
Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1

STRUCTURES

Algorithms, Turing machines, and modern computer programs all work
with finitary objects, objects that usually can be encoded by finite binary
strings or just by natural numbers. For this reason, computability theory
concentrates on the study of the complexity of sets of natural numbers. To
study the computational properties of a countable mathematical structure,
the first approach is to set the domain of the structure to be a subset
of the natural numbers and then borrow the tools we already have from
computability theory. One issue comes up: There might be many bijections
between the domain of a structure and the natural numbers, inducing
many different presentations of the structure with different computability-
theoretic properties. The interplay between properties of presentations
(computational properties) and properties of isomorphism types (structural
properties) is one of the main themes of computable structure theory.

We start this chapter by introducing various ways of representing struc-
tures so that we can analyze their computational complexity. These
different types of presentations are essentially equivalent, and the distinc-
tions are purely technical and not deep. However, they will allow us to be
precise later. At the end of the chapter we prove Knight’s theorem that all
non-trivial structures have presentations that code any given set.

1.1. Presentations

All the structures we consider are countable. So, unless otherwise stated,
“structure” means “countable structure.” Furthermore, we usually assume
that the domains of our structures are subsets of N. This will allow us to
use everything we already know about computable functions on N.

Definition 1.1.1. An �-presentation is nothing more than a structure
whose domain is N.9 Given a structure A, when we refer to an �-presen-
tation of A or to a copy of A, we mean an �-presentation M which is

9The use of the word presentation here has nothing to do with its use in group theory.
There, a presentation of a group consists a list of generators and a list of relations among
them. You might have a group with a computable presentation, meaning that this list of
relations is computable, but which has no computable �-presentation in our sense.

1

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1. Structures

isomorphic to A. An �-presentationM is computable if all its relations,
functions, and constants are uniformly computable; that is, if the set �M,
defined as

�M =
⊕

i∈IR

RM
i ⊕

⊕

i∈IF

FM
i ⊕

⊕

i∈IC

{cMi }, (1)

is computable. Note that via standard coding, we can think of �M as a
subset of N.

1.1.1. Atomic diagrams. Another standard way of defining when an �-
presentation is computable is via its atomic diagram. Let {ϕat

i : i ∈ N} be
an effective enumeration of all atomic �-formulas with free variables from
the set {x0, x1, . . . }. (An atomic �-formula is one of the form R(t1, . . . , ta),
where R is either “=” or Rj for j ∈ IR, and each ti is a term built out of
the function, constant, and variable symbols.)

Definition 1.1.2. The atomic diagram of an �-presentation M is the
infinite binary string D(M) ∈ 2N defined by

D(M)(i) =

{
1 if M |= ϕat

i [xj �→ j : j ∈ N],

0 otherwise.

It is not hard to see that D(M) and �M are Turing equivalent. We will
often treat the �-presentation M, the real �M, and the real D(M) as the
same thing. For instance, we define the Turing degree of the �-presentation
M to be the Turing degree of D(M). When we say that M is computable

from a set X , that a set X is computable from M, that M is ∆0
2, that M is

arithmetic, that M is low, etc., we mean D(M) instead of M.
Let us also point out that the quantifier-free diagram, which is defined

like the atomic diagram but using a listing of the quantifier-free formulas
instead, is Turing equivalent to D(M) too.

1.1.2. An example. Unless it is trivial, a structure will have many differ-
ent �-presentations—continuum many actually (see Theorem 1.2.1)—and
these different �-presentations will have different computability theoretic
properties. For starters, some of them may be computable while others
may not. But even among the computable copies of a single structure one
may find different computability theoretic properties.
Consider the linear ordering A = (N;≤), where ≤ is the standard

ordering on the natural numbers. We can build another �-presenta-
tion M = (N;≤M) of A as follows. Let {ki : i ∈ N} be a one-to-one
computable enumeration of the halting problem 0′. First, order the even
natural numbers in the natural way: 2n ≤M 2m if n ≤ m. Second, place
the odd number 2s + 1 right in between 2ks and 2ks + 2, that is, let
2ks ≤M 2s + 1 ≤M 2ks + 2. Using transitivity we can then define ≤M
on all pairs of numbers. Thus 2n <M 2s + 1 if and only if n < ks , and

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1. Presentations 3

2s + 1 <M 2t + 1 if and only if ks < kt . (Early codings of sets into
�-presentations of linear orderings appear in [Mar82].)

One can show thatA andM are two computable �-presentations of the
same structure.10 However, computationally, they behave quite differently.
For instance, the successor function is computable in A but not in M:
In A, SuccA(n) = n + 1 is clearly computable. On the other hand, in
M, SuccM(2n) = 2n + 2 if and only if there is no odd number placed
≤M -in-between 2n and 2n+2, which occurs if and only if n �∈ 0′. Therefore,
Succ

M computes 0′ and Succ
A does not.

The reason A andM can behave differently despite being isomorphic
is that they are not computably isomorphic: There is no computable
isomorphism between them. To see this, note that if there was one, we
could use SuccA and the isomorphism to compute SuccM, contradicting
that SuccM computes 0′.

1.1.3. Relaxing the domain. In many cases, it will be useful to consider
structures whose domain is a subset ofN. We call those (⊆�)-presentations.
IfM , the domain of M, is a proper subset of N, we can still define D(M)
by letting D(M)(i) = 0 if ϕat

i mentions a variable xj with j �∈M . In this
case, we have

D(M) ≡T M ⊕ �M.

To see that D(M) computes M , notice that, for j ∈ N, j ∈ M ↔
D(M)(�xj = xj�) = 1, where �ϕ� is the index of the atomic formula ϕ
in the enumeration {ϕat

i : i ∈ N}.
The following observation will simplify many of our constructions later

on.

Observation 1.1.3. We can always associate to an infinite (⊆�)-presen-
tation M, an isomorphic �-presentation A: IfM = {m0 < m1 < m2 <
· · · } ⊆ N, we can use the bijection i �→ mi : N →M to get a copyA ofM,
now with domain N. Since this bijection is computable inM , it is not hard
to see that D(A) ≤T D(M), and furthermore that D(A)⊕M ≡T D(M).

One of the advantages of (⊆�)-presentations is that they allow us to
present finite structures.

1.1.4. Relational vocabularies. A vocabulary is relational if it has no
function or constant symbols, and has only relational symbols. Every
vocabulary � can be made into a relational one, �̃, by replacing each
n-ary function symbol by an (n + 1)-ary relation symbol coding the graph
of the function, and each constant symbol by a 1-ary relation symbol
coding it as a singleton. Depending on the situation, this change in

10To show thatM is isomorphic to the standard ordering on N, one has to observe that
every element ofM = N has finitely many elements <M -below it: 2n has at most 2n, and
2s + 1 has at most 2ks .

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 1. Structures

vocabulary might be more or less significant. For instance, the class of
quantifier-free definable sets changes, but the class of ∃-definable sets
does not (see Exercise 1.1.4). For most computational properties, this
change is nonessential; for instance, if M is an �-presentation of a �-

structure, and M̃ is the associated �-presentation ofM as a �̃-structure,

then D(M) ≡T D(M̃) (as it follows from Exercise 1.1.4). Because of this,
and for the sake of simplicity, we will often restrict ourselves to relational
vocabularies.

Exercise 1.1.4. Show that the ∃-diagram of M as a �-structure is m-
equivalent to its ∃-diagram as a �̃-structure. More concretely, let {ϕ∃

i :
i ∈ N} and {ϕ̃∃

i : i ∈ N} be the standard effective enumerations of
the existential �-formulas and the existential �̃-formulas on the variables
x0, x1, Show that

{i ∈ N : M |= ϕ∃
i [xj �→ j : j ∈ N]} ≡m

{i ∈ N : M̃ |= ϕ̃∃
i [xj �→ j : j ∈ N]}.

One could also show these sets are ≡1-equivalent.

1.1.5. Finite structures and approximations. We can represent finite
structures using (⊆�)-presentations. However, when working with infin-
itely many finite structures at once, we often want to be able to compute
things about them uniformly, for instance the sizes of the structures,
which we could not do from (⊆�)-presentations (see Exercise 1.1.5). For
that reason, we sometimes consider (⊑�)-presentations, which are (⊆�)-
presentations whose domains are initial segments of N. Given a finite
(⊑�)-presentation, we can easily find the first k that is not in the domain
of the structure.

Exercise 1.1.5. Show that there exists a computable list {Mn : n ∈ N}
of (⊆�)-presentations of finite structures whose sizes cannot be computed
uniformly, that is, a list such that the domains and relations of theMn’s
are uniformly computable, but there is no computable function f such
that f(n) is the size ofMn.

When � is a finite vocabulary, finite �-structures can be coded by a finite
amount of information. Suppose M is a finite �-structure with domain
{0, . . . , k − 1}, and � is a finite relational vocabulary. Then there are only
finitely many atomic �-formulas on the variables x0, . . . , xk−1, let us say ℓk
of them. Assume the enumeration {ϕat

i : i ∈ N} of the atomic �-formulas
is such that those ℓk formulas come first, and the formulas mentioning
variables beyond xk come later. Then D(M) is determined by the finite
binary string of length ℓk that codes the values of those formulas. We will
often assume D(M) is that string.

When dealing with infinite structures, very often we will want to approxi-
mate them using finite substructures. We need to take care of two technical

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1. Presentations 5

details. First, if � is an infinite vocabulary, we need to approximate it using
finite sub-vocabularies. We assume that all computable vocabularies �
come with an associated effective approximation �0 ⊆ �1 ⊆ · · · ⊆ �, where
each �s is finite and � =

⋃
s �s . In general and unless otherwise stated,

we let �s consist of the first s relation, constant and function symbols in
�, but in some particular cases, we might prefer other approximations.
For instance, if � is already finite, we usually prefer to let �s = � for all s .
Second, to be able to approximate a �-structure M using �s -substructures,
we need the �s -reduct of M to be locally finite, i.e., every finite subset
generates a finite substructure. To avoid unnecessary complications, we
will just assume � is relational and, in particular, locally finite. Even if � is
not originally relational, we can make it relational as in Section 1.1.4.

Definition 1.1.6. Given an �-presentationM, we letMs be the finite
�s -substructure of M with domain {0, . . . , s − 1}. We call the sequence
{Ms : s ∈ N} a finite approximation of M. We identify this sequence
with the sequence of codes {D(Ms) : s ∈ N} ⊆ 2<N, which allows us to
consider its computational complexity.
In general, when we refer to a �|·|-structure, we mean a �s -structure

where s is the size of the structure itself. For instance, the structuresMs

above are all �|·|-structures.

Observation 1.1.7. Here is a simple, but very important observation we
will use throughout the book. For each s ,D(Ms) = D(M) ↾ ℓs , and hence

D(M0) ⊆ D(M1) ⊆ D(M2) ⊆ · · · and D(M) =
⋃

s∈N

D(Ms).

The convention here is that for each s , the �s -atomic formulas on the vari-
ables {x0, . . . , xs−1} are listed before the rest; that is, they areϕ

at
0 , . . . , ϕ

at
ℓs−1

for some ℓs ∈ N.
Also, let us remark that the inclusion is an inclusion of stings, not of

sets, and so is the union, as defined on page xv.

Thus, from a computational viewpoint, having an �-presentation is
equivalent to having a finite approximation of a structure M. This is
why, when we are working with an �-presentation, we often visualize the
structure as being given to us little by little.

Observation 1.1.8. Another simple but important observation is that an
∃-formula is true of a tuple m̄ inM if and only if it is true in some finite
substructure Ms that contains m̄. Thus, if ∃-Th(M) denotes the set of
∃-�-sentences true ofM, and ∃-Th(Ms) the set of ∃-�s -sentences true of
Ms , then

∃-Th(M) =
⋃

s∈N

∃-Th(Ms),

where the union here refers to the union of sets, not sequences.

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 1. Structures

As a useful technical device, we define the atomic diagram of a finite
tuple as the finite binary sequence coding the set of atomic formulas true
of the tuple restricted to the smaller vocabulary. Again, we assume that �
is relational.

Definition 1.1.9. LetM be a �-structure and let ā = 〈a0, . . . , as−1〉 ∈
M s . We define the atomic diagram of ā in M, denoted DM(ā), as the
string in 2ℓs such that

DM(ā)(i) =

{
1 if M |= ϕat

i [xj �→ aj , j < s],

0 otherwise.

So, if M were an �-presentation and a0, . . . as , . . . were the elements
0, . . . , s, · · · ∈ M = N, then DM(〈a0, . . . , as−1)〉 = D(Ms) as in Defini-
tion 1.1.6.

Observation 1.1.10. For every � ∈ 2<N and every s with ℓs ≥ |�|, there
is a quantifier-free �-formula ϕat

� (x0, . . . , xs−1) such that

A |= ϕat
� (ā) ⇐⇒ � ⊆ DA(ā)

for every �-structure A and tuple ā ∈ As , namely

ϕat� (x̄) ≡

⎛
⎝ ∧

i<|�|,�(i)=1

ϕati (x̄)

⎞
⎠ ∧

⎛
⎝ ∧

i<|�|,�(i)=0

¬ϕati (x̄)

⎞
⎠ .

1.1.6. Congruence structures. It will often be useful to consider struc-
tures where equality is interpreted by an equivalence relation. A congru-

ence �-structure is a structure M = (M ; =M, {RM
i : i ∈ IR}, {f

M
i : i ∈

IF }, {c
M
i : i ∈ IC }), where =

M is an equivalence relation onM , and the
interpretations of all the �-symbols are invariant under =M (that is, if
ā =M b̄, then ā ∈ RM

i ⇐⇒ b̄ ∈ RM
i and fMj (ā) =M fj(b̄) for all

relations symbols Ri and function symbols fj). IfM = N, we say that
M is a congruence �-presentation. We can then define D(M) exactly as in
Definition 1.1.2, using =M to interpret equality.
Given a congruence �-structure, one can always take the quotient

M/=M and get a �-structure where equality is the standard N-equality.
To highlight the difference, we will sometimes use the term injective �-
presentations when equality is N-equality.

Lemma 1.1.11. Given a congruence�-presentationMwith infinitelymany

equivalence classes, the quotientM/=M has an injective �-presentation A
computable from D(M). Furthermore, the natural projection M → A is

also computable from D(M).

Proof. All we need to do is pick a representative for each =M-equiva-
lence class in a D(M)-computable way. Just take the N-least element of

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1. Presentations 7

each class: Let

A = {a ∈M : ∀b ∈M (b <N a=⇒ b �=
M a)}

be the domain of A. Define the functions and relations in the obvious
way to get a (⊆�)-presentation of M. To get an �-presentation, use
Observation 1.1.3. ✷

Therefore, from a computational viewpoint, there is no real difference
in considering congruence structures or injective structures.

Example 1.1.12. Suppose that R is a computable ring, and I ⊆ R is
a computable ideal. The quotient ring R/I has a natural congruence
�-presentation where the domain and the operations stay as in R, but the
equality relation =R/I is the equivalence relation induced by I , namely
r =R/I q ⇐⇒ r − q ∈ I . We can then use the lemma above to get a
computable injective �-presentation of R/I .

Exercise 1.1.13. Given a sequence of structures {Ai : i ∈ N} and
sequence of embeddings fi,i+1 : Ai →֒ Ai+1, the direct limit of such a
sequence is a structureA∞ forwhich there are embeddingsfi,∞ : Ai → A∞

that commute with the previous embeddings (i.e, fi,∞ = fi+1,∞ ◦ fi,i+1

for all i ∈ N), with the property that there is a increasing sequence of
structures B0 ⊆ B1 ⊆ · · · ⊆ B∞, with B∞ =

⋃
s Bs , that is isomorphic to

the original sequence, in the sense that there are isomorphisms gi : Bi → Ai
for i ∈ N ∪ {∞} such that fi,j ◦ gi = gj ↾ Bi for all i < j ∈ N ∪ {∞}.
Prove that if the sequences {Ai : i ∈ N} and {fi,i+1 : i ∈ N} of structures
and embeddings are computable, then A∞ has a computable copy.

1.1.7. Enumerations. Assume � is a relational vocabulary. An enumer-

ation of a structure M is just an onto map g : N → M . To each such
enumeration we can associate a congruence �-presentation g−1(M) by
taking the pull-back ofM through g:

g−1(M) = (N;∼, {Rg
−1(M)
i : i ∈ IR}),

where a ∼ b ⇐⇒ g(a) = g(b) and Rg
−1(M)
i = g−1(RM

i) ⊆ N
a(i). The

assumption that � is relational was used here so that the pull-backs of
functions and constants are not multi-valued. Let us remark that if g is
injective, then ∼ becomes =N, and hence g−1(M) is an injective �-presen-
tation. In this case, the assumption that � is relational is not important, as
we can always pull-back functions and constants through bijections.

It is not hard to see that

D(g−1(M)) ≤T g ⊕D(M).

Furthermore,D(g−1(M)) ≤T g ⊕ �
M, where �M is as in Definition 1.1.1.

As a corollary we get the following lemma.

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1. Structures

Lemma 1.1.14. LetA be a computable structure in a relational vocabulary

andM be an infinite c.e. subset of A. Then, the substructureM of A with

domainM has a computable �-presentation.

Proof. Just let g be an injective computable enumeration ofM. Then
g−1(M) is a computable copy of M. ✷

Throughout the book, there will be many constructions where we need
to build a copy of a given structure with certain properties. In most cases,
we will do it by building an enumeration of the structure and then taking
the pull-back. The following observation will allow us to approximate the
atomic diagram of the pull-back, and we will use it countless times.

Observation 1.1.15. Let g be an enumeration of M. Notice that for
every tuple ā ∈M<N,

Dg−1(M)(ā) = DM(g(ā)).

For each k, use g ↾ k to denote the tuple 〈g(0), . . . , g(k− 1)〉 ∈M k . Then
Dg−1(M)(〈0, . . . , k − 1〉) = DM(g ↾ k) and the diagram of the pull-back
can be calculated in terms of the diagrams of tuples in M as follows:

D(g−1(M)) =
⋃

k∈N

DM(g ↾ k).

1.2. Presentations that code sets

In this section, we show that the Turing degrees of �-presentations of
a non-trivial structure can be arbitrarily high. Furthermore, we prove
a well-known theorem of Julia Knight that states that the set of Turing
degrees of the �-presentations of a structure is upwards closed. This set of
Turing degrees is called the degree spectrum of the structure, and we will
study it in detail in Chapter 5. Knight’s theorem applies only to non-trivial
structures: A structure A is trivial if there is a finite tuple such that every
permutation of the domain fixing that tuple is an automorphism. Notice
that these structures are essentially finite in the sense that anything relevant
about them happens within that finite tuple.

Theorem 1.2.1 (Knight [Kni98]). Suppose that X can compute an �-
presentation of a non-trivial �-structure M. Then there is an �-presentation
A ofM of Turing degree X .

Before proving the theorem, let us remark that if instead of an �-presen-
tation we wanted a (⊆�)-presentation or a congruence �-presentation,
it would be very easy to code X into either the domain or the equality
relation of A: Recall that D(A) = A⊕ (=A)⊕ �A. Requiring A to be an
injective �-presentation forces us to code X into the structural part of A,
namely �A.

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2. Presentations that code sets 9

Proof. We will build an X -computable injective enumeration g ofM
and letA = g−1(M). Since g andM areX -computable, that already gives
us D(A) ≤T X ; the actual work comes from ensuring that D(A) ≥T X .
We build g as a limit

g =
⋃

s

p̄s ∈M
N,

where the p̄s are a nested sequence of injective tuples p̄0 ⊆ p̄1 ⊆ · · · in
M<N. Recall from Observation 1.1.15 that we can approximate the atomic
diagram of A by the atomic diagrams of the tuples p̄s :

D(A) =
⋃

s∈N

DM(p̄s).

Let p̄0 = ∅. Suppose now we have already defined p̄s . At stage s + 1,
we build p̄s+1 ⊇ p̄s with the objective of coding the bit X (s) ∈ {0, 1}
into D(A). The idea for coding X (s) is as follows: We would like to
find a, b ∈ M � p̄s such that DM(p̄sa) �= DM(p̄sb). Suppose we find
them and DM(p̄sa) <lex DM(p̄sb), where ≤lex is the lexicographical
ordering on strings in 2<N. Then, depending on whether X (s) = 0 or
1, we can define p̄s+1 to be either p̄sab or p̄sba. To decode X (s), all
we have to do is compare the binary strings DA〈0, . . . , ks − 1, ks〉 and
DA〈0, . . . , ks − 1, ks + 1〉 lexicographically, where ks = |p̄s |.
The problem with this idea is that such a and b may not exist, and

DM(p̄sa)might be the same for alla ∈M . SinceM is non-trivial, we know
there is some bijection ofM preserving p̄s which is not an isomorphism,
and hence there exist tuples ā and b̄ ∈ (M � p̄s)

<N of the same length
withDM(p̄s ā) �= DM(p̄s b̄). Furthermore, there exists disjoint such ā and
b̄: To see this, take a third tuple disjoint from ā and b̄. Its diagram must
be different from that of either ā or b̄ (as those diagrams are different)
and we can replace it for b̄ or ā accordingly, two get two disjoint tuples
with different diagrams. So we search for such a pair of tuples ā, b̄, say
of length h. We also require the pair ā, b̄ to be minimal, in the sense
that DM(p̄sa0, . . . , ai−1) = DM(p̄sb0, . . . , bi−1) for i < h; if they are not,
truncate them. Suppose DM(p̄s ā) <lex DM(p̄s b̄) (otherwise replace ā for
b̄ in what follows). If X (s) = 0, let p̃s+1 = p̄sa0b0a1b1, . . . , ah−1bh−1. If
X (s) = 1, let p̃s+1 = p̄sb0a0b1a1, . . . , bh−1ah−1. Finally, to make sure g is
onto, we let p̄s+1 = p̃s+1c, where c is the N-least element ofM � p̃s+1.
To recover X from D(A), we need to also simultaneously recover the

sequence of lengths {ks : s ∈ N}, where ks = |p̄s |, for which we use the

minimality of ā and b̄. Given ks , we can compute ks+1 uniformly in D(A)
as follows: ks+1 is the least k > ks such that

DA(0, . . . , ks − 1, ks , ks + 2, ks + 4, . . . , k − 3) �=

DA(0, . . . , ks − 1, ks + 1, ks + 3, ks + 5, . . . , k − 2).

www.cambridge.org/9781108423298
www.cambridge.org

Cambridge University Press
978-1-108-42329-8 — Computable Structure Theory
Antonio Montalbán
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 1. Structures

Once we knowwhich of these two binary strings is lexicographically smaller,
we can tell if X (s) is 0 or 1: It is 0 if the former one is <lex-smaller than
the latter one. ✷

Notice that for trivial structures, all presentations are isomorphic via
computable bijections, and hence all presentations have the same Turing
degree. When the vocabulary is finite, all trivial structures are computable.

www.cambridge.org/9781108423298
www.cambridge.org

