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In mathematics, we know there are some concepts—objects, constructions, structures,

proofs—that are more complex and difficult to describe than others. Computable

structure theory quantifies and studies the complexity of mathematical structures,

structures such as graphs, groups, and orderings.

Written by a contemporary expert in the subject, this is the first full monograph on

computable structure theory in 20 years. Aimed at graduate students and researchers in

mathematical logic, it brings new results of the author together with many older results

that were previously scattered across the literature and presents them all in a coherent

framework, making it easier for the reader to learn the main results and techniques in

the area for application in their own research. This volume focuses on countable

structures whose complexity can be measured within arithmetic; a forthcoming second

volume will study structures beyond arithmetic.
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PREFACE

We all know that in mathematics there are proofs that are more diffi-
cult than others, constructions that are more complicated than others,
and objects that are harder to describe than others. The objective of
computable mathematics is to study this complexity, to measure it, and
to find out where it comes from. Among the many aspects of mathe-
matical practice, this book concentrates on the complexity of structures.
By structures, we mean objects like rings, graphs, or linear orderings,
which consist of a domain on which we have relations, functions, and
constants.
Computable structure theory studies the interplay between complexity

and structure. By complexity, we mean descriptional or computational
complexity, in the sense of how difficult it is to describe or compute a
certain object. By structure, we refer to algebraic or structural properties
of mathematical structures. The setting of computable structure theory is
that of infinite countable structures and thus, within the whole hierarchy
of complexity levels developed by logicians, the appropriate tools come
from computability theory: Turing degrees, the arithmetic hierarchy, the
hyperarithmetic hierarchy, etc. These structures are like the ones studied
in model theory, and we will use a few basic tools from there too. The
intention is not, however, to effectivize model theory, and our motivations
are very different that those of model theory. Our motivations come
from questions of the following sort: Are there syntactical properties that
explain why certain objects (like structures, relations, or isomorphisms)
are easier or harder to compute or to describe?
The objective of this book is to describe some of the main ideas and

techniques used in the field. Most of these ideas are old, but for many
of them, the style of the presentation is not. Over the last few years,
the author has developed new frameworks for dealing with these old
ideas—for instance, for forcing, r.i.c.e. relations, jumps, Scott ranks, and
back-and-forth types. One of the objectives of the book is to present these
frameworks in a concise and self-contained form.

The modern state of the field, and also the author’s view of the subject,
has been influenced greatly by the monograph by Ash and Knight [AK00]

ix
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x Preface

published in 2000. There is, of course, some intersection between that
book and this one. But even within that intersection, the approach is
different.

The intended readers are graduate students and researchers working on
mathematical logic. Basic background in computability and logic, as is
covered in standard undergraduate courses in logic and computability, is
assumed. The objective of this book is to describe some of the main ideas
and techniques of the field so that graduate students and researchers can
use it for their own research.
This book is part I of a monograph that actually consists of two parts:

within the arithmetic and beyond the arithmetic.
Part I, Within the arithmetic, is about the part of the theory that can be

developed below a single Turing jump. The first chapters introduce what
the author sees as the basic tools to develop the theory: �-presentations,
relations, and ∃-atomic structures, as treated by the author in [Mon09,
Mon12, Mon13c, Mon16a]. Many of the topics covered in Part I (like
Scott sentences, 1-generics, the method of true stages, categoricity, etc.)
will then be generalized through the transfinite in part II. Σ-small classes,
covered in the last chapter, have been a recurrent topic in the author’s work,
as they touch on many aspects of the theory and help to explain previously
observed behaviors (cf. [HM12, HM14, Mon10, Mon13b]).
Part II, Beyond the arithmetic, moves into the realm of the hyperarith-

metic and the infinitary languages. To fully analyze the complexity of
a structure, staying within the arithmetic is not enough. The hyper-
arithmetic hierarchy goes far enough to capture the complexity levels
of relations in almost all structures, though we will see there are some
structures whose complexity goes just beyond. The first half of Part
II develops the basic theory of infinitary logic, Π1

1 sets, and the hyper-
arithmetic hierarchy. In the second half, the main chapters are those
on forcing and the α-priority method. The exposition of forcing is
only aesthetically new (similar to that in [HTMM]). The presentation
of Ash’s α-priority method will be more than just aesthetically differ-
ent. It will use the method of α-true stages developed in [Mon14b]. We
also draw connections with descriptive set theory, and some of the more
recent work from [Mon13a, Mon15, MM18]. The chapter on compara-
bility of classes treats old topics like Borel reducibility, but also newer
topics like effective reducibility of classes of computable structures (cf.
[FF09, FFH+12, Mon16b]) and the connections between functors and
interpretability (cf. [HTMMM, HTMM]). Here is the tentative list of
chapters of part II [MonP2]:

Chapter 1. Ordinals
Chapter 2. Infinitary logic
Chapter 3. Computably infinitary languages
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Preface xi

Chapter 4. Π1
1 sets

Chapter 5. Hyperarithmetic sets
Chapter 6. Overspill
Chapter 7. Forcing
Chapter 8. α-true-stage arguments
Chapter 9. Comparing classes of structures
Chapter 10. Vaught’s conjecture
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NOTATION AND CONVENTIONS

The intention of this section is to refresh the basic concepts of computability
theory and structures and set up the basic notation we use throughout the
book. If the reader has not seen basic computability theory before, this
section would be too fast an introduction and we recommend starting with
other textbooks like Cutland [Cut80], Cooper [Coo04], Enderton [End11],
or Soare [Soa16].

The computable functions. A function is computable if there a purely
mechanical process to calculate its values. In today’s language, we would
say that f : N → N is computable if there is a computer program that, on
input n, outputs f(n). This might appear to be too informal a definition,
but the Turing–Church thesis tells us that it does not matter which method
of computation you choose, you always get the same class of functions
from N to N. The reader may choose to keep in mind whichever definition
of computability feels intuitively more comfortable, be it Turing machines,
�-recursive functions, lambda calculus, register machines, Pascal, Basic,
C++, Java, Haskell, or Python.1 We will not use any particular definition
of computability, and instead, every time we need to define a computable
function, we will just describe the algorithm in English and let the reader
convince himself or herself that it can bewritten in the programing language
he or she has in mind.

The choice of N as the domain and image for the computable functions
is not as restrictive as it may sound. Every hereditarily finite object2 can
be encoded by just a single natural number. Even if formally we define
computable functions as having domain N, we think of them as using any
kind of finitary object as inputs or outputs. This should not be surprising.
It is what computers do when they encode everything you see on the screen
using finite binary strings, or equivalently, natural numbers written in
binary. For instance, we can encode pairs of natural numbers by a single
number using theCantor pairing function 〈x, y〉 �→ ((x+y)(x+y+1)/2+y),

1For the reader with a computer science background, let us remark that we do not impose
any time or space bound on our computations—computations just need to halt and return
an answer after a finitely many steps using a finite amount of memory.

2A hereditarily finite object consist of a finite set or tuple of hereditarily finite objects.

xiii
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xiv Notation and conventions

which is a bijection from N2 to N whose inverse is easily computable too.
One can then encode triples by using pairs of pairs, and then encode
n-tuples, and then tuples of arbitrary size, and then tuples of tuples, etc. In
the same way, we can consider standard effective bijections between N and
various other sets like Z, Q, V�, L�,�, etc. Given any finite object a, we
use Quine’s notation �a� to denote the number coding a. Which method
of coding we use is immaterial for us so long as the method is sufficiently
effective. We will just assume these methods exist and hope the reader can
figure out how to define them.
Let

Φ0,Φ1,Φ2,Φ3, . . .

be an enumeration of the computer programs ordered in some effective
way, say lexicographically. Given n, we write Φe(n) for the output of
the eth program on input n. Each program Φe calculates the values of a
partial computable function N⇀ N. Let us remark that, on some inputs,
Φe(n) may run forever and never halt with an answer, in which case Φe(n)
is undefined. If Φe returns an answer for all n, Φe is said to be total—
even if total, these functions are still included within the class of partial
computable functions. The computable functions are the total functions
among the partial computable ones. We write Φe(n)↓ to mean that this
computation converges, that is, that it halts after a finite number of steps;
and we write Φe(n)↑ to mean that it diverges, i.e., it never returns an answer.
Computers, as Turing machines, run on a step-by-step basis. We use
Φe,s(n) to denote the output of Φe(n) after s steps of computation, which
can be either not converging yet (Φe,s(n)↑) or converging to a number
(Φe,s(n)↓ = m). Notice that, given e, s, n, we can decide whether Φe,s(n)
converges or not, computably: All we have to do is run Φe(n) for s steps.
If f and g are partial functions, we write f(n) = g(m) to mean that either
both f(n) and g(m) are undefined, or both are defined and have the same
value. We write f = g if f(n) = g(n) for all n. If f(n) = Φe(n) for all
n, we say that e is an index for f. The Padding Lemma states that every
partial computable function has infinitely many indices—just add dummy
instructions at the end of a program, getting essentially the same program,
but with a different index.
In his famous 1936 paper, Turing showed there is a partial computable

function U : N2 → N that encodes all other computable functions in the
sense that, for every e, n,

U (e, n) = Φe(n).

This function U is said to be a universal partial computable function. It
does essentially what computers do nowadays: You give them an index
for a program and an input, and they run it for you. We will not use U
explicitly throughout the book, but we will constantly use the fact that we
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Notation and conventions xv

can computably list all programs and start running them one at the time,
using U implicitly.
We identify subsets of N with their characteristic functions in 2N, and

we will move from one viewpoint to the other without even mentioning
it. For instance, a set A ⊆ N is said to be computable if its characteristic
function is.

An enumeration of a setA is nothingmore than an onto function g : N →
A. A set A is computably enumerable (c.e.) if it has an enumeration that is
computable. The empty set is computably enumerable too. Equivalently, a
set is computably enumerable if it is the domain of a partial computable
function.3 We denote

We = {n ∈ N : Φe(n)↓} and We,s = {n ∈ N : Φe,s(n)↓}.

As a convention, we assume thatWe,s is finite, and furthermore, that only
on inputs less than s can Φe converge in less than s steps. One way to
make sense of this is that numbers larger than s should take more than
s steps to even be read from the input tape. We sometimes use Lachlan’s
notation: We[s] instead ofWe,s . In general, if a is an object built during
a construction and whose value might change along the stages of the
construction, we use a[s] to denote its value at stage s . A set is co-c.e. if
its complement is c.e.
Recall that a set is computable if and only if it and its complement are

computably enumerable.
The recursion theorem gives us one of the most general ways of using

recursion when defining computable functions. It states that for every
computable function f : N2 → N there is an index e ∈ N such that
f(e, n) = ϕe(n) for all n ∈ N. Thus, we can think of f(e, ·) = ϕe(·) as a
function of n which uses its own index, namely e, as a parameter during
its own computation, and in particular is allowed to call and run itself.4

An equivalent formulation of this theorem is that, for every computable
function h : N → N, there is an e such thatWh(e) =We .

Sets and strings. The natural numbers areN = {0, 1, 2, . . . .}. For n ∈ N,
we sometimes use n to denote the set {0, . . . , n − 1}. For instance, 2N is
the set of functions from N to {0, 1}, which we will sometimes refer to as
infinite binary sequences or infinite binary strings. For any set X , we use
X<N to denote the set of finite tuples of elements from X , which we call
strings when X = 2 or X = N. For � ∈ X<N and � ∈ X≤N, we use ��� to
denote the concatenation of these sequences. Similarly, for x ∈ X , ��x
is obtained by appending x to �. We will often omit the � symbol and just

3If A = range(g), then A is the domain of the partial function that, on input m, outputs
the first n with g(n) = m if it exists.

4To prove the recursion theorem, for each i , let g(i) be an index for the partial computable
function ϕg(i)(n) = f(ϕi (i), n). Let e0 be an index for the total computable function g, and

let e = g(e0). Then ϕe(n) = ϕg(e0) = f(ϕe0 (e0), n) = f(g(e0), n) = f(e, n).
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xvi Notation and conventions

write �� and �x. We use � ⊆ � to denote that � is an initial segment of
�, that is, that |�| ≤ |�| and �(n) = �(n) for all n < |�|. This notation is
consistent with the subset notation if we think of a string � as its graph
{〈i, �(i)〉 : i < |�|}. We use 〈〉 to denote the empty tuple. If Y is a subset
of the domain of a function f, we use f ↾ Y for the restriction of f to Y .
Given f ∈ X≤N and n ∈ N, we use f ↾ n to denote the initial segment of f
of length n. We usef ↾↾n for the initial segment of length n+1. For a tuple
n̄ = 〈n0, . . . , nk〉 ∈ N<N, we use f ↾ n̄ for the tuple 〈f(n0), . . . ., f(nk)〉.
Given a nested sequence of strings �0 ⊆ �1 ⊆ · · · , we let

⋃
i∈N
�i be the

possibly infinite string f ∈ X≤N such that f(n) = m if �i(n) = m for
some i .

Givenf, g ∈ XN, we usef⊕g for the function (f⊕g)(2n) = f(n) and
(f⊕g)(2n+1) = g(n). We can extend this to�-sums and define

⊕
n∈N
fn

to be the function defined by (
⊕
n∈N
fn)(〈m, k〉) = fm(k). Conversely,

we define f[n] to be the nth column of f, that is, f[n](m) = f(〈n,m〉). All
these definitions work for sets if we think in terms of their characteristic
functions. So, for instance, we can encode countably many sets {An : n ∈
N} with one set A = {〈n,m〉 : m ∈ An}.
For a set A ⊆ N, the complement of A with respect to N is denoted

by Ac .
A tree on a set X is a subset T of X<N that is closed downward, i.e., if

� ∈ T and � ⊆ �, then � ∈ T too. A path through a tree T is a function
f ∈ XN such that f ↾ n ∈ T for all n ∈ N. We use [T ] to denote the set of
all paths through T . A tree is well-founded if it has no paths.

Reducibilities. There are various ways to compare the complexity of sets
of natural numbers. Depending on the context or application, some may
be more appropriate than others.

Many-one reducibility. Given sets A,B ⊆ N, we say that A is many-one

reducible (orm-reducible) to B , and writeA ≤m B , if there is a computable
function f : N → N such that n ∈ A ⇐⇒ f(n) ∈ B for all n ∈ N. One
should think of this reducibility as saying that all the information in A
can be decoded from B . Notice that the classes of computable sets and of
c.e. sets are both closed downwards under ≤m. A set B is said to be c.e.
complete if it is c.e. and, for every other c.e. set A, A ≤m B .

Two sets are m-equivalent if they are m-reducible to each other, denoted
A ≡m B . This is an equivalence relation, and the equivalence classes are
called m-degrees
There are, of course, various other ways to formalize the idea of one

set encoding the information from another set. Many-one reducibility is
somewhat restrictive in various ways: (1) to figure out if n ∈ A, one is
allowed to ask only one question of the form “m ∈ B?”; (2) the answer
to “n ∈ A?” has to be the same as the answer to “f(n) ∈ B?”. Turing
reducibility is much more flexible.

www.cambridge.org/9781108423298
www.cambridge.org


Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Notation and conventions xvii

One-one reducibility. 1-reducibility is like m-reducibility but requir-
ing the reduction to be one-to-one. The equivalence induced by it, 1-
equivalence, is one of the strongest notions of equivalence between sets in
computability theory—a computability theorist would view sets that are
1-equivalent as being the same. Myhill’s theorem states that two sets of
natural numbers are 1-equivalent, i.e., each is 1-reducible to the other, if
and only if there is a computable bijection of N that matches one set with
the other.

Turing reducibility. Given a function f : N → N, we say that a partial
function g : N ⇀ N is partial f-computable if it can be computed by a
program that is allowed to use the functionf as a primitive function during
its computation; that is, the program can ask questions about the value
of f(n) for different n’s and use the answers to make decisions while the
program is running. The functionf is called the oracle of this computation.
If g and f are total, we write g ≤T f and say that g is Turing reducible

to f, that f computes g, or that g is f-computable. The class of partial
f-computable functions can be enumerated the same way as the class of
the partial computable functions. Programs that are allowed to query an
oracle are called Turing operators or computable operators. We list them as

Φ0,Φ1, . . . , and we write Φfe (n) for the output of the eth Turing operator
on input n when it uses f as oracle. Notice that Φe represents a fixed
program that can be used with different oracles. When the oracle is the
empty set, we may write Φe for Φ

∅
e matching the previous notation.

As we already mentioned, for a fixed input n, if Φfe (n) converges, it does
so after a finite number of steps s . As a convention, let us assume that in
just s steps, it is only possible to read the first s entries from the oracle.
Thus, if � is a finite substring of f of length greater than s , we could
calculate Φ�e (n) without ever noticing that the oracle is not an infinite
string.

Convention: For � ∈ N<N, Φ�e (n) is shorthand for Φ�e,|�|(n),

which runs for at most |�| stages.

Notice that given e, �, n, it is computable to decide if Φ�e (n)↓.
As the class of partial computable functions, the class of partial X -

computable functions contains the basic functions; is closed under composi-
tion, recursion, andminimization; can be listed in such a way that we have a
universal partial X -computable function (that satisfies the s-m-n theorem).
In practice, with very few exceptions, those are the only properties we use
of computable functions. This is why almost everything we can prove about
computable functions, we can also prove about X -computable functions.
This translation is called relativization. All notions whose definition are
based on the notion of partial computable function can be relativized by
using the notion of partial X -computable function instead. For instance,
the notion of c.e. set can be relativized to that of c.e. in X or X -c.e. set:
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xviii Notation and conventions

These are the sets which are the images of X -computable functions (or
empty), or, equivalently, the domains of partial X -computable functions.
We useW X

e to denote the domain of ΦXe .
When two functions are Turing reducible to each other, we say that

they are Turing equivalent, which we denote by ≡T . This is an equivalence
relation, and the equivalence classes are called Turing degrees.

Computable operators can be encoded by computable subsets of N<N ×
N× N. Given Φ ⊆ N<N × N× N, � ∈ N<N, n, m, we write Φ�(n) = m as
shorthand for 〈�, n,m〉 ∈ Φ. Then, given f ∈ NN, we let

Φf(n) = m ⇐⇒ (∃� ⊂ f) Φ�(n) = m.

We then have that g is computable in f if and only if there is a c.e. subset
Φ ⊆ N<N × N × N such that Φf(n) = g(n) for all n ∈ N. A standard
assumption is that 〈�, n,m〉 ∈ Φ only if n,m < |�|.

We can use the same idea to encode c.e. operators by computable subsets
of N<N × N. GivenW ⊆ N<N × N, � ∈ N<N, and f ∈ NN, we let

W � = {n ∈ N : 〈�, n〉 ∈W } and W f =
⋃

�⊂f

W � .

We then have that X is c.e. in Y if and only if there is a c.e. subset
W ⊆ N<N × N such that X = W Y . A standard assumption is that
〈�, n〉 ∈W only if n < |�|.

Enumeration reducibility. Recall that an enumeration of a set A is just
an onto functionf : N → A. GivenA,B ⊆ N, we say thatA is enumeration

reducible (or e-reducible) to B , and write A ≤e B , if every enumeration of
B computes an enumeration ofA. Selman [Sel71] showed that we canmake
this reduction uniformly: A ≤e B if and only if there is a Turing operator
Φ such that, for every enumeration f of B , Φf is an enumeration of A.
(See Theorem 4.2.2.) Another way of defining enumeration reducibility is
via enumeration operators: An enumeration operator is a c.e. set Θ of pairs
that acts as follows: For B ⊆ N, we define

ΘB = {n : (∃D ⊆fin B) 〈�D�, n〉 ∈ Θ},

where ⊆fin means ‘finite subset of’. Selman also showed that A ≤e B if
and only if there is an enumeration operator Θ such that A = ΘB .
The Turing degrees embed into the enumeration degrees via the map

	(A) = A⊕ Ac . It is not hard to show that A ≤T B ⇐⇒ 	(A) ≤e 	(B).

Positive reducibility. We say that A positively reduces to B , and write
A ≤p B , if there is a computable function f : N → (N<N)<N such that, for
every n ∈ N, n ∈ A if and only if there is an i < |f(n)| such that every
entry of f(n)(i) is in B (cf. [Joc68]). That is,

n ∈ A ⇐⇒
∨

i<|f(n)|

∧

j<|f(n)(i)|

f(n)(i)(j) ∈ B.
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Notation and conventions xix

Notice that≤p implies both Turing reducibility and enumeration reducibil-
ity, and is implied by many-one reducibility. In particular, the classes of
computable sets and of c.e. sets are both closed downwards under ≤p.

The Turing jump. Let K be the domain of the universal partial com-
putable function. That is,

K = {〈e, n〉 : Φe(n)↓} =
⊕

e∈N

We .

K is called the halting problem.5 It is not hard to see thatK is c.e. complete.
Using a standard diagonalization argument, one can show that K is not
computable.6 It is common to define K as {e : Φe(e)↓} instead—the two
definitions give 1-equivalent sets. We will use whichever is more convenient
in each situation. We will often write 0′ for K .
We can relativize this definition and, given a set X , define the Turing

jump of X as

X ′ = {e ∈ N : ΦXe (e)↓}.

Relativizing the properties of K , we get that X ′ is X -c.e.-complete, that
X ≤T X

′, and thatX ′ �≤T X . The Turing degree ofX ′ is strictly above that
of X—this is why it is called a jump. The jump defines an operation on the
Turing degrees. Furthermore, for X,Y ⊆ N, X ≤T Y ⇐⇒ X ′ ≤m Y

′.
The double iteration of the Turing jump is denoted X ′′, and the n-th

iteration by X (n).

Vocabularies and languages. Let us quickly review the basics about
vocabularies and structures. Our vocabularies will always be countable.
Furthermore, except for a few occasions, they will always be computable.
A vocabulary � consists of three sets of symbols {Ri : i ∈ IR}, {fi : i ∈

IF }, and {ci : i ∈ IC }; and two functions aR : IR → N and aF : IF → N.
Each of IR, IF , and IC is an initial segment of N. The symbols Ri , fi , and
ci represent relations, functions, and constants, respectively. For i ∈ IR,
aR(i) is the arity of Ri , and for i ∈ IF , aF (i) is the arity of fi .
A vocabulary � is computable if the arity functions aR and aF are

computable. This only matters when � is infinite; finite vocabularies are
trivially computable.
Given such a vocabulary �, a �-structure is a tuple

M = (M ; {RM
i : i ∈ IR}, {f

M
i : i ∈ IF }, {c

M
i : i ∈ IC }),

whereM is just a set called the domain ofM, and the rest are interpretations
of the symbols in �. That is, RM

i ⊂ M aR(i), fM
i : M aF (i) → M , and

cMi ∈M . A structure is a �-structure for some �.

5The ‘K’ is for Kleene.
6If it were computable, so would be the set A = {e : 〈e, e〉 �∈ K}. But then A =We for

some e, and we would have that e ∈ A ⇐⇒ 〈e, e〉 �∈ K ⇐⇒ e �∈We ⇐⇒ e �∈ A.
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xx Notation and conventions

Given two �-structures A and B, we write A ⊆ B to mean that A is a
substructure ofB, that is, thatA ⊆ B ,fA

i = fB
i ↾A

aF (i),RA
j = RB

j ↾A
aR(i)

and cAk = cBk for all symbols fi , Rj and ck . This notation should not be
confused withA ⊆ B which only means that the domain ofA is a subset of
the domain of B. If A is a �0-structure and B a �1-structure with �0 ⊆ �1,

7

A ⊆ B means thatA is a �0-substructure of B ↾ �0, where B ↾ �0 is obtained
by forgetting the interpretations of the symbols of �1 � �0 in B. B ↾ �0 is
called the �0-reduct of B, and B is said to be an expansion of B ↾ �0.
Given a vocabulary �, we define various languages over it. First,

recursively define a �-term to be either a variable x, a constant symbol
ci , or a function symbol applied to other �-terms, that is, fi(t1, . . . , taF (i)),
where each tj is a �-term we have already built. The atomic �-formulas

are the ones of the form Ri(t1, . . . , taR(i)) or t1 = t2, where each ti is
a �-term. A �-literal is either a �-atomic formula or a negation of a
�-atomic formula. A quantifier-free �-formula is built out of literals using
conjunctions, disjunctions, and implications. If we close the quantifier-
free �-formulas under existential quantification, we get the existential

�-formulas, of ∃-formulas. Every �-existential formula is equivalent to one
of the form ∃x1 · · · ∃xk ϕ, where ϕ is quantifier-free. A universal �-formula,
or ∀-formula, is one equivalent to ∀x1 · · · ∀xk ϕ for some quantifier-free �-
formula ϕ. An elementary �-formula is built out of quantifier-free formulas
using existential and universal quantifiers. We also call these the finitary
first-order formulas.
Given a � structure A, and a tuple ā ∈ A<N, we write (A, ā) for the

� ∪ c̄-structure where c̄ is a new tuple of constant symbols and c̄
A = ā.

Given R ⊆ N × A<N, we write (A, R) for the �̃ structure where �̃ is
defined by adding to � relations symbols Ri,j of arity j for i, j ∈ N, and
R
A
i,j = {ā ∈ Aj : 〈i, ā〉 ∈ R}.

Orderings. Here are some structures we will use quite often in examples.
A partial order is a structure over the vocabulary {≤} with one binary
relation symbol which is transitive (x ≤ y & y ≤ z → x ≤ z), reflexive
(x ≤ x), and anti-symmetric (x ≤ y & y ≤ x → x = y). A linear order

is a partial order where every two elements are comparable (∀x, y (x ≤
y ∨ y ≤ x)). We will often add and multiply linear orderings. Given
linear orderings A = (A;≤A) and B = (B ;≤B), we define A + B to be
the linear ordering with domain A ⊔ B , where the elements of A stand
below the elements of B . We define A× B to be the linear ordering with
domain A× B where 〈a1, b1〉 ≤A×B 〈a2, b2〉 if either b1 <B b2 or b1 = b2
and a1 ≤A a2—notice we compare the second coordinate first.8 We will
use� to denote the linear ordering of the natural numbers and Z andQ for
the orderings of the integers and the rationals. We denote the finite linear

7By �0 ⊆ �1 we mean that every symbol in �0 is also in �1 and with the same arity.
8A times B is A B times.
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Notation and conventions xxi

ordering with n elements by n. We use A∗ to denote the reverse ordering
(A;≥A) of A = (A,≤A). For a <A b ∈ A, we use the notation A ↾ (a, b)
or the notation (a, b)A to denote the open {x ∈ A : a <A x <A b}. We
also use A ↾ a to denote the initial segment of A below a, which we could
also denote as (−∞, a)A.
As mentioned above, a tree T is a downward closed subset of X<N.

As a structure, a tree can be represented in various ways. One is as a
partial order (T ;⊆) using the ordering on strings. Another is as a graph
where each node � ∈ T other than the root is connected to its parent node
� ↾ |� − 1|, and there is a constant symbol used for the root of the tree.
We will refer to these two types of structures as trees as orders and trees as

graphs.
A partial order where every two elements have a least upper bound

(x ∨ y) and a greatest lower bound (x ∧ y) is called a lattice. A lattice
with a top element 1, a bottom element 0, and where ∨ and ∧ distribute
over each other, and every element x has a complement (that is an element
xc such that x ∨ xc = 1 and x ∧ xc = 0) is called a Boolean algebra. The
vocabulary for Boolean algebras is {0, 1,∨,∧, ·c}, and the ordering can be
defined by x ≤ y ⇐⇒ y = x ∨ y.

The arithmetic hierarchy. Consider the structure (N; 0, 1,+,×,≤). In
this vocabulary, the bounded formulas are built out of the quantifier-free
formulas using bounded quantifiers of the form ∀x < y and ∃x < y.
A Σ0

1 formula is one of the form ∃x ϕ, where ϕ is bounded; and a Π0
1

formula is one of the form ∀x ϕ, where ϕ is bounded. By coding tuples
of numbers by a single natural number, one can show that formulas of
the form ∃x0∃x1 . . . ∃xk ϕ are equivalent to Σ0

1 formulas. Post’s theorem
asserts that a set A ⊆ N is c.e. if and only if it can be defined by a Σ0

1

formula. Thus, a set is computable if and only if it is ∆0
1, that is, if it can be

defined both by a Σ0
1 formula and by a Π0

1 formula.
By recursion, we define the Σ0

n+1 formulas as those of the form ∃x ϕ,

where ϕ is Π0
n; and the Π0

n+1 formulas as those of the form ∀x ϕ, where ϕ is

Σ0
n. A set is ∆0

n if it can be defined by both a Σ0
n formula and a Π0

n formula.
Again, in the definition of Σ0

n+1 formulas, using one existential quantifier or
many makes no difference. What matters is the number of alternations of
quantifiers. Post’s theorem asserts that a setA ⊆ N is c.e. in 0(n) if and only
if it can be defined by a Σ0

n+1 formula. In particular, a set is computable

from 0′ if and only if it is ∆0
2. The Shoenfield Limit Lemma says that a set

A is ∆0
2 if and only if there is a computable function f : N2 → N such that,

for each n ∈ N, if n ∈ A then f(n, s) = 1 for all sufficiently large s , and
if n �∈ A then f(n, s) = 0 for all sufficiently large s . This can be written
as 
A(n) = lims→∞ f(n, s), where 
A is the characteristic function of A
and the limit with respect to the discrete topology of N where a sequence
converges if and only if it is eventually constant.
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xxii Notation and conventions

The language of second-order arithmetic is a two-sorted language for
the structure (N,NN; 0, 1,+,×,≤). The elements of the first sort, called
first-order elements, are natural numbers. The elements of the second
sort, called second-order elements or reals, are functions N → N. The
vocabulary consists of the standard vocabulary of arithmetic, 0, 1, +, ×,
≤ which is used on the first-order elements, and an application operation
denoted F (n) for a second-order element F and a first-order element n. A
formula in this language is said to be arithmetic if it has no quantifiers over
second-order objects. Among the arithmetic formulas, the hierarchy of Σ0

n

and Π0
n formulas are defined exactly as above. Post’s theorem that Σ0

1 sets
are c.e. also applies in this context: For every Σ0

1 formula �(F, n), where n
a number variable and F is a function variable, there is c.e. operatorW
such that n ∈W F ⇐⇒ �(F, n). We can then build the computable tree
Tn = {� ∈ N<N : n �∈W �} and we have that �(F, n) holds if and only if F
is not a path through Tn. A Π0

1 class is a set of the form {F ∈ NN : �(F )}
for some Π0

1 formula �(F ). The observation above shows how every Π0
1

class is of the form [T ] for some computable tree T ⊆ N<N.
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