>
<tr>
<td>5.5 How the Atmosphere Responds to the Ocean</td>
<td>117</td>
</tr>
<tr>
<td>6 Response to Wind Forcing</td>
<td>129</td>
</tr>
<tr>
<td>6.1 Overview of Wind Forcing</td>
<td>129</td>
</tr>
<tr>
<td>6.2 The Ocean’s Response to Steady Wind Forcing</td>
<td>130</td>
</tr>
<tr>
<td>6.2.1 Ekman Dynamics</td>
<td>130</td>
</tr>
<tr>
<td>6.2.2 Wind-Driven Upwelling Zones</td>
<td>135</td>
</tr>
<tr>
<td>6.2.3 The Subtropical Gyres</td>
<td>137</td>
</tr>
<tr>
<td>6.3 The Ocean’s Transient Response to Wind Forcing</td>
<td>144</td>
</tr>
<tr>
<td>6.3.1 Inertial Oscillations</td>
<td>145</td>
</tr>
<tr>
<td>6.3.2 Kelvin and Rossby Waves</td>
<td>147</td>
</tr>
<tr>
<td>7 Coupled Climate Variability</td>
<td>154</td>
</tr>
<tr>
<td>7.1 Does Natural Climate Variability Matter?</td>
<td>154</td>
</tr>
<tr>
<td>7.2 A Null Hypothesis</td>
<td>155</td>
</tr>
<tr>
<td>7.3 Physical Modes of Climate Variability</td>
<td>158</td>
</tr>
<tr>
<td>7.3.1 An Alphabet Soup</td>
<td>158</td>
</tr>
</tbody>
</table>
Contents

7.3.2 The Irregular Heartbeat of the Tropics 159
7.3.3 Other Modes of Tropical Ocean–Atmosphere Variability 170
7.3.4 Beyond the Tropics 171

8 Response to Buoyancy Forcing 179
8.1 Overview of Buoyancy Forcing 179
8.2 Mathematics of Buoyancy Forcing 181
8.3 The Global Thermohaline Circulation 185
8.4 Climate Variability Linked to Buoyancy Forcing 190
8.4.1 The Paleoceanographic Perspective 191
8.4.2 Modern Observations 198

9 Climate Change and the Ocean 207
9.1 A Primer on Anthropogenic Radiative Forcing 207
9.2 Numerical Ocean and Climate Models 211
9.2.1 What Is a Climate Model? 211
9.2.2 The Structure of GCMs and Supercomputers 212
9.2.3 Global Climate Models and Global Change Science 215
9.2.4 Uncertainty in GCM Results 218
9.3 Pathways of Climate Change in the Ocean 220
9.3.1 Ocean Heat 221
9.3.2 Ocean Volume 224
9.3.3 Sea ice 226
9.3.4 Circulations and Feedbacks 228
9.4 Closing Remarks 230

References 236
Index 245

The plate section can be found between pp. 132 and 133.