Introduction to Dual Polarization Weather Radar

An interdisciplinary and easy-to-understand introduction to the subject, covering fundamental theory and practical applications supported by numerous operational examples. This balanced text will allow you to begin from how the radar makes observations and move deeper through electromagnetic scattering theory and cloud microphysics to understand and interpret data as they appear on the display. It uses illustrations and images of real radar observations to convey the concepts and theory of atmospheric processes typically observed with weather radar, as well as presenting a working knowledge of the radar system itself. In addition to covering the fundamentals of scattering and atmospheric physics, topics include system hardware, signal processing, and radar networks. This is the perfect tool for scientists and engineers working on weather radars or using their data, as well as senior undergraduate and graduate students studying weather radars for the first time.

V. Chandrasekar (Chandra) is a University Distinguished Professor at Colorado State University. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the International Union of Radio Science (URSI), and the American Meteorological Society.

Robert M. Beauchamp is a systems engineer at the Jet Propulsion Laboratory, California Institute of Technology. His expertise is in radar systems and signal processing.

Renzo Bechini is a weather radar expert with 25 years of professional experience in the operation of dual polarization systems. He is currently a weather radar specialist at the regional agency for environmental protection, Arpa Piemonte, in Turin, Italy.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-42317-5 — Introduction to Dual Polarization Weather Radar V. Chandrasekar, Robert M. Beauchamp, Renzo Bechini Frontmatter More Information

Introduction to Dual Polarization Weather Radar

Fundamentals, Applications, and Networks

V. CHANDRASEKAR

ROBERT M. BEAUCHAMP

RENZO BECHINI

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108423175 DOI: 10.1017/9781108772266

© Cambridge University Press & Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2023

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Chandrasekar, V., author.
Title: Introduction to dual polarization Doppler weather radar : fundamentals, applications, and networks / V. Chandrasekar, Robert M. Beauchamp, Renzo Bechini.
Description: New York : Cambridge University Press, 2023. | Includes bibliographical references and index.
Identifiers: LCCN 2021037838 (print) | LCCN 2021037839 (ebook) | ISBN 9781108423175 (hardback) | ISBN 9781108772266 (epub)
Subjects: LCSH: Radar meteorology. | Doppler radar. | Polariscope. | Radio waves–Polarization–Measurement. | BISAC: SCIENCE / Physics / Electromagnetism
Classification: LCC QC973.5 .C43 2023 (print) | LCC QC973.5 (ebook) | DDC 551.63/53–dc23
LC record available at https://lccn.loc.gov/2021037838

LC ebook record available at https://lccn.loc.gov/2021037839

ISBN 978-1-108-42317-5 Hardback

Additional resources for this publication at [insert URL here].

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

4

Cambridge University Press & Assessment 978-1-108-42317-5 — Introduction to Dual Polarization Weather Radar V. Chandrasekar, Robert M. Beauchamp, Renzo Bechini Frontmatter <u>More Information</u>

Contents

Pref	ace	page 1x
Note	ations and Acronyms	xii
Intro	oduction	1
1.1	Radar in Meteorology	3
1.2	Weather Radar Frequencies	7
1.3	Book Content	9
Elen	nents of Dual Polarization Radar Systems	12
2.1	Polarization of an Electromagnetic Wave	13
2.2	Polarimetric Radar Architectures	18
2.3	Polarimetric Doppler Weather Radar Measurements	20
2.4	Observation Geometry	25
2.5	Radar Equation	32
2.6	Radar System Components	36
2.7	Radar System Sensitivity	55
2.8	Selected Problems	60
Esse	ential Precipitation Physics for Dual Polarization Radar	62
3.1	The Microscale Structure of Precipitation	62
3.2	The Size Distribution of Raindrops	67
3.3	Drop-Shape Models	74
3.4	Precipitation Phases	79
3.5	Precipitation Processes	82
3.6	Stratiform and Convective Precipitation	105
3.7	Selected Problems	126
Basi	c Scattering Theory and Principles for Radar Meteorology	128
4.1	Electromagnetic Wave Propagation and Scattering	130
4.2	The Relative Permittivity of Water and Ice	138
4.3	Scattering by Dielectric Spheres	143
4.4	Scattering by Spheroids	149
4.5	Polarimetric Scattering Matrix	153
4.6	Polarimetric Radar Variables	156

vi	Contents	
	4.7 Propagation through Precipitation	162
	4.8 Mixtures	167
	4.9 Canting	173
	4.10 Elevation Dependence of Radar Variables	177
	4.11 Selected Problems	180
5	Introduction to Weather Radar Signals	182
	5.1 A Brief Review of Signals and Systems	183
	5.2 Statistical Properties of Weather Radar Signals	198
	5.3 Sampling the Radar Signal	201
	5.4 Covariance and Power Estimation	208
	5.5 Sampling the Polarimetric Signature	216
	5.6 Modeling the Life of the Dual Polarization Waveforms	
	to the Received Signals	219
	5.7 Signal Correlation	227
	5.8 Selected Problems	234
6	Weather Radar Signal Processing	236
	6.1 Covariance Estimators	237
	6.2 Spectral Processing	251
	6.3 Specific Differential Phase (K_{dp}) Estimation	261
	6.4 Advanced Sampling Methods	266
	6.5 Pulse Compression	273
	6.6 Pulse-Compression Waveforms and Filters	280
	6.7 Selected Problems	292
7	Data Quality, Data Science, and Engineering of Weather Radars	294
	7.1 The Accuracy of Radar Variable Estimators	296
	7.2 Data Quality Using Radar Variables	307
	7.3 Observing in a Real Environment	312
	7.4 Calibration	333
	7.5 Selected Problems	343
8	Radar Observations and Classification	345
	8.1 Stratiform Precipitation	346
	8.2 Convective Precipitation	354
	8.3 Hydrometeor Classification	362
	8.4 Signatures of Microphysical Processes in Rain	370
	8.5 Ice-Phase Process Studies	372
	8.6 Selected Problems	384

		Contents	vi
9	Rainfall Estimation and Attenuation Correction		387
	9.1 Dual Polarization Variables in Rain (Z_h, Z_{dr}, K_{dp})		388
	9.2 A Detailed Look at Rainfall Physics: DSD Retrievals		397
	9.3 Attenuation in Precipitation		403
	9.4 Attenuation Correction for Precipitation Radar		411
	9.5 Rainfall-Rate Estimation		420
	9.6 Generalized Blended Algorithms for Rainfall Estimation		430
	9.7 Selected Problems		433
10	Weather Radar Networks		435
	10.1 Extending Radar Coverage through Networks		438
	10.2 Network Topologies for Radar Operations		438
	10.3 Implications for the Radar Equation in a Network		441
	10.4 Gridded Data		445
	10.5 Network-Based Applications		451
	10.6 Selected Problems		461
Appendix	Complex Numbers		464
	References		467
	Index		491

Preface

Historically, new ideas and hypotheses start in specific research areas fostered by a small community through journal papers and monographs. As their appreciation and practicality toward applications grow through the community of researchers, the work is standardized. It is added to the curriculum and textbooks, becoming part of the education at universities. There are numerous examples in history, such as special topics in applied mathematics and statistics being transformed into modern signal processing, or advanced semiconductor physics becoming the electronics and computing boom of the second half of the twentieth century. Weather radars, and more specifically for our purposes, polarimetric weather radars, have undergone the same evolutionary process. Dual polarization radar is part of the standard radar meteorology or remote-sensing curriculum in universities. Through its evolution from a fledgling field of research in the late 1970s to standard weather-observing equipment today, many advanced books have become available in the literature on the topic, starting in 2001 with the first book on polarimetric Doppler weather radar from Cambridge University Press. This book continues this goal: to distill and disseminate fundamental science and practical engineering knowledge about dual polarization weather radar and its applications in an introductory style.

Radar meteorology is a unique subject. The title itself indicates its interdisciplinary nature, combining the fields of radar and meteorology. Radar systems are the workhorse of weather services and atmospheric researchers around the world. They are used to observe the big picture of atmospheric systems as well as the detailed structure of storms. Weather radars are routinely used in multiple lines of business, including national, regional, and private weather services; hydrologic and agricultural industries; and the aviation sector. The adoption of dual polarization for radar systems beyond the research community coincided with a number of other technological revolutions that made it possible. Examples include the leapfrogging of technology in microwave and radio-frequency devices driven by the revolution in communication and digital signal processing, as well as the exponential growth of affordable computing power and data storage. The conversion of weather radar systems all over the world to the use of dual polarization technology began in the 1990s. Today, dual polarization is standard equipment for most operational weather radars.

Preface

Х

The application of radars to meteorology has widespread appeal and has become a core topic in the curricula of meteorology, atmospheric science, atmospheric physics, electrical engineering, and geoscience programs. Fundamentally, radar meteorology is an interdisciplinary topic covering the engineering of the radar system, the physics of wave propagation and scattering, the science of atmospheric processes, and the applications of weather observation and prediction. There is a real need for an introductory-level textbook devoted to the interdisciplinary aspects of "radar" and "meteorology" comprising "radar meteorology." This book aims to serve that goal. With all worth-while endeavors come challenges, and the task of writing an introductory textbook for dual polarization radar meteorology is no different. We recognize that students in these curricula follow different paths and academic interests, from their core classes through their junior year's undergraduate curricula. This book takes on the challenge of developing a cogent introductory textbook for an audience from diverse science and engineering backgrounds.

The book consists of 10 chapters, with the early chapters focused on fundamentals. The first chapter introduces dual polarization weather radar and the book in general. At the chapter's end, a route map through this book's 10 chapters is presented as a guide for students, teachers, and practitioners as they take a journey through this book. Pure science students can skip a subset of the engineering-oriented chapters, and similarly, pure engineering students can skip a subset of the physical science chapters. For professionals pursuing a goal of "lifelong learning," or to refresh their knowledge on new techniques and technologies, an accelerated pathway is presented that is focused on applications. The material in this book is intended for students and practitioners who have completed junior-level science, technology, engineering, and mathematics (STEM) coursework. Each chapter has a set of assignments and online supplements.

We had to make another important decision as part of writing this book: whether to present the illustrations in color. After extensive deliberation, we decided to keep the print version of this book in black and white (B&W), for multiple reasons, including (a) B&W books leave a smaller footprint on the environment, (b) many publications are resorting to color rendering in electronic form to make room for future growth in color illustrations, and (c) this book's focus is on introductory concepts.

After the introduction, Chapter 2 presents a basic introduction to polarization and radar systems for readers of all backgrounds. Chapters 3 and 4 are science-oriented chapters and present the essential precipitation physics and introductory scattering principles for precipitation. Chapters 5 and 6 shift the focus toward engineering, introducing radar signals, followed by weather signal processing. Starting with Chapter 7 on data quality and data science, the book merges the science and engineering branches, focusing on application. This trend continues for radar observations (Chapter 8) and rainfall estimation (Chapter 9) and ends with Chapter 10 on radar networks. The last four chapters are applications directly suited for radar meteorology practitioners.

Preface

хi

We would like to thank the funding agencies for supporting the research that has resulted in the topics presented here. We want to acknowledge and thank those who donated their valuable time to provide feedback throughout the evolution of this book (in alphabetical order): Chad Baldi, Robert Cifelli, Brenda Dolan, Nicholas Kedzuf, Patrick Kennedy, Eric Perez, and Richard Roy. To thank all the people who have contributed directly or indirectly toward this work would run many pages. It's to this group we dedicate this book: to our families for supporting us, and to all our teachers, students, and colleagues who have taught us everything presented here.

V. Chandrasekar, Robert M. Beauchamp, and Renzo Bechini

$[F_{rx}]$	receive antenna's dual polarization matrix
$[F_{tx}]$	transmit antenna's dual polarization matrix
[M]	transmitter's dual polarization matrix
[<i>R</i>]	radar receiver's dual polarization matrix
[<i>S</i>]	dual polarization scattering matrix
[T]	propagation channel's dual polarization matrix
$[T_{rx}]$	receive channel's dual polarization matrix
$[T_{tx}]$	transmit channel's dual polarization matrix
α	Erlang distribution's shape parameter
α	Tukey window's taper fraction
α	attenuation constant
$\bar{\eta}$	reflectivity
$ar{b}_h$	mean minimum beam height within the network's cell
\bar{b}_s	mean radar beam size within the network cell
\bar{E}	average collection efficiency of raindrops
$\bar{r_i}$	ice average radius
\bar{r}_m	mass-weighted mean axis ratio
\bar{r}_z	reflectivity-weighted axis ratio
\bar{S}	averaged power spectrum
\overline{v}	mean Doppler velocity
\bar{v}_p	precipitation's mean velocity
\bar{Z}_{\min}	mean detection sensitivity within the network cell
β	canting angle
β	phase constant
β	slope parameter for linear drop shape model
β_e	equivalent slope for linear drop shape model
$\Delta \omega$	angular frequency resolution
Δf	frequency resolution
δk	weighted difference of specific attenuation
Δr	range resolution
δr	Doppler frequency induced range migration
Δt	elapsed time
Δt_{2way}	round-trip time delay
Δv	Doppler velocity resolution

Notations and Acronyms

xiii

δ	exponent of snowfall velocity-size relation
$\delta_{\rm co}$	backscatter differential phase shift
$\dot{\psi}_{ m ant}$	antenna angular scan rate
e	electric permittivity
ϵ	measurement error
ϵ_0	electric permittivity of free-space ($\approx 8.854 \cdot 10^{-12}$ Farad m ⁻¹)
$\epsilon_{ m eff}$	effective permittivity
$\epsilon_{ m e}$	environment's permittivity
ϵ_{i}	inclusion's permittivity
ϵ_r''	dielectric constant's imaginary part
ϵ'_r	dielectric constant's real part
ϵ_r	dielectric constant, relative permittivity
ϵ_s	static, low-frequency relative permittivity of water
η	characteristic impedance
Г	gamma function
Г	reflection coefficient
γ	Barnes analysis annealing parameter
Ŷ	propagation constant, $\gamma = jk$
Ψ _{dp}	measured differential phase shift
h ^	horizontal polarization's unit vector
i	incident direction's unit vector
k _	propagation direction's unit vector
<i>K</i> _{dp}	estimated specific differential phase shift
\hat{r}_{xy}	biased covariance estimate
ŝ	scattering direction's unit vector
Ŷ	vertical polarization's unit vector
κ	velocity extension ratio
Λ	particle size distribution's size (slope) parameter
λ	smoothing factor for spline fitting
Λ	wavelength
Α	multi-Doppler geometry matrix
a C	unit vector along the radar's radial direction
C E	covariance mainx
С П	magnetic field vector
п ь	filter vector
II T	aurrent density vector
J m	waveform vector
ш Р	polarization current vector
р	polarization current vector
S	Pounting vector
S	dual polarization scattering matrix
ŝ	scattering matrix
v	particle velocity vector
•	Parallel colority rector

CAMBRIDGE

Cambridge University Press & Assessment 978-1-108-42317-5 — Introduction to Dual Polarization Weather Radar V. Chandrasekar , Robert M. Beauchamp , Renzo Bechini Frontmatter <u>More Information</u>

Х	signal matrix
\mathbf{X}_{f}	waveform's sidelobe matrix
y	convolution output vector
ATAR	alternate transmit, alternate receive
ATSR	alternate transmit, simultaneous receive
CPI	coherent processing interval
DSD	raindrop size distribution
HPBW	half-power beamwidth
ICPR ₂	two-way integrated cross-polar ratio
$ICPR_2^{(ub)}$	two-way integrated cross-polar ratio's upper bound
ISL	integrated sidelobe level
IWC	ice water content
LDR	linear depolarization ratio
LDR _{limit}	antenna's minimum LDR
LDR_{hv}	vertical linear depolarization ratio
LDR _{vh}	horizontal linear depolarization ratio
MBF	fuzzy logic membership function
NCP	normalized coherent power
NCP _{thres}	normalized coherent power's threshold for signal detection
NF	noise figure
PDF	probability density function
PIA	path-integrated attenuation
PIA _{1way}	one-way path-integrated attenuation
PPI	plan position indicator
PRF	pulse repetition frequency
PRT	pulse repetition time
PSD	particle size distribution
PSL	peak sidelobe level
RCA	relative calibration adjustment
RCS	radar cross-section
RHI	range height indicator
RH	relative humidity
SNR	signal-to-noise ratio
SQI	signal quality index
STSR	simultaneous transmit, simultaneous receive
TBP	time-bandwidth product
μ	magnetic permeability
μ	mean
μ	particle size distributions' shape parameter
μ^0	magnetic permeability of free-space $(4\pi \cdot 10^{-7} \text{ Henries m}^{-1})$
μ_m	m th spectral moment
ν	kinematic viscosity of air
Ω	solid angle
ω	angular frequency

Notations and Acronyms

XV

ω_0	radar carrier's angular frequency
ω_s	pulse repetition angular frequency
ϕ	azimuth angle
ϕ	rate of change of the drop size
ϕ_1	antenna's half-power beamwidth in azimuth
Φ_{dp}	propagation differential phase shift
$\Phi_{dn}^{s\hat{y}s}$	system differential phase
$\phi_{\rm pc}$	phase code
$\phi_{\rm sys}$	system's phase shift
$\phi_{\rm vel}$	velocity-induced phase shift
ψ_{ant}	angular scanning extent of a CPI
Ψ _{dp}	total differential phase shift
ρ	correlation coefficient
ρ	density
ρ_{co}	complex-valued copolar correlation coefficient
$\rho_{ m snow}$	snowflake density
ρ_s	spatial correlation coefficient
ρ_s	water vapor density at water saturation
ρ_v	water vapor density
ρ_w	water density (997 kg m ⁻³ \approx 1g cm ⁻³)
ρ_{cx}	cross-polarization correlation coefficient
ρ_{hv}	copolar correlation coefficient, linear polarization
$\rho_{hv}^{(m)}$	measured copolar correlation with a reflectivity gradient
ρ_{si}	water vapor density at ice saturation
ρ_{vs}	water vapor density at the drop's surface
ρ_{xx}	autocorrelation of x
ρ_{xv}	cross-correlation of x and y
σ	electrical conductivity
σ	radar cross-section
σ	standard deviation
σ^2	variance
σ_a	absorption cross-section
σ_b	backscatter radar cross-section
σ_e	extinction cross-section
σ_h	clutter's horizontal polarization scattering amplitude
σ_s	total scattering cross-section
σ_v	Doppler spectrum width
σ_v	clutter's vertical polarization scattering amplitude
σ_w	surface tension of water $(0.07275 \text{ Jm}^{-2})$
σ_w^2	white-noise signal's variance
$\sigma_{\rm bi}$	bistatic radar cross-section
σ_{vc}	clutter's spectrum width
σ_{vn}	normalized Doppler spectrum width

σ_{vp}	precipitation's spectrum width
$\tan \delta$	loss tangent
τ	time delay
S	far-field scattering amplitude vector
θ	complex-valued angular differential phase shift
θ	elevation angle
θ	incidence angle
θ	wave's incident angle
θ_1	antenna's half-power beamwidth in elevation
$\theta_{\rm err}$	antenna's pointing error
θ_{HPBW}	antenna's half-power beamwidth
θ_{sep}	network's angular separation between radars
θ_{ik}	azimuth difference for Barnes analysis
ĥ	minimum integrated sidelobe level filter's vector
\tilde{p}	signal's power estimate
\tilde{r}_{xy}	unbiased covariance estimate
φ	radar signal's phase
φ_{frdp}	receive antenna's differential phase
φ_{ftdp}	transmit antenna's differential phase
φ_{rdp}	receiver's differential phase
φ_{txh}	horizontal polarization's transmit phase
φ_{txv}	vertical polarization's transmit phase
φ_{tx}	relative transmit phase
LĤC	left-hand circular polarization's unit vector
RHC	right-hand circular polarization's unit vector
\widehat{S}	estimated power spectrum
\widehat{X}	estimated signal spectrum
Α	cross-sectional area
Α	normalized coherent power threshold's performance constant
Α	specific attenuation
а	$K_{\rm dp}$ -Z scale coefficient
а	antenna gain's model coefficient
а	beta MBF's spread parameter
а	radar signal's amplitude
a	radius of Earth
а	spheroid's equatorial radius
a	transmitter's gain coefficient
$A_{1 way}$	one-way specific attenuation
A_{2way}	two-way specific attenuation
$A_{\rm beam}^{\rm (weighted)}$	V_6 cross-sectional area
A _{dp}	specific differential attenuation
A _a	antenna collecting area
A_e	antenna effective area

a _e	effective radius of Earth
В	bandwidth
b	$K_{\rm dp}$ -Z exponential coefficient
b	beta MBF's slope parameter
b	observation volume's diameter with a circular antenna
b	spheroid's radius along the axis of symmetry
b_{ϕ}	observation volume's width in azimuth
$b_{ heta}$	observation volume's height in elevation
b_h	minimum beam height
b_s	radar beam size
С	$\operatorname{Re}(p_h - p_v)$ vs. $(1 - r)$ slope
С	capacitance of the ice crystal
С	weather radar constant
с	IWC estimator's scale coefficient
с	electromagnetic wave's propagation speed, speed of light
с	speed of light
c_0	speed of light in free space (299,792,458 m s ⁻¹ \approx 3 \cdot 10 ⁸ m s ⁻¹)
$C_{\rm gas}$	two-way atmospheric gas specific attenuation
C_h	horizontal polarization's weather radar constant
C_{v}	vertical polarization's weather radar constant
CN	complex-valued Gaussian (normal) distribution's PDF
D	drop's equivalent spherical diameter
D	equivalent spherical diameter of ice particles
D	raindrop's equivalent-volume spherical diameter
d	Euclidean distance
D_0	median equivolume diameter
$D_{\rm ev}$	drop's diameter that completely evaporates after falling h distance
D_{\max}	maximum drop diameter of the DSD
D_{\min}	minimum drop diameter of the DSD
d_a	antenna diameter
D_e	volume-equivalent spherical diameter
D_m	mass-weighted mean diameter
D_p	DSD's p^{th} moment
D_s	maximum snowflake dimension
D_{v}	diffusion coefficient for water vapor in air
D_w	melted ice equivalent drop diameter
D_z	reflectivity-weighted mean diameter
df	frequency offset
Ε	collision-coalescence collection efficiency of raindrops
е	electric field component
е	prolate shape factor
е	water-vapor pressure
e_a	antenna aperture's efficiency
E_h	horizontal polarization's electric field
	-

xviii	Notations and Acronyms
-------	------------------------

e_h	horizontal polarization's received signal
e_s	saturation vapor pressure with respect to water
E_{v}	vertical polarization's electric field
e_{v}	vertical polarization's received signal
e_{si}	saturation vapor pressure with respect to ice
E_{tx}	transmitted energy
$f(\mu)$	normalized PDS's shape function
$f(Z_{dr})$	rain/hail partition function
F Grant F	antenna feed's forward distance
F	antenna pattern's complex amplitude
F	noise factor
f	complex-valued forward-scattering amplitude
f	frequency
f	normalized antenna pattern's complex amplitude
f	oblate shape factor
f	observation field
f	volume fraction
f_0	radar carrier's frequency
f_1	pulse repetition frequency for PRT 1
f_2	pulse repetition frequency for PRT 2
fe	environment's volume fraction
Fice	model for IWC or snowfall rate
fif	intermediate frequency
fi	inclusion's volume fraction
flo	local oscillator's frequency
F_d	vapor diffusion term
fD	probability density function
fd	Doppler frequency shift
F_d^i	vapor diffusion term for ice
f_E^a	Erlang distribution's probability density function
F_h	horizontal force acting on the raindrop
F_k	heat-conductivity term
F_k^i	heat-conductivity term for ice
f_s	pulse repetition frequency
F_{v}	vertical force acting on the raindrop
f_v	ventilation factor
f_{φ}	phase distribution's probability density function
f_a	amplitude distribution's probability density function
F_{co}	antenna pattern's copolar complex amplitude
f_{co}	normalized antenna copolar pattern's complex amplitude
F_{cx}	antenna pattern's cross-polar complex amplitude
f_{cx}	normalized antenna pattern's cross-polar complex amplitude
F_{Em}	Power estimator's cumulative density function
f_{Em}	Power estimator's probability density function

F_{hh}	antenna pattern's horizontal copolar complex amplitude
f_{hh}	normalized antenna pattern's horizontal copolar complex amplitude
F_{hv}	antenna pattern's vertical cross-polar complex amplitude
f_{hv}	normalized antenna pattern's vertical cross-polar complex amplitude
f_N	Gaussian (normal) distribution's probability density function
f_p	power distribution's probability density function
f_{rcx}	receive antenna's cross-polar complex-valued gain
frhh	receive antenna's horizontal copolar complex-valued gain
f_{rvv}	receive antenna's vertical copolar complex-valued gain
f_{tcx}	transmit antenna's cross-polar complex-valued gain
fthh	transmit antenna's horizontal copolar complex-valued gain
f_{tvv}	transmit antenna's vertical copolar complex-valued gain
F_{vh}	antenna pattern's horizontal cross-polar complex amplitude
f_{vh}	normalized antenna pattern's horizontal cross-polar complex amplitude
F_{vv}	antenna pattern's vertical copolar complex amplitude
f_{vv}	normalized antenna pattern's vertical copolar complex amplitude
G	Gaussian-shaped spectrum
G	antenna gain
G	antenna's one-way gain, including radar calibration correction factor
G	component gain
g	Gaussian-shaped time-domain function
g	coefficient for $K_{\rm dp}/Z_h$ relation
g	gravitational acceleration constant (9.81 m s ^{-2} on Earth)
G_0	antenna boresight gain
G_0	antenna's one-way gain
G_n	antenna pattern's normalized gain model
G_{h0}	antenna horizontal polarization's boresight gain
G_{rx}	receiver's gain
G_r	receiving antenna's gain
G_t	transmitting antenna's gain
G_{v0}	antenna vertical polarization's boresight gain
h	fall distance
h	filter's impulse response
h	height
h	window function
h_0	height of the radar's antenna
H _{dr}	hail differential reflectivity parameter
H_h	horizontal polarization's magnetic field
h_t	triangle window function
H_{v}	vertical polarization's magnetic field
Ι	scatterer power
I_Z	network cell's sensitivity improvement factor
j	imaginary number, $\sqrt{-1}$
Κ	velocity extension factor

ΧХ

Cambridge University Press & Assessment 978-1-108-42317-5 — Introduction to Dual Polarization Weather Radar V. Chandrasekar , Robert M. Beauchamp , Renzo Bechini Frontmatter <u>More Information</u>

k	angular wavenumber or phase constant
k	frequency sample index
k	propagation constant. $k = -i\gamma$
ko	propagation constant of free-space
Kan	specific differential phase shift
koff	effective propagation constant for a mixture
Kont	window constant for calculating optimal number of samples
ko	Barnes analysis azimuth smoothing parameter
Ka	thermal conductivity of air
ka	antenna beamwidth factor
k _P	Boltzmann constant (1.380649 $\cdot 10^{-23} \text{J}\text{K}^{-1}$)
ka ka	Barnes analysis fall-off range parameter
k ₁	attenuation coefficient
k.	Barnes analysis radial smoothing parameter
L	depolarization factor
L	latent heat of vaporization
1	attenuation through precipitation
l: 1	mainlohe's maximum sample lag
lus dama	one-way radome loss
I	receiver loss
l _{IX}	transmitter loss
LD	filter loss from Doppler frequency shift
	filter loss factor
	latent heat of sublimation
<i>L</i> _s	waveform loss factor
M	$K_{4\pi}$ estimator's sample length
M	network's overlan ratio
M	number of countered particles
M	number of spectrum to average
M	range-time signal's length
m	raindron mass
m	transmit waveform
miel	mainlobe's sample width
mh	horizontal polarization's transmitted waveform
$m_{\rm N}$	vertical polarization's transmitted waveform
N(D)	particle size distribution
N(D)	raindron-size distribution
N (D)	Gaussian (normal) distribution's probability density function
N	number of radars in the network
N	number of samples in the integration time
N	number of samples in the waveform
n	an integer index
n	index of refraction
n	noise power
••	noise porter

N_0	particle size distribution's concentration (intercept) parameter
N _{norm}	normalized particle-size distribution
Nopt	optimal number of samples for maximum spectrum SNR
N_c	number of hydrometeor classes
n_c	number concentration
N_I	number of independent samples
N_i	ice particle number concentration
N_s	snowflake particle size distribution just above the melting layer
N_{v}	number of classifier input variables
N_w	normalized PSD's intercept parameter
N_w	raindrop size distribution just below the melting layer
Р	polar coordinate domain
р	polarization factor
p	total source power
P_c	clutter's power
P_i	intrinsic (unattenuated) echo power
P_m	measured (with attenuation) echo power
P_n	noise's power
P_p	precipitation's power
P_r	power at the receiver
P_t	transmitter's power
P_s	scattered wave's power
P_s	signal's power
P_{th}	horizontal polarization's transmit power
P_{tv}	vertical polarization's transmit power
q	$K_{\rm dp}$ estimator error function weight
R	particle or drop radius
R	rain rate
r	covariance
r	particle or drop radius
r	raindrop's axis ratio
r	range
$R_{\rm ATSR}$	ATSR samples' covariance matrix
r _{cell}	network cell range
<i>r</i> _{max}	radar's maximum range
r _{sep}	network's separation range between radars
R _{STSR}	STSR samples' covariance matrix
r_a	unambiguous range
r_m	radius of influence
r_r	range from the scatterer to receiver
r_s	calibration sphere's radius
r_t	range from the transmitter to scatterer
R_{ν}	gas constant for water vapor (461.5 J kg ^{-1} K ^{-1})

xxii

Cambridge University Press & Assessment 978-1-108-42317-5 — Introduction to Dual Polarization Weather Radar V. Chandrasekar , Robert M. Beauchamp , Renzo Bechini Frontmatter <u>More Information</u>

ľ f f	Fraunhofer distance, the antenna far-field's starting range
r_{ik}	radial difference for Barnes analysis
Rss	scatterer's linear polarization covariance matrix
r_{rr}	autocovariance of x
r_{xy}	cross-covariance of x and y
S	power density
S	power spectrum
S	water-equivalent snowfall rate
S	echo signal
S	ice crystal surface
S	path segment
S	spline solution
S	vertical wind shear
s_a	azimuth's arc distance
S_c	clutter's Doppler spectrum model
S_e	elevation's arc distance
S_i	incident power density
S_i	water vapor saturation ratio with respect to ice
S_k	fuzzy logic class's confidence
S_n	noise's Doppler spectrum model
S_p	precipitation's Doppler spectrum model
S_r	power density at the receiving antenna
S_s	scattered power density
S_w	water vapor saturation ratio
S_x	received signal's Doppler spectrum model
$S_{\Phi_{dp}}$	spectral differential propagation phase
$S_{ ho_{hv}}$	spectral copolar correlation
Shh	horizontal polarization's copolar complex scattering amplitude
S_{VV}	vertical polarization's copolar complex scattering amplitude
$S_{Z_{dr}}$	spectral differential reflectivity
T	temperature
T	total observation time
t	time
T_0	noise factor's reference temperature
T_D	decorrelation time
T_n	noise temperature
I_s	pulse repetition interval
I_u	PRI for equivalent unfolded unambiguous velocity
$I_{\rm sys}$	system's noise temperature
I_{tx}	transmitted pulse's duration
U	nonzontal wind velocity
u V	particle velocity in the x direction $\frac{1}{2}$
V	sphere's volume
V	volume

Notations and Acronyms

xxiii

v	particle velocity in the y direction
v	scatterer's velocity
v	wave's propagation speed
V_6	radar observation volume at -6 dB extent
v_a	unambiguous velocity
<i>v</i> _r	radial Doppler velocity
V_t	terminal velocity
v _u	unfolded unambiguous velocity
V_{ts}	terminal velocity of snow and ice precipitation particles
<i>w</i> ′	modified weighting parameter
W	liquid water content
w	$K_{\rm dp}$ estimator error function weight
w	Doppler spectrum width
w	Tukey window function
w	fuzzy logic membership weight
w	particle velocity in the z direction
w	updraft velocity
w	white-noise signal
w^*	Bergeron process's threshold for vertical velocity
Χ	frequency spectrum of a radar signal
x	Cartesian position in the west-to-east direction
x	MBF input variable
x	radar signal
x_{2wav}	signal after two-way phase shift
x _{coded}	phase-coded signal
x _{decoded}	signal demodulated by the phase code
x_E	relative position in the west-to-east direction
x_I	radar signal's in-phase (real) component
x_O	radar signal's quadrature (imaginary) component
\tilde{x}_{bb}	complex-valued signal at base-band frequency
x_{rf}	complex-valued signal at the radio frequency
x_{rf}	radio frequency signal
y	Cartesian position in the south-to-north direction
УE	relative position in the south-to-north direction
Z	reflectivity factor
z	Cartesian position in the nadir-to-zenith direction
z	altitude
Z ⁹⁵	clutter's 95th-percentile measured reflectivity
$Z_{\rm dr}$	differential reflectivity
$Z_{dr}^{(bis)}$	bistatic differential reflectivity
Zintrinsic	scattering volume's true equivalent reflectivity factor
Z _{max}	minimum sensitivity at maximum range
Ztop	initial altitude
Z_e	equivalent reflectivity factor
-	· · ·

xxiv	Notations and Acronyms				
	$Z_e^{Z_e^{\min}}$ $Z_h^{Z_e}$	relative position in the nadir-to-zenith direction minimum detectable reflectivity factor horizontal polarization's equivalent reflectivity factor			
	$Z_n \ Z_ u$	noise's equivalent reflectivity factor vertical polarization's equivalent reflectivity factor			