“Barry and Hall-McKim have produced the ultimate book on the polar regions. It serves both as an excellent scientific/academic contribution and as a highly accessible source for the wider public concerned about the Polar environments, past history, and future potentially serious impacts of the current climate warming on the entire world. The authors have unsurpassed experience to undertake such an immense and important task. The book is replete with highly relevant maps, diagrams, tables, and photographs. It also provides easy access to the vast amount of research and data sets scattered through an immense literature.”

- Jack D. Ives,
  Carleton University

“The book is well structured with a flow from chapter to chapter, which leads the reader constructively through a set of themes and trends in the changing role that the polar regions play in the planet’s changing climate. The nine chapters provide this flow of important understanding to a book that has the clear potential as a textbook and a ‘good’ read for a broader audience. The development of and use of figures, boxes, and graphics is well done and very usefully connected to the text. Further, the references, chapter by chapter, are extensive and well thought through to give the reader additional material that enhances the value of the book as a textbook and provides the broader readership with particularly important added information. The summaries at the end of each chapter are a clear composite of what is in the chapter: just reading these can provide the reader with a substantive understanding of the polar regions and climate change. Finally, the listing of important questions at the end of each chapter is excellent.

It is, in my view, a book that will be an excellent textbook, but, of equal importance, a ‘good solid’ read for a broader audience. I highly recommend the book to Cambridge University Press, with the hope that it will be published soon. It is deeply a moment of sadness that Roger passed away so near to the end of the review period and close to – what I hope will be – its publication. I hope that Dr. Eileen A. Hall-McKim will both carry the effort to its completion and honor Roger by fostering its use as a textbook and as a book for that ‘good read’ by a broader audience. I hope too, that she will follow his incredible leadership in polar science and understanding by picking up his remarkable professional mantle.”

- Robert W. Corell,
  Principal, Global Environment and Technology Foundation, and its lead at its Center for Energy and Climate Solutions (US);
  Adjunct Professor, University of Miami;
  and Professor at the University of the Arctic (Norway)

“Roger Barry and Eileen Hall-McKim have produced a compelling, state-of-the-art synthesis of the current state of the physical components of the Arctic and Antarctic climate systems. Complementary perspectives from the paleoclimate record, climate change
projections, and the Third Pole expand upon the primary material. Extensive use of contemporary literature, chapter summaries, and chapter questions that probe understanding make this text ideal for a graduate course on polar environments.”

- David Bromwich, Byrd Polar Research Center, Ohio State University

“Polar Environments and Global Change by Barry and Hall-McKim focuses on the environmental change in the polar regions that comes as a consequence of global climate change. One of the very few currently available, this timely book could easily be the foundation textbook for an upper-level undergraduate or a graduate-level class on environmental change in the polar regions. It is comprehensive, providing a wealth of information, and giving much of the necessary scientific and historical background which allows the student to view and understand the contemporary change. Barry and Hall-McKim set the stage with a strong, historical component which touches on polar discovery and exploration. They also examine the polar climate over an arc of time linking the paleoclimatic to the contemporary, effectively placing present-day climate change within the context of the distant, past climate. Their detailing of how the environment developed, before moving to an exposition of how present-day practices induced change, fosters a fuller comprehension of the material.

As is normal in textbooks written/led by Barry, this book is very lucidly written. The authors managed quite successfully to provide a wealth of information in a very accessible way. It reads easily and is well illustrated. The summary pieces at the end of each chapter tie together the major ideas expressed in the chapter, allowing the reader to get a large-scale view of how these ideas are linked. It is also very well referenced; its comprehensive bibliography includes research very recently published.

I should also say that I am preparing a course on polar environmental change and this textbook is a prime candidate for use in this class.”

- Marilyn Raphael, University of California, Los Angeles

“Packed with a wealth of important and fascinating information, this is a timely, valuable, and highly readable synthesis of our current understanding of diverse aspects of polar environments and their significance and vulnerability – including the Third Pole. Though aimed particularly at tertiary students, this book will be of great interest to all those who care about our planet and its future.”

- Robert Massom, Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania

“This is another excellent book from Roger Barry and Eileen Hall-McKim, discussing the three most important cold regions of the world: Arctic, Antarctic, and the Third Pole (encompassing the mountains of Central Asia, Hindukush-Himalayas system and Tibet). The book provides a comprehensive account of the interactions between
climate, ocean, and the cryosphere, and an excellent review of the observational systems collecting data in these remote regions. The book is written in an engaging and very understandable way with plenty of useful references and self-check questions and will be indispensable in teaching undergraduate and master’s courses in geography, glaciology, and climate science.”

- Maria Shahgedanova,
  University of Reading
Polar Environments and Global Change

The polar regions are the “canary in the coal mine” of climate change: They are likely to be hit the hardest and fastest. This comprehensive textbook provides an accessible introduction to the scientific study of polar environments against a backdrop of climate change and the wider global environment. The book assembles diverse information on polar environmental characteristics in terrestrial and oceanic domains, and describes the ongoing changes in climate, the oceans, and components of the cryosphere. Recent significant changes in the polar region caused by global warming are explored: shrinking Arctic sea ice, thawing permafrost, accelerating loss of mass from glaciers and ice sheets, and rising ocean temperatures. These rapidly changing conditions are discussed in the context of the paleoclimatic history of the polar regions from the Eocene to the Anthropocene. Future projections for these regions during the twenty-first century are discussed. The text is illustrated with many color figures and tables, and includes further reading lists, review questions for each chapter, and a glossary.

Roger G. Barry was Distinguished Professor Emeritus of Geography at University of Colorado at Boulder and was the former director of the National Snow and Ice Data Center. He published 29 textbooks and 260 research articles, and supervised 65 graduate students. He was a Guggenheim Fellow, a Fulbright Teaching Fellow, and a visiting professor in eight countries.

Eileen A. Hall-McKim is a climatologist receiving her doctorate from the University of Colorado at Boulder. Her interdisciplinary degrees include work in the geological sciences, paleoclimatology, meteorology, oceanography, and water resources. She is the co-author, with Roger G. Barry, of Essentials of the Earth’s Climate System (Cambridge University Press, 2014).
Polar Environments and Global Change

Roger G. Barry
UNIVERSITY OF COLORADO AT BOULDER

Eileen A. Hall-McKim
UNIVERSITY OF COLORADO AT BOULDER
In memoriam

Roger G. Barry, Distinguished Professor Emeritus at the University of Colorado (CU) Geography Department, longtime CU faculty member, colleague, and friend to many, passed away on March 19, 2018, concluding a distinguished career in the study of the cryosphere and mountain climates. His work as a scientist and professor, and his dedication to the formation of centers for the study of the cryosphere, helped shape the evolution of climate science. He was the founder of the National Snow and Ice Data Center (NSIDC) and director there for more than 30 years.

Along with training and recruiting a dedicated staff at NSIDC, Dr. Barry also fostered international collaboration with many countries, and from 1971-2011, he supervised 67 graduate students, 36 of whom earned Ph.D. degrees. Over the course of his career, he authored hundreds of research papers and review articles, and was a prolific author of textbooks, some of which are: *Atmosphere, Weather and Climate (9th edition)*, *Mountain Weather and Climate; The Global Cryosphere: Past, Present and Future; Essentials of the Earth’s Climate System; Microclimate and Local Climate*; and his final text, *Polar Environments and Global Change*.

Roger Barry was recognized around the world for both his scientific accomplishments and service to the community, receiving many prestigious awards throughout his career.

Further information is available at the following websites:

References and Tributes


Geography Department, University of Colorado, Boulder: In Memoriam: Professor Emeritus Roger Barry. https://www.colorado.edu/geography/2018/03/21/memoriam-professor-emeritus-roger-barry


Media Contact

Natasha Vizcarra
National Snow and Ice Data Center, University of Colorado, Boulder.
press@nsidc.org

1. Roger Barry on the Boas Glacier on Baffin Island, Canadian Arctic, in August 1970
   (photo: Ronald Weaver)

2. Roger Barry at his initiation as a Fellow of the American Geophysical Union, San Francisco, December 1999
   (photo: Ronald Weaver)
Contents

List of Figures page xv
List of Boxes xx
About the Authors xxi
Preface xxv
Acknowledgments xxvi

1 The Setting, History of Studies, and the Climatic Role of the Cryosphere 1
  1.1 Introduction 1
  1.2 Setting 2
  1.3 History of Scientific Study 3
    1.3.1 Arctic 3
    1.3.2 Antarctic 10
    1.3.3 Central Asia 12
  1.4 The Role of Polar Snow and Ice in the Climate System 14

2 Paleoclimatic History 21
  2.1 Temperatures over Geologic Time 21
  2.2 Geological Records 21
    2.2.1 Ocean Sediment Cores 21
    2.2.2 Ice Cores 23
  2.3 Climate Drivers 24
  2.4 Eocene 26
  2.5 Oligocene–Miocene–Antarctic Glaciation 28
  2.6 Plio-Pleistocene Glacial Cycles 30
  2.7 Holocene 46
  2.8 Anthropocene 49
    2.8.1 Historical Climatology 50
    2.8.2 Tropical–Polar Links 53
    2.8.3 Polar–Mid-latitude Links 55

3 Observing Polar Environments 67
  3.1 Observing Networks 67
  3.2 In Situ Measurements 71
    3.2.1 Meteorological Observations 71
    3.2.2 North Pole Drifting Stations 72
    3.2.3 Icebreakers 75
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4 Oceanographic Observations 76</td>
</tr>
<tr>
<td>3.2.5 Upward-Looking Sonar 79</td>
</tr>
<tr>
<td>3.2.6 Traditional Knowledge and Community Science 80</td>
</tr>
<tr>
<td>3.3 Remote Sensing 80</td>
</tr>
<tr>
<td>3.3.1 Satellite Photography 81</td>
</tr>
<tr>
<td>3.3.2 Passive Microwave 83</td>
</tr>
<tr>
<td>3.3.3 Radar 88</td>
</tr>
<tr>
<td>3.3.4 Altimetry and Gravity Measurement 90</td>
</tr>
<tr>
<td>3.3.5 Electromagnetic Sounding of Sea Ice 91</td>
</tr>
<tr>
<td>3.3.6 Global Positioning Systems 92</td>
</tr>
<tr>
<td>3.3.7 Unmanned Aerial Vehicles 92</td>
</tr>
<tr>
<td>3.4 Reanalysis Products 92</td>
</tr>
<tr>
<td>4 Atmospheric and Oceanic Circulation and Climate 103</td>
</tr>
<tr>
<td>4.1 Atmospheric Circulation 103</td>
</tr>
<tr>
<td>4.1.1 Northern Hemisphere 108</td>
</tr>
<tr>
<td>4.1.2 Southern Hemisphere 112</td>
</tr>
<tr>
<td>4.2 Oceanography and Water Balance 118</td>
</tr>
<tr>
<td>4.2.1 Arctic 118</td>
</tr>
<tr>
<td>4.2.2 Antarctic 126</td>
</tr>
<tr>
<td>4.3 Climate 129</td>
</tr>
<tr>
<td>4.3.1 Radiative Regimes 129</td>
</tr>
<tr>
<td>4.3.2 Arctic Temperature Conditions 132</td>
</tr>
<tr>
<td>4.3.3 Arctic Inversions 135</td>
</tr>
<tr>
<td>4.3.4 Arctic Wind 135</td>
</tr>
<tr>
<td>4.3.5 Arctic Moisture Budget Components 136</td>
</tr>
<tr>
<td>4.3.6 Arctic Snow Cover 137</td>
</tr>
<tr>
<td>4.4 Antarctic Climate 141</td>
</tr>
<tr>
<td>4.4.1 Antarctic Temperature Conditions 141</td>
</tr>
<tr>
<td>4.4.2 Antarctic Inversions 144</td>
</tr>
<tr>
<td>4.4.3 Antarctic Wind 145</td>
</tr>
<tr>
<td>4.4.4 Antarctic Moisture Budget 146</td>
</tr>
<tr>
<td>4.5 Recent Climate Changes 148</td>
</tr>
<tr>
<td>4.5.1 Arctic 148</td>
</tr>
<tr>
<td>4.5.2 Antarctic 149</td>
</tr>
<tr>
<td>5 Terrestrial Environments and Surface Types of the Polar Regions 165</td>
</tr>
<tr>
<td>5.1 Polar Desert 165</td>
</tr>
<tr>
<td>5.2 Tundra 168</td>
</tr>
<tr>
<td>5.3 Permafrost 175</td>
</tr>
<tr>
<td>5.3.1 Ground Ice 180</td>
</tr>
<tr>
<td>5.3.2 Periglacial Regions 181</td>
</tr>
<tr>
<td>5.3.3 Recent Permafrost Changes 185</td>
</tr>
</tbody>
</table>
CONTENTS

5.4 Lakes 187
  5.4.1 Proglacial Lakes 189
  5.4.2 Perennially Frozen Lakes 190
  5.4.3 Subglacial Lakes 192
  5.4.4 Recent Changes in Lakes 193

5.5 Rivers 195
  5.5.1 Icings 198

5.6 Glaciers and Ice Caps 199
  5.6.1 Glacier Changes in the Arctic 201
  5.6.2 Glacier Changes in the Antarctic 208

5.7 Glacial Landscapes 209
  5.7.1 Erosional Landforms 210
  5.7.2 Small-Scale Features of Glaciated Bedrock 212
  5.7.3 Large-Scale Features of Glaciated Bedrock 213
  5.7.4 Glaciated Mountains 214
  5.7.5 Depositional Landforms 216
  5.7.6 Fluvio-glacial Landforms 218

6 Ice Sheets and Ice Shelves 235
  6.1 The Greenland Ice Sheet 235
    6.1.1 Mass Balance 242
    6.1.2 Energy Balance 245
  6.2 The Antarctic Ice Sheet 249
    6.2.1 Blue Ice Areas 252
    6.2.2 Ice Sheet Changes 255
  6.3 Ice Shelves 258
    6.3.1 Melt 260

7 Oceanic Environments 269
  7.1 Southern Ocean 269
  7.2 Ross Sea 275
  7.3 Weddell Sea 275
  7.4 Arctic Ocean 277
  7.5 Arctic Seas 283
    7.5.1 Barents Sea 283
    7.5.2 Kara Sea 284
    7.5.3 Laptev Sea 285
    7.5.4 East Siberian Sea 286
    7.5.5 Chukchi Sea 287
    7.5.6 Beaufort Sea 287
    7.5.7 Lincoln Sea 288
    7.5.8 Greenland Sea 289
    7.5.9 Canadian Arctic Archipelago 290
## CONTENTS

7.5.10 Adjacent Seas of the North Atlantic 291
7.5.11 Marginal Seas of the North Pacific 292
7.6 Global Sea Level 293
7.7 Sea Ice 293
   7.7.1 Sea Ice Edge Location 294
   7.7.2 Arctic Sea Ice 296
   7.7.3 Landfast Ice 301
   7.7.4 Sea Ice Leads 302
   7.7.5 Arctic Sea Ice Trends 303
7.8 Antarctic Sea Ice 313
   7.8.1 Sea Ice Trends in the Antarctic 316
7.9 Polynyas 318

8 The Third Pole 339
  8.1 Climate 341
   8.1.1 Circulation 341
   8.1.2 Energy Budget and Temperature 344
   8.1.3 Precipitation 344
   8.1.4 Climate Change 347
  8.2 Cryosphere 352
   8.2.1 Glaciers 352
   8.2.2 Glacier Changes 355
   8.2.3 Snow Cover 365
   8.2.4 Permafrost 366

9 Future Environments in the Polar Regions 378
  9.1 Greenhouse Gas and Aerosol Forcings 378
  9.2 Sea Ice 383
  9.3 The Arctic Links to Mid-Latitudes 386
  9.4 Snowfall 388
  9.5 Permafrost Thawing 388
  9.6 Tundra Vegetation 391
  9.7 Glacier and Ice Cap Recession 391
  9.8 The Ice Sheets, Sea Level Rise, and Coastal Erosion 392
  9.9 Hydrological Cycle Effects 393
  9.10 Future Polar Research and Development 394

Appendix A: Polar Institutes 401
Glossary 402
Index 412
Figures

1.1 Map of the Arctic page 4
1.2 Permanent stations in the Antarctic 11
1.3 Schematic diagram of the interaction of cryospheric components with land, atmosphere, and ocean 14
2.1 Temperatures of planet Earth during geologic time 22
2.2 Summary of astronomical (orbital) effects on solar irradiance and their relevant time scales over the past 500,000 years 25
2.3 The 420-ka ice core record from Vostok, East Antarctica 32
2.4 Ice surface contours based on elevations along the Last Glacial Maximum ice margin of the Laurentide ice sheet and topographic high points overridden by ice 38
2.5 A reconstruction of the maximum ice sheet extent in Eurasia during the Late Saalian (circa 160–140 ka), based on review of published material 40
2.6 Major drainage routes of the Eurasian ice sheet complex 41
2.7 The Devensian ice limits in the British Isles 44
2.8 Arctic and global mean annual land surface air temperature anomalies for the period 1900–2015 relative to the 1981–2010 mean value 51
3.1 Distribution of permafrost bore holes in the Global Terrestrial Network of Permafrost 69
3.2 Distribution of CALM sites 71
3.3 Antarctic automatic weather stations, 2016 73
3.4 Timeline of North Pole drifting stations 74
3.5 The location of 3,918 ARGO floats in September 2015 78
3.6 Mean sea ice velocity vectors of (a) the Arctic Ocean, (b) the Antarctic for 2000–2016 86
4.1A The pattern of 500-hPa geopotential heights in the northern hemisphere: (a) boreal winter, (b) summer 104
4.1B The pattern of 500-hPa geopotential heights in austral summer and winter in the southern hemisphere, 1970–1999: (c) January, (d) July 105
4.2 The global wind belts (westerlies and trade winds) and the vertical structure of the meridional cells: Hadley (thermally direct) and Ferrel (indirect) 106
LIST OF FIGURES

4.3 March and October polar total ozone in the northern and southern hemispheres 108
4.4 Arctic Oscillation index variations, 1950–2016 109
4.5 Mean sea-level pressure in the Arctic for 1970–1999 110
4.6 The Arctic frontal zone in summer 111
4.7 Mean sea-level pressure in the southern hemisphere, 1970–1999: (a) January, (b) July 113
4.8 The sub-Antarctic trough, cyclone paths, and seasonal sea ice extent in the Southern Ocean around Antarctica 114
4.9 Polar low in the Greenland Sea 116
4.10 The 1950–1989 mean winter and summer temperature and salinity at the surface of the Arctic Ocean: (a) winter temperature, (b) winter salinity, (c) summer temperature, (d) summer salinity 120
4.11 Temperature and salinity profile in the Canadian Basin of the Arctic Ocean 124
4.12 Definitions of the Arctic showing contrasting areas that contribute freshwater to the Arctic Ocean: (a) All Arctic Regions (AAR), (b) Arctic Ocean Basin (AOB), (c) Arctic Climate System Study (ACSYS), (d) Arctic Ocean River Basin (AORB) 125
4.13 Antarctic Circumpolar Current 127
4.14 Time series of wavelength-integrated albedo from April 1, 1998, to September 27, 1998 130
4.15 Mean air temperatures over the Arctic: (a) January, (b) April, (c) July, (d) October 133
4.16 The polar maritime climate zones in each hemisphere for 1979–2010 134
4.17 Mean snow depth for 1954–1991 on multiyear sea ice 139
4.18 (a) Climatology of multi-data set mean SWE for February–March over the 1981–2010 period; (b) ratio of climatological SWE to spread among the five component data sets calculated for February–March over the 1981–2010 period 140
4.19 Mean winter and summer temperatures over Antarctica 142
4.20 Temperature curves showing the “coreless” winter at coastal and interior stations in the Pacific sector of Antarctica in 1957 143
4.21 Annual accumulation over Antarctica 146
4.22 Mean temperatures for 1960–2012 149
4.23 The spread of Arctic warming contributions in CMIP-5 models 150
5.1 Polar desert regions in the northern hemisphere 166
5.2 “Polar desert” tundra of maritime areas of Arctic Bioclimatic Subzone A, Hayes Island, Franz Jozef Land, Russia 167
LIST OF FIGURES

5.3 Lichen-rich polar desert on gentle south-facing hillslope, Hayes Island, Franz Jozef Land, Russia 168
5.4 Circumpolar Arctic vegetation 170
5.5 Melting ice wedges forming a polygon pattern just off Dalton Highway, Alaska, north of Happy Valley Airport 171
5.6 Hummocky tundra of bioclimate subzone C, near Eureka, Ellesmere Island, Nunavut, Canada 174
5.7 Forb-rich tundra at the southern edge of Arctic bioclimate subzone D, on nonacidic loess soils, near Sagwon, Arctic Foothills, northern Alaska 175
5.8 Tundra at the northern edge of Arctic bioclimate subzone E, Sagwon vicinity, Arctic Foothills, northern Alaska 176
5.9 Shrub tundra of southern part of Arctic bioclimate subzone E near treeline, southwest-facing slope, near Council, Seward Peninsula, Alaska 177
5.10 (a) The circumpolar distribution of permafrost, (b) legend 178
5.11 Distribution of (a) permafrost temperatures and (b) active layer thickness in Yakutia, eastern Siberia 179
5.12 Permafrost distribution in the Antarctic 180
5.13 The distribution of ground ice content in Siberia 182
5.14 Palsa mounds in tundra of the coastal plain, Alaska 183
5.15 Ybyuk pingo, Tuktoyaktuk Peninsula, Northwest Territories, Canada 184
5.16 Stone circles 185
5.17 Patterned ground near Eureka, Ellesmere Island, June 1963 185
5.18 Dudh Pokhari glacial lake 190
5.19 The distribution of glaciers in (a) the western Arctic and (b) the eastern Arctic 202
5.20 Cirque glacier Parlang Zangbo, Tibet 203
5.21 Map of Greenland showing all local glaciers and ice caps 205
5.22 Vast landscapes of (a) areal scouring, (b) carved and scoured bedrock along the Mara River, Canadian Shield, Northwest Territories 210
5.23 Glacial grooves at Glacial Groove State Park, Kelleys Island, Ohio 213
5.24 Chattermarks, Greenland 214
5.25 Glaciated and glacierized mountain landscape south of Inugsuin Fiord, Baffin Island 215
5.26 Deep cirques, Disko Island Greenland 215
5.27 Geirangerfjord in Norway 216
5.28 Large perched erratic block on Pyramid Peak, New Jersey 217
LIST OF FIGURES

5.29 (a) A section of the Glacial Map of Canada, 64°–72° N, 84°–104° E, 218
(b) legend
6.1 Mean annual precipitation over Greenland 237
6.2 Calibrated Polar MM5 average annual accumulation map for 238
6.3 Glaciological zones on the Greenland ice sheet 239
6.4 (a) Melt extent on Greenland, (b) maximum melt extent, (c) daily 243
simulated melt extent
6.5 Composite mosaic of Greenland ice sheet surface velocity 244
6.6 Tautachrones for Summit, Greenland, during 2001–2002 246
6.7 Supraglacial stream disappearing into a moulin in West Greenland 248
6.8 Composite mosaic of Antarctic surface ice speed 251
6.9 Diurnal cycle of (a) net shortwave radiation, (b) net longwave, 256
(c) net radiation, (d) sensible heat flux, (e) latent heat flux,
and (f) total subsurface heat flux for a blue ice area
6.10 Map of the eleven major ice shelves and their areas in Antarctica 258
6.11 The edge of the Ross Ice Shelf, December 1996 259
7.1 The Antarctic Circumpolar Current sea water density fronts and 270
bathymetry
7.2 Schematic two-cell meridional overturning circulation in the 271
Southern Ocean
7.3 Mean ACC front positions mapped using sea surface height 274
7.4 The global thermohaline circulation 276
7.5 The Arctic seas 279
7.6 Arctic Basin bathymetry 280
7.7 Cross-section of (a) potential temperature and (b) salinity 282
in the Arctic Ocean
7.8 Average lead frequency in the pan-Arctic, January to April,
2003–2015 303
7.9 March and September Arctic ice extent from 1850 305
7.10 Trends in Arctic sea ice extent in September, 1979–2017 307
7.11 Arctic sea ice extent for the record minimum in September 2012 308
7.12 Time series of sea ice age coverage, 1985–2016 308
7.13 Synoptic classes of Antarctic sea ice around the September 315
equinox in 1999–2009
7.14 Distribution of polynyas in the Arctic 320
8.1 The mountain ranges, river systems, and glaciers of High Asia, 340
the Central Asian region that constitutes the Third Pole
8.2 The upper part of the Abramov Glacier in the Pamir 340
8.3 A typical section of the Tibetan Plateau 341
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Seasonal temperature climatology of the Tibetan Plateau</td>
<td>345</td>
</tr>
<tr>
<td>8.5</td>
<td>Mean annual precipitation over the Tibetan Plateau</td>
<td>346</td>
</tr>
<tr>
<td>8.6</td>
<td>Distribution of permafrost and seasonally frozen ground on the Tibetan Plateau</td>
<td>367</td>
</tr>
<tr>
<td>9.1</td>
<td>The CO$_2$ emission ratio increase at Barrow, Alaska, 1975–2015</td>
<td>379</td>
</tr>
<tr>
<td>9.2</td>
<td>Record ozone hole of 29.5 million km$^2$ over Antarctica on September 24, 2006</td>
<td>382</td>
</tr>
<tr>
<td>9.3</td>
<td>Maps of present and projected (2040–2060) sea ice cover for March and September</td>
<td>384</td>
</tr>
<tr>
<td>9.4</td>
<td>Time series of total area containing near-surface permafrost</td>
<td>389</td>
</tr>
</tbody>
</table>
Boxes

2.1 Oxygen Isotope Analysis .......................... page 23
2.2 Orbital Cycles .................................. 24
2.3 Ice-Rafted Debris (IRD) and Heinrich Events .......... 33
2.4 Lichenometry .................................. 48
2.5 Definition of the Anthropocene .................. 50
4.1 El Niño–Southern Oscillation (ENSO) ............ 115
4.2 Mesocyclones .................................. 115
4.3 The Great Salinity Anomaly ....................... 124
4.4 Snow and Ice Albedo .......................... 138
4.5 Extreme Minimum Temperatures in Antarctica ...... 142
4.6 Polar Amplification ............................ 150
5.1 The McMurdo Dry Valleys ....................... 169
5.2 Steppe Tundra .................................. 177
5.3 Coastal Recession in Alaska ..................... 187
5.4 Lake Vostok .................................... 193
5.5 The Global Land Ice Measurements from Space (GLIMS) Database 200
6.1 Snow Surface Features .......................... 240
6.2 Operation IceBridge ............................ 245
6.3 Transantarctic Mountains ......................... 250
6.4 Blowing Snow .................................. 253
6.5 Glaciers Flowing into the Amundsen Sea .......... 257
7.1 Thermohaline Circulation ....................... 276
9.1 Representative Concentration Pathways ........... 380
9.2 The Ozone Hole ................................ 381
About the Authors

We believe it is appropriate to outline our scientific history as it relates to the polar regions.

Roger has been fascinated by cold environments since spending a year at the McGill Subarctic Research Station in Schefferville, Quebec, as a graduate student and weather observer during the International Geophysical Year, 1957–1958. Professor Jack Ives introduced him to the history of glaciation and the Laurentide ice sheet, a topic that became a part of his MSc thesis and subsequent PhD dissertation.

In summer 1963 and spring 1964, Roger took part as a meteorologist in Operation Tanquary, a Canadian Defense Research Board program on Ellesmere Island led by Dr. Geoff Hattersley-Smith. In 1966–1967, he worked at the Geographical Branch, Department of Energy Mines and Resources, in Ottawa studying the climate of Baffin Island. This included a two-week spell at the Branch’s base camp in Inugsuin Fiord with a visit to the Barnes ice cap.

In October 1968, Roger accepted a faculty position at the University of Colorado, Boulder, in the Geography Department, rostered in the Institute of Arctic and Alpine Research. In 1969, along with John Andrews, he directed the work of a group of graduate students studying glaciology and glacial geomorphology in eastern Baffin Island. The “Boas” glacier, near Narpaing Fiord, was the object of glacier–meteorological research with John Jacobs and Ron Weaver. Subsequently, they shifted their attention to the landfast ice at Broughton Island. In May 1970, Roger and John Jacobs conducted aircraft measurements over the Davis Strait sea ice from a Queenair of the National Center for Atmospheric Research in Boulder.

A team-taught course on arctic and alpine environments at the Institute of Arctic and Alpine Research led to a multiauthored book, of the same title, that was edited by Jack Ives and Roger.

In 1981, Roger transferred his faculty position to the Cooperative Institute for Research in the Environmental Sciences (CIRES) in partnership with the World Data Center for Glaciology, of which he was director until 2008. This center was granted the title National Snow and Ice Data Center (NSIDC) by the National Oceanic and Atmospheric Administration (NOAA) in 1981. As part of the International Tundra Biome Programme, Roger was able to visit tundra sites at Toolik Lake, Eagle Summit, and Barrow, Alaska. The award of a J. S. Guggenheim Fellowship in 1982–1983 enabled him to spend time at the National Institute
for Polar Research in Tokyo, the University of Bern, Switzerland, and the Scott
Polar Research Institute in Cambridge, United Kingdom, researching snow and
ice data.

Roger has also visited various parts of Central Asia. In 1979 and again in the
1990s, he visited the Abramov Glacier in the Pamir. In 1981, he traveled with Jack
Ives and Gordon Young, together with Professor Shi Yafeng, Qiu Jiachi, and Kang
Ersi, to No. 1 glacier in the Tien Shan. In 2005, he traveled by road from
DunHuang in northwest China to Golmud and Lhasa. The railroad was under
construction at the time, and the party inspected the embankments designed to
prevent thawing of the permafrost. In 2009, he traveled to the terminus of No. 12
glacier at 4,250 meters in the Qilian Shan, following a meeting in Lanzhou.

In 1990, and again in 1997, Roger spent six months at the Institute of Geog-
raphy, ETH, Zurich, where he lectured on mountain climates and cryospheric
topics. In 1994, Roger spent four months at the Alfred Wegener Institute for Polar
and Marine Research, Bremerhaven, Germany, writing a paper about snow and
sea ice albedo. In spring 2000, he spent four months at Moscow State University
lecturing on snow and ice. In 2004, he spent four months at the Laboratoire de
Géophysique et Glaciologie in Grenoble, France, writing a paper on glacier
research. In 2005, Mark Serreze and Roger published The Arctic Climate System
through Cambridge University Press, with a second edition appearing in 2014.

Roger received a Humboldt Prize Fellowship in 2009–2010 at the Bavarian
Academy of Sciences Commission on Glaciology while writing The Global Cryo-
sphere: Past, Present, and Future with Thian Gan of the University of Alberta for
Cambridge University Press.

In September 2005, Roger was a lecturer for a Summer School of the University
of Alaska, Fairbanks, on the Russian icebreaker Kapitan Dranitsin as it sailed
from Kirkenes, Norway, into the Laptev Sea, where it conducted research at an
ice station. In February 2012, he had the opportunity to lecture on a cruise ship
that sailed from Ushuaia, Argentina, across Drake Passage to the South Shetland
Islands, with a landing on the Antarctic peninsula. This provided some impres-
sions of Antarctica and the Southern Ocean. Roger continues to work on scientific
papers at the NSIDC, gives invited lectures internationally, and consults on
climate and cryospheric topics.

Eileen Hall-McKim is a PhD climatologist, receiving her doctorate from the
University of Colorado, Boulder. Her interdisciplinary degrees include work in
the geological sciences, paleoclimatology, meteorology, hydrology, oceanog-
raphy, and water resource research.

Eileen’s interest in weather began early. Growing up on the high plains of
Kansas, she became fascinated by big sky horizons filled with supercell thunder-
storms and cloud formations. Her interest in geology and paleoclimatic was
largely initiated by visits to Utah’s Canyonlands in early 1970s. Her intrigue with
the World of Ice was fueled while she engaged in an undergraduate astronomy class with astrophysicist Dr. Joe Romig, University of Colorado, as he discussed the Milankovitch cycles and the coming and going of ice ages. Emeritus Professor Gary Thomas, working in the field of astrophysics and planetary sciences, also greatly encouraged Eileen’s interest in meteorology and climate and helped facilitate undergraduate research into high-altitude noctilucent clouds as possible harbingers of climate change in early 1990s.

In 1993, during a University of Colorado INSTARR/Geography program, Eileen did extensive fieldwork in glacial geology on an Arctic River Expedition, exploring the Mara and Burnside Rivers by inflatable canoe and following the flow of springtime ice breakup of the rivers, into the Arctic Ocean near Bathurst Inlet, in Canada’s Northwest Territories. Throughout the expedition, she conducted research/data collection for paleoclimate indicators of the ice flow of the Laurentide Ice Sheet through mapping of glacial striations and other landform features on the northern Canadian Shield bedrock.

Other interesting fieldwork followed observing glacial landscapes on Colorado’s Niwot Ridge and Sangre de Christo Mountain Range of the southern Rockies through the University of Colorado’s Arctic and Alpine Mountain Research Station.

Eileen completed her MSc at the National Snow and Ice Data Center, Boulder, and her PhD while working as editor and writer for the Intermountain West Climate Summary of the NOAA/Western Water Assessment. Her honors include being elected a member of the Phi Beta Kappa National Honor Society; the Outstanding Women in Geosciences Student Award from the American Association of Women in Geosciences; the Graduate Research Fellowship Award from the Cooperative Institute for Research in Environmental Sciences (CIRES); and membership in the Magna Cum Laude National Honor Society, University of Colorado.

In 2008, Eileen traveled to the No. 12 glacier in the Qilian Shan in northwest China following a meeting on the World Glacier Inventory. In 2012, she sailed on the Antarctic Dream across Drake Passage to the South Shetland islands and Antarctic peninsula, followed by travels through Argentina and the Perito Moreno Glacier. Other travel includes visiting glaciers and periglacial landscapes in Iceland, Norway, Switzerland, Canada, and Alaska.

Eileen completed professional certification in Sustainable Community Management from the University of Colorado Sustainable Practices Program in 2011–2014 and has continuing interest in methods of carbon sequestration, with special interest in biomimetic techniques. She co-authored Essentials of the Earth’s Climate System (with Roger G. Barry, Cambridge University Press, 2014).
Preface

The polar world is undergoing unprecedented changes as a result of global warming and its amplification in high latitudes. Arctic sea ice is shrinking and thinning at an unprecedented rate, permafrost is thawing, glaciers and the polar ice sheets are losing mass at an accelerating rate, and ocean temperatures are rising. These changes are beginning to have large impacts on plants, animals, and human society that will increase in the future, whether or not greenhouse gas emissions are reduced.

The Third International Conference on Arctic Research Planning (ICARP 3) lists as the first of its three themes “The Arctic system and its transformation.” The first key finding of the 2017 Arctic Monitoring and Assessment Programme (AMAP) report Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) is that “the Arctic’s climate is shifting to a new state.” It seems timely, therefore, to assemble the diverse information on polar environmental change for the benefit of students in environmental sciences, geography, biology, and climate sciences, as well as planners and northern residents.

Following an introduction that outlines the setting and research history of the polar regions, Chapter 2 describes the broad outlines of climatic history from the Eocene to the Anthropocene. Chapter 3 gives an overview of in situ and remote sensing observations of polar regions. Chapter 4 surveys the atmospheric and oceanic circulations and climatic conditions. Chapter 5 details the characteristics of the terrestrial environments and the processes at work in them. Chapter 6 examines the ice sheets of Greenland and Antarctica and ice shelves. Chapter 7 treats oceanic and sea ice environments. Chapter 8 introduces the Third Pole in the Central Asian highlands. Finally, Chapter 9 discusses projections for the future environments of the polar regions during this century. Each chapter concludes with a summary of the main points and a mixture of review and discussion questions that encourage students to check their understanding and think critically.
Acknowledgments

We wish to thank the following colleagues for reviewing and commenting on drafts of the text:

Professor Ray Bradley, University of Massachusetts, Amherst, for Chapter 2
Dr. Matt Druckenmiller, NSIDC, for Section 9.10
Dr. William Emery, University of Colorado, for Section 4.2 and Chapter 6
Professor Jack Ives, Carleton University, Ottawa, Canada, for Chapter 5
Dr. Ersi Kang, CAREERI (now Northwest Institute of Eco-Environment and Resources (NIEER), Lanzhou, China, for Chapter 8
Dr. Lora Koenig, National Snow and Ice Data Center, University of Colorado, Boulder, for Section 6.1
Dr. Ted Scambos, National Snow and Ice Data Center, University of Colorado, Boulder, for Chapter 3 and Sections 6.2–6.4
Dr. Neil Wells, Emeritus University Fellow, University of Southampton, United Kingdom, for Chapters 4B and 7
Dr. Qinghua Ye, Institute for Tibet Plateau Research, Beijing, China, for the glacier section of Chapter 8
Dr. Tingjun Zhang, Lanzhou University, Gansu, China, for the permafrost section of Chapter 8

We also wish to thank Jack Ives, Koni Steffen, D.A. “Skip” Walker, and Kevin Schaefer for their photographs. Special thanks to student assistants at NSIDC for illustration assistance, Florence Fetterer, NSIDC and Matt Lloyd of Cambridge University Press for his enthusiastic support of this project. We also thank the following publishers for permissions to reproduce the figures whose sources are identified in the text:

Academic Press
American Geophysical Union
American Meteorological Society
Arctic Institute of North America
Cambridge University Press
CRC Press
Elsevier
Geological Survey of Canada
Oxford University Press
Routledge/Taylor and Francis
Springer