

accidents and major spills	sizes of, 92	SO_2 and its aerosols, 100
coal ash dam failure, TVA, 331	aflatoxin	SO ₂ sources, 101
coal ash, TVA, 171	carcinogen, natural, 55	SO ₂ , reducing emissions, 101
coal slurries, Kentucky, 170	agriculture	SO ₂ , why important, 90
cyanide and metals into Danube, 7	adverse impacts, 268	air pollutants, criteria and others
Deepwater Horizon blowout, 2010, 210	air pollutants	long range transboundary air pollution, 106
Exxon Valdez, 210	categories, 91	air pollutants, HAPs
cleanup using microbes, 308	gas vs. particulates, 92	comparison to criteria pollutants, 104
impacts on wildlife, 210	primary and secondary, 90	examples, 103
Minamata Bay tragedy, 341	air pollutants, criteria	exposure to, 104
pesticides into Rhine, 7	black carbon, PM _{2.5} , 92	introduction, 103
Texas fertilizer explosion, 33	carbon monoxide, 98-100	metal HAPs, why of concern, 104
Tianjin China, cyanide explosion, 32	an introduction, 90, 98, 328	no individual standards for HAPs,
acid deposition	concerns, 99	exception, 104
Acid Deposition Monitoring Network, 128	reducing levels, 100	PAHs
high emission stacks, 123	sources, 99	bioavailability, 105
history, 128	ground-level ozone, 96-98	in environment, 105
introduction, 119	precursors of, 96	introduction, 105
Hubbard Brook Experimental Forest, 121	health impacts, no safe dose, 96, 98	sources, 104, 105
wet and dry aerosols, 123	ongoing problems, 98	exposure to, 105
acid deposition, acid precursors and their	reducing levels, 97	fate of, 105, 141
sources	sources, 97	reducing emissions, 105
ammonia, 125	toxicity compared to particulates, 96	reducing mercury emissions, 104
carbon dioxide, 123	introduction, 96	some HAPs indoor air pollutants, 104
fertilizer and livestock, 125	lead, 102	toxicity, 105
fossil fuel power plants, 125	an introduction, 102	why of concern, 104
SO ₂ and NO ₃ , 122, 125	reducing, 102	why so named, 103
acid deposition, ill effects	sources, 102	air pollutants, VOCs, 103
acid surface water, 124	nitrogen oxides, NOx, 101-102	introduction, 102
Al solubilized, 122	impacts, 101	relationship to ozone, 103
aluminum toxicity, 121	sources, 102	sources, 103
basic soil protects from, 122	ozone	why regulated, 103
dying aquatic life, 124	an introduction, 91	air pollution, global
dying forests, 123	damage to plants, 97	atmospheric brown clouds (ABCs), 107
Europe, 105, 125	dangerous pollutant, 101	described, 108
fewer impacts in Asia, 126-127	particulate	reducing, 108
haze affects visibility and health, 124	an introduction, 113	sources of, 108
lost Ca and Mg, 121	atmospheric loading, 91	China building many coal plants, 107
material damage, 125	black carbon, 91	India vs. China, 106
soil metal loss, 121	PM _{2.5} poses special health issues, 92	millions of children badly impacted, 106
acid deposition, recovery from, 126-127	haze, 94	ozone deaths up sharply, 106
slow, 126	haze, explained, 101	PM ₂₅ and ozone, 106
using lime, 127	health impacts of particulates, 93	sand and dust storms (SDSs), an intro-
acid deposition, reducing precursors	non-health damages, 93	duction, 108-111
ammonia, 126	PM and disease	SDS, composition of, 109
cap and trade, 125	introduction, 100	SDS, how to reduce, 110
NO _x , 125, 126	PM and international efforts, 95	SDS, one benefit, 109
SO ₂ , 125	PM and workplaces, 93	SDS, human caused, 109
acid deposition, transboundary transport	reducing PM quantities, 90	pathogenic microbes, 110
SO ₂ and NO _x , 123	sizes, coarse, fine, ultrafine, 92	transboundary, 108
aerosol. See global warming: aerosol	sources, 94	UN Convention to Combat desertification
aerosols, 92	sulfur dioxide (SO ₂), an introduction, 174	110
dust major component of, 109	SO, and acid particulates, concerns, 100	State of Global Air, an introduction, 106

440

air pollution, transboundary	environmental justice, 79	configuration, 420
atmospheric brown clouds, 107-108	chemical risk	electrons, 420
ammonia, 94	BPA, 53	electrostatic forces, 422
Anthropocene, 2	hazard × exposure, 68	elements, 418
signal event, 20	high-risk chemicals, 27	deuterium, 420
antidote, antagonistic action, 49	multiple chemicals, 27, 49	electronegative, 420
Aral Sea, direly impacted, 110	possible impact, 49	electropositive, 420
Arrhenius, Svante, 134	risk vs. hazard, 27	hydrogen, 421
arsenic	tested one at a time, 49	lithium, 419
poisoning, 5	tiny amounts, 4	noble, 420, 421
asbestos	whole effluent toxicity, 49	tritium, 420
carcinogen, natural, 55	chemical risk assessment	introduction
exposure, 5	factors of 10, why, 74	ionic bonds, 422
atmospheric deposition. See acid deposition		
	four-step process, 73	isotopes
aerosol loading, 120	most highly exposed population, 75	definition, 420
DDT and PCBs, 120	multiple chemicals, 75, 76	environmental chemistry, 420
automobiles, design for disassembly, 277	risk characterization, 75	mercury, 340
	no observed adverse level, 81	oxygen, 420
bauxite ore, aluminum, 275	risk characterization, BPA, 75	radioactive, 420
bees	safety factor, 73	stable, 420
impacts on population, 358	why do, 73	molecular mass, 422
wild bee pollinators, 359	worst-case assumptions, 75	molecular mass, calculating, 422
bioaccumulation, definition, 50	chemical risk reduction	neutralization, 427
biomagnification, definition, 50	actions taken, 76	oxidation and reduction reactions, 426
biodegradation, 339	EPA's IRIS system, 77	oxidation by losing electrons, 425
when process overwhelmed, 9	EU's REACH program, 77	oxidation of hydrocarbons, 424
biosolids. See wastewater	international efforts, 77	periodic table, 419
treatment: sludge, how used	managers,who are they?, 76	pH definition, 427
bisphenol A, hard plastic, 53	public pressure, 76	radical, free, 424
	using law, 77	radical, hydroxyl, 424
blue baby syndrome, 246		redox reactions, 425
BPTs and POPs	chemicals	
PCBs cycling in environment, 321	acids, 427	stable octet, 420
POPs and Stockholm Convention,	strong, 427	stoichiometry, 425
319–320	weak, 427	subatomic particles, 418
	acids and bases, 427	valence electrons, 420
calcium oxide (lime), 328	bases, 427	vanishing zero, 31
cancer, 54-57	biochemicals, natural and synthetic, 423	chemistry, analytical
cancer villages, 56	combustion, incomplete products,	sensitivity of, 10
causes of, PM _{2.5} involved, 57	examples, 426	children and infants
China, 55	formula as representations of, 418	avoiding home poisonings, 388
complete carcinogen, 55	inorganic, definition, 423	exposure to
DNA copying errors, 55	introduction	air pollutants, protective standards, 90
genotoxic, mutate DNA, 55	organic, 423	aspirin, 44
initiating and promoting, 55	organic, synthetic, 423	CDC study of exposure, 69
introduction, 54	organometallic, 423	cigarette smoke, 380
liver cancer, 57	radioactive, types of radiation, 420	contaminated fish, neglecting fish advi-
	reactive	sories, 342
risk of, increasing, 56 carbon isotope, 138	example, fluorine atom, 421	contaminated soil, eating, 75
1	reactive, lithium, 420, 421	electronic waste (e-waste), 61
carbon, black, 2	chemistry	excess vitamin A, 44
Carson, Rachel	atomic mass, 418	fire retardants, 322
Silent Spring, 356	atomic nucleus	
chemical exposure, 27		fluoride in drinking water, 252
body burden of xenobiotics, 69	protons and neutrons, 418	indoor carpets with contaminants, 390
CDC study, 68	atomic number, 419	methylmercury, 50
epidemiologic studies, 70	atoms, 418	neurotoxins, prenatal, 58
meaning of results, 70	Avogadro's constant, 425	nitrate in drinking water, 227
Percival Pott	balancing chemical reactions, 425	ozone, susceptibility, 96
safety, 68	chemical bonds, 421	PCBs in contaminated fish, 322
and scrotal cancer, 70	combustion, incomplete products, 426	pesticides, less-developed countries,
chemical paradoxes, 43-44	covalent bonds, 421	364
chemical pollution	electron	phthalates, 53
*		

Cambridge University Press 978-1-108-42308-3 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

polluted air, reduced lung capacity, 7	factor-10, computers fulfill criterion, 401	product stewardship and extended pro-
toxicant, children's greater exposure, 48	factor-10, dematerialization, 398	ducer responsibility, 407
toxicants, sensitivity may be greater, 48	how EU works toward, 398	remanufacturing convertibility, 407
UV-B radiation, 199	how Renault works toward, 399	remanufacturing metal products, 271
water-borne disease, 246	industrial ecology, 397, 400	remanufacturing. See also circular econo-
indoor air pollutants, 377	Japan tracks material flows, 398	my, tools used: design for disassem-
smoke in poorer countries, 386	more value, less waste, 397	bly: DfD examples
food wastage, meanwhile malnutrition,	needs highly recycled materials, steel,	servicizing, 408
268	399	chemical products, 408
handling household hazardous waste, 267,	other terms that describe, 397	Consumer Product Safety Commission
389	personal actions, 401	(CPSC), 379
hazardous product alternatives, 389	recovering waste raw materials, 311	corporate use of, 408
hazardous products, protection from, 387	reject linear economy, 396	
keep out of children's reach, 388	remanufacturing, 399	dead zone
immune system less developed, 47	renewable energy, 412	Gulf of Mexico, 228
lead	similar terms, 38	Delhi, most polluted capitol, 106
blood lead levels, 69, 336	steel recycling important to, 399-400	dental caries
blood levels needing intervention, 250	sustainable food production, 412	why fluoride added to water, 252
childhood exposure, 335	take back, 269	design for the environment, DfE. See also
eating leaded paint, 62	tools needed to reach CE, 396	WMH: pollution prevention
exposure, no safe level, 69	umbrella term, 400	development leads to greater nonpoint
legacy lead in homes, 389	wastes and by-products as nutrients, 397	source runoff, 212
living near lead smelter, 303	wastes to resources, 37	drinking water
water pipes, 102	wastewater, value in, 220	bottled, 254
less-developed countries	Wastewater, the Untapped Resource, 259	drinking water disinfection
greater risk, 48	zero waste	alternative disinfectants, 247
greater smoke exposure, 386	city efforts, 403	chlorine chemicals, 247
pesticide exposure	corporate efforts, 402-403	disinfection by products (DBPs), 247
train parents in IPM, 365	countries working toward, 404	how reduce need for, 247
unsafe drinking water, 255	introduction, 401	reducing DBPs, 247
legacy mercury, 345	personal actions, 401	trihalomethane byproducts (THMs), 247
living near hazardous waste sites, 304	zero waste movement, 401	drinking water, municipal
pesticide	zero waste network, e.g., Zero Waste	contaminant examples, 245
exposure, migrant workers, 54	Europe, 401	introduction, 243
exposure, Yaqui children, 54	circular economy, Earth's boundaries	maximum contaminant level (MCL), 245
exposure, safety factors, 78, 361	operating within, 411–412	nitrate, reactive nitrogen, 245
heavy exposure to spraying, 53	circular economy, tools used	potential chronic effects, 243
lawns treated with, 359	design for the environment (DfE), 270,	Safe Drinking Water Act (SDWA), 243
reducing pesticide risk, 78	277, 406	treatment, 245
protecting from, 390	DfE examples, 270	drinking water safety
Poison Prevention Act, 388	DfE to develop recyclables, 278	alternative toilets, 256
polluted air and reduced lung capacity, 106	EPR, extended producer responsibility,	arsenic
sulfonamide poisonings, 74	269. See also product stewardship	developed countries, 78
toxicants, safety factors, 74	making it work, 269	health impacts, 249
chloracne, 47	popular in Japan, 270	many natural sources, 249
China and a circular economy	should recover product components,	mass poisoning, 247
China and industrial ecology, 398	270	clean water, a medical milestone, 254
China looking at tools for circular	used worldwide, 270	emerging contaminants, 253
economy, 398	green chemistry	removing, 253
China's High-Tech Zone, 400	12 principles, 409	triclosan, 253
leads in mitigating SDSs, 110	designing chemical products, 409	fluoridated water, contaminant or safe?,
circular economy (CE)	doing it nature's way, 409	252
Advanced Life Support System, 400	examples, 409–410	fluoride at high levels, 252
Amazon and the Closed-Loop Fund, 399	make recycling simpler, 410	future, revolutionize wastewater manage-
biodegradable materials, 400	natural systems, work to use, 411	ment, 259
closed -loop system, 397	recycling rare earths, 410	important problems in drinking water
cradle to cradle, 400	LCA how it's done and information	safety, 252
efficient recycling necessary, 273	provided, 405	lead
EU action for a CE, 278	lifecycle assessment (LCA), 277, 405	corroding pipes, 251
factor-10 efficiency in resource use, 278,	product stewardship. See EPR and	description of Flint crisis, 250-251
401	take-back laws	Flint and environmental justice, 249

442

drinking water safety (cont.)	coal wastes, 170	pesticide standards, special for children,
Flint correcting problem, 251	is clean coal possible?, 169–171	78
Flint crisis develops, 249	lifecycle of coal, 169	epidemiology, meaning and use, 70–72
introduction to, 249	mining and health, 170	cluster, meaning of, 71
Legionnaire's disease in Flint, 251	geothermal	community studies, 71
poisoning by lead defined, 250	renewable, 182	confounding factors, 71
nitrate and methemoglobin, 246	what is it, 181	and EMF exposure, 72
pathogens, 246	hydroelectric is sometimes renewable, 183	folic acid study, 72
Legionella, 246	hydrogen fuel-cell	judging studies, 72
sources, 246	nuclear power	limits of, 72
well and irrigation water, 246	greatly lowers carbon pollution, 185	meta-analysis, 71
private wells, 247	pro and con, 184–185	vitamin A study, 72
problems with drinking water, 252–253	introduction, 184	epigenetic factors
tainted with many contaminants, 253	safety, 185	changes in DNA, 57
toilets, 256–257	introduction	epoch, 2
Wastewater, the Untapped Resource, 259	renewables	extinction
drinking water safety, less-developed coun-	end-of-life waste, 180	sixth event, 2
tries, 255	international use of, 179	
an improved source, 257	solar	fishable and swimmable, 30
arsenic, ongoing poisoning, 248	concentrated solar, 175	Flint, Michigan
billions lack clean water, 254	introduction, 174	lead drinking-water crisis, 249
chlorination, 258	life cycle of photovoltaics, 176–177	fluoride
exposure to pathogens, 255	passive, 175	
fecal pathogens, 258	recycling panels, 181	in drinking water, 252
home water treatment, 257	Solar Scorecard, 176	fluorosis, 252
	ŕ	1.
household water treatment and safe	ultrapure polysilicon, 177	gasoline
storage, 257	tidal, 177	hydrocarbons and composition, 5
pathogens, 254–255	waste biomass, 169, 180–181, 182, 184	global warming issues and terminology
point of use (POU), 257–258	wind	adaptation in the Netherlands, 152, 153
purification, 257	introduction, 177	adaptation to warming and its impacts,
safely recycling feces, 258	life cycle of wind, 178	342
sanitation and pathogens, 254	offshore, 177	adapting to rising sea, 152
toilets and water, 258	onshore, 177	Emissions Gap, 155
use of EcoSan, 258	wood183	greenhouse warming potential, 135
water scarcity, 255	can grow wood sustainably, 182	helping emerging nations to adapt, 156
world's dearth of, 242	Europe uses a loophole, 183	ice core studies of past conditions,
drinking water standards	when is wood a renewable fuel?	137–138
lead standard, 250	energy use	impact of population growth, 148
pathogen standard, 245	efficiency at home, 172	major solutions being proposed, 157
primary standard, 243	efficient use in industry, 172-173	National Climate Assessment, 145
secondary, 251	using motor vehicles	oceans
secondary, purpose of, 251	adverse impacts, 168	carbon dioxide sink, 139
drinking water, bottled	green score card, 169	Paris Agreement, 155
why people drink, 254	lifecycle of, 168	storing warmth, 139
	lowering impact, 168	reversing warming, 157
endocrine disruptors, 51-53	very low emission, 169	terminology used, 156
energy, sources of, 179	using waste energy, 173	global warming and aerosols
electric grid	environmental catastrophe	aerosol, 143
introduction, 178	dust bowl, 11	aerosol, compare to a gas, 143
batteries	environmentally preferable products,	albedo of, 142
handled five sources of energy, 179	purchasing, 271	black carbon, 136, 144
lifecycle of batteries, 178	EPA standards, air pollutants	Arctic warming, 144
major grid rule, 178	criteria, each has standard, 90	reducing black carbon, 145
recycling batteries, 181	HAPs, most lack individual standards, 90	warming aerosol, 143
storing energy, 178	HAPs exception, Mercury and Air Toxics	cooling aerosol, sulfate, 143, 144
storing energy, controversy, 178	Standards, 90	global warming and solar engineering
fossil fuel	health-based standards, 90	with aerosols
acid gas emissions, 154–155, 156, 170	EPA standards for other pollutants	global warming and greenhouse gases
ash recycling, 171	drinking water, primary and secondary	(GHGs)
building new plants, 171	standards, 243	carbon dioxide (CO ₂), 136
carbon capture and storage, 171	hazardous waste standards, 304	carbon capture and storage, 153

Cambridge University Press 978-1-108-42308-3 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

Index

carbon dioxide sources, 137-138 introduction, 388 introduction, 376, 381 carbon dioxide, reducing, 139 word definitions, 388 less-developed countries,particulates and halogens, 142 hazardous waste, business and industrial smoke, 379 methane, 140 introduction, 298 multiple chemical sensitivity, 377 nitrous oxide, 142 Basel Convention objectives, 308 nitrogen oxides, 379 particulates, 380, 381 ozone, 141 characteristics, 298 possible reactions, 379 water vapor, 142 cradle to grave, tracking, 300 moisture, mold, and bacteria, 380 global warming impacts EPA exposure standards, 304 green chemistry reducing generation, 309 changing the seasons, 147-148 mold growth, 379 coastal flooding, 147 international transport. See Basel reducing indoor pollutants, a how-to summary, 379 melting ice and glaciers, 145 Convention ocean temperature rising, 146 managing HW using WMH's four steps, 298 reducing moisture levels of, 381 permafrost thawing, 146 recycling methods, 299 smoking and it impacts, 379 sea-level rising, 146 stabilize before disposal, 300 sources of moisture, 380 storm intensity increasing, 147 treatments for, 300 VOCs, health concerns, 380 worse-case possibilities, 148 who generates hazardous waste?, 298 reducing exposure, 380 grasshopper, global distillation, 8 hazardous waste sites, 299 VOC sources almost ubiquitous, 380 definition, 301 indoor air pollutants, ones difficult to avoid green chemistry describing brownfield, 306 basics of green chemistry, 409 benzene, properties and toxicity, 382 funding cleanup, 306 benzopyrene, properties and toxicity, 382 green dot trademark, 275 green roof, 223 health risk, 304-305 formaldehyde, properties and toxicity, 382 greenfield if imminent hazards, 306 how to minimize exposure, 383 lead and cadmium are common, 332 undeveloped land, 306 introduction, 381 Gulf of Mexico living close to HW site, 305 PAHs, properties and toxicity, 382 dead zone, 228 many thousands of abandoned mining paradichlorobenzene, properties and sites, 303, 329 toxicity, 383 mining sites, abandoned, but "forever" PERC, properties and toxicity, 382 Haber-Bosch process cleanup, 330 radon produces reactive nitrogen (fixed nitrounderground storage tanks, 301 detecting and reducing, 385 gen), 224 hazardous waste treatment how exposure occurs, 383 synthetic fertilizer, 225 bioremediation, 307 properties and toxicity, 385 hazardous products, home alternatives to, 389 metal cleanup, 307 scientific uncertainty, 385 methods, 300 solid radioactive daughters, 384 asbestos, legacy hazard, 389 haze toxicity and action level, 383 concerns relating to, 387 PM2.5, 94, 101 indoor air pollutants, poorer countries combustible, 387 heat islands, 157 introduction, 386 corrosive, 387 emergency room visits, 387 reducing smoke, clean cookstoves, 387 Holocene, 134 hormones reducing smoke, examples, 386 flammable, examples, 387 gasoline, multiple hazards, 387 estrogens, androgens, others, 53 industrial ecology: moving toward closed hydroxyl radical, 9, 94 loop, 399 hazardous characteristics, 387-388 atmospheric cleanser, 141 industrial symbiosis, 37-38 See inorganic Hazardous Substances Act, 388 destroy VOCs, 103 reactive, examples, 387 chemicals fate, 9 toxic, examples, 387 indoor air pollutants International Agency for Research on Cancer labeling of products, 388 (IARC) lead paint, legacy hazard, 389 attached garages as sources, 380 legacy hazards, 389 biological contaminants WHO cancer research, 360 ionizing radiation more than one hazard, 387 biological contaminants, examples and damage to DNA, 384 Read The Label First campaign, 388 sources, 381 introduction, 384 recommendations to follow when using, biological contaminants, reducing, 379, sources, anthropogenic, 385 sources, natural, 384 reducing exposure to, 388-389 combustion pollutants, examples, 377 iron oxide, 328 signal words that indicate, 387 carbon monoxide and CO detectors, 379 difficult to avoid pollutants and possible Toxics Use Reduction (TUR), 388 hazardous products, household hazardous impacts, 381-383 Kalundborg waste (HHW), 389-390 dust and dirt eco-industrial park, 37 carpets, 381 Keeling, David, 136 community collection program, 390 how handle specific hazardous wastes, 390 reducing, 381 how to reduce HHW, 389 particulates, 379 Lake Chad: pumps out dust, 110 introduction, 389 health effects, potential pesticides, how reduce use, 390 acute, 377 Waste Electrical and Electronic Equipment hazardous products, principal hazard chronic, 378 Directive, 311

444

law, US	introduction, 344	mercury emissions in Arctic high, 342
CERCLA or Superfund, 303	natural and human sources, 345	Mad Hatter, 337
Clean Air Act. See NAAQS, 90	poisoning with, 345	Minamata, 342
Clean Water Act (CWA), 206, 221	power plant emissions, particulates, 345	Minamata and international action, 341
Federal Insecticide, Fungicide and Roden-	toxicity of inorganic arsenic, 345	Minamata Convention, 338, 341
ticide Act (FIFRA), 365	uses of arsenic, 344	Minamata Convention, how it works,
Food Quality Protection Act (FQPA), 78,	metals, cadmium	342
361	by-product, zinc mining, 327	Minamata emissions by Chisso Corp,
Hazardous Substances Act, 388	excreted very slowly, 343	341, 342
Hazardous Substances Labeling Act, 388	exposure to, cereal crops and smoking, 343	Minamata, poisoning disaster, 47
Mercury and Air Toxics Standards, 333	exposure to, reducing, 344	toxicity
Poison Prevention Act, 388	exposure to, shellfish and smoking, 332	conversion to methylmercury, toxicity
Resource Conservation and Recovery Act	hyperaccumulators and cadmium, 308	high, 339
(RCRA), 268, 298	introduction, 343	methylmercury biomagnifies in food
right-to-know law, 31	itai itai disease, 343	chain, 338, 339
right-to-know: toxic release inventory	phosphate rock, 259	metals, metalloid. See metals, arsenic
(TRI), 31–33	sources, uses, transport, 343	methane (swamp gas), 9
Safe Drinking Water Act (SDWA), 206,	toxicity, kidney, 343	methanotrophs, 140
243	metals, lead	microplastics
Toxic Substances Control Act (TSCA), 77	common at Superfund sites, 335	physical degradation, 9
laws,natural, 4	exposure, work and beyond, 334	physical degradation, 9 plastics, broken down, 2
	- · · · · · · · · · · · · · · · · · · ·	_
leachate, 280	lead exposure	Minamata Convention
lead pollution	banning lead from gasoline, 336	purpose of, 342
many sources, 249	banning products with lead, 336	mineralize, definition, 9
lethal dose LD ₅₀ , 45	introduction, 334	mining overburden and tailings, 266
lifecycle assessment, automobiles, 277	legacy lead, 335, 336	movement
	reducing exposure, 91–95	transboundary, 126
Mauna Loa Observatory, 136	reducing leaded gasoline, Mexico City, 336	MSW
maximum available control technology	reducing legacy sources, 337	recycling
MACT, 104	sources, 334	terminology, 273
mega-cities, 15	toxicity, 335	MSW and gross pollution
examples of, 90	babies and children, 335, 336	start trash pickup, 288
dramatic mobilization, 328	eagles, 337	
emissions to atmosphere, 328	mother's early exposure, 336	nature's services
human exposure to, 332	no safe blood level, 336	algae, 226
particulates, 328	reference level, CDC, 336	algae and oxygen production, 226
reducing risk, 333, 365-366	small children absorb more, 336	categories of services, 13
mining, 329	transport in environment, 334	defining services, 10
lifecycle assessment of mining, 329	in winter haze, 334	desertification prevention, 13
mining operations, 329	metals, mercury	filtering water, 11
mining wastes produced, 329	atmospheric concentrations, 338	glaciers, 12
metals and metal pollutants	complex cycling in environment, 340	microbes, 12
abandoned mines and "relentless	isotopes help trace travels, 340	Ogallala aquifer, 12
pollution", 329, 330	elemental, inorganic, and methylmercury,	soil, 11, 13
acid mine drainage, 329	337	trees, 12
ancient mining, 332	elemental mercury	NIMBY, not in my backyard, 281
folk remedies, lead, mercury, cadmium,	emitted by incinerators, 340	nutrients
arsenic, 334	long atmospheric life, 340	toxicity, 45
heavy metals, 328	introduction, 337	•
introduction, 327	sources, 338	ocean acidification, 149-152
soils, maximum-loading rate, 332	artisanal mining largest worldwide	calcium carbonate shells, 150
sources of metal pollutants, 329–332	source, 338	CO ₂ leads to acid, 149
coal-burning power plants, 330	fossil fuel burning largest US source,	on coral reefs, 151
metal mining and processing, 329	338	decreased seawater pH, 149
toxicity of, 333	sources of possible exposure	definition, 149
treating disease with, 334	consumer products, now mostly	example, 151
tributyltin, 333	banned, 338	in future, 152
water, soil, agricultural soil, 332	dental amalgams, 342	
metals, arsenic	exposure of humans and wildlife, 342	impacts of acidification
all crop plants, 344	exposure of loons, eagles to fish, 342	less shell-friendly water, 150 on marine life, 151
drinking water, 344	fish, are many fish advisories, 342	
armang water, JTT	11011, 410 111111, 11011 44 (1001100) 0 12	organic chemicals

Cambridge University Press 978-1-108-42308-3 — Understanding Environmental Pollution Marquita K. Hill Index

More Information

can biodegrade, 9	inert ingredients, 366	hive dwellers, 358
degradation, factors impacting, 9	International Code of Conduct, FAO	impacts, pesticides plus other human
orthophosphate	administered, 364	actions, 358
reacts with lead, 251	introduction, 353	importance, 358
Owens Lake	less-developed countries, 364	pesticides, public involvement. See REACH
dried up, 110	200,000 killed /year, 364	EU's socioeconomic analysis, 360
ozone	FAO statistics, 364	growing demand for organic produce, 362
ground level compared to stratospheric, 96	FAO teaching organic and IPM, 365	what is needed in registration process, 360
ozone, ground level	indigenous knowledge "old customs,	pesticides, reducing their risk
transport, 7	examples", 365	alternative pesticides, 371
	lack of safe management, 365	Amsterdam increases bee diversity, 368
Paracelsus, 43	National Pesticide Information Center, 355	Amsterdam, urban agriculture, 368
particles	obsolete, what happens to them, 364	biocontrol agent examples, 371-372
inorganic and nitrogen, 2	pest resurgence, 362	biopesticides, characteristics of, 371
PBTs and POPs, 316	philosophies regarding pesticide use, 366	biopesticides, may expedite registration,
bioaccumulation vs. biomagnification,	reducing risk, integrated pest management	366
316, 317	(IPM), 212	can agriculture be sustainable?, 367
chemical description, 318	Rotterdam Convention controls, 364-365	crop protectant, 366
definitions. See also POPs	metals, pesticides containing them, 355	desirable characteristics in pesticides, 366
long-range transport, 318	transport in air, water, 340	France's major efforts, 368–369
many are pesticides, 319	what biopesticides are, 363	GEOs, legitimate to use?, 371
many emitted dispersively, 318	what characteristics are desirable in pesti-	green chemistry examples, 366
many volatilize, 318	cides, 366	integrated pest management (IPM), 366
PBDEs, a brominated chemical family, 322	why used, many reasons, 354-355	characteristics, 366
PCBs	pesticides, beyond just pesticides	common features, 367
biomagnify in food chain, 321	biodiversity loss, 362	organic farming, 367
bioaccumulated high level in whales,	major habitat loss, 363	characteristics, 367
321	sixth extinction event, 363	Rachel Carson's advice, 366
polychlorinated chemical family, 321	pesticides, combinatorial	urban agriculture, 368
toxicity and exposure, 322	how impact bees, 359	using law, FIFRA, 365
PFAS chemicals in drinking water, 323	pesticides, herbicides	pesticides, registration
in human blood, 323	broad spectrum, 360	setting tolerance, 78
polyfluorinated chemical family, 323	glyphosate overview, 359–361	tolerance and no-harm, 361
PFOA and PFOS, no natural sources,	impacts bee immune system, 360	pesticides, resistance to
323	introduction, 359	continues to grow, 362
POPs	Roundup-ready controversies, 360	how resistance develops, 362
all POPs are organic, no metals, 316	USA and EU disagree on use, 360	pH impacts on water life, 121
all POPs are PBTs, 316	used worldwide, 360	pH, defined, 120
found in fatty food and breast milk, 319	pesticides, insecticides, 357	phosphorus
POPs and most BPTs bioaccumulate in	3 families of insecticides, 357	nutrient, sewage as a source, 231
fat, 317	carbamate family, 357	sources of this nutrient, 231
POPs EPA has identified to date, 316	neonicotinoid family (neonics), 358	phosphorus pollution
POPs are PBTs, but not all PBTs are	exposure,75% from food, 358	its impacts, 232 introduction, 231
POPs, 316	EU severely restricts use, 359	
why a concern, 317	found in 75% of honey samples, 358 still used in USA, 359	reducing its pollution, 232 sources, 231
why persistence a concern, 317		
widespread contamination, 319	systemic action, 358	phytoestrogens
pesticides	worldwide use, 358–359 organophosphate family, 357	plant estrogens, 53 pig-pen, 381
almost everyone uses them, 355	polychlorinated, DDT history, 357	planet's boundaries
broad and narrow spectrum, 356	DDT, how used when new, 356	living within, 17
examples, e.g., chlorine chemicals, 356	polychlorinated, POPs, 357	nine risks, 18
heat, ionizing radiation, 356 disinfectants, 356	rotenone, 356	what they are, 17
example, fumigants, 356	pesticides, monitoring	plastic lumber, 284
phenol since 1867, 356	FDA aided by safety factors, 362	plastic pollution, reducing
-	foreign produce seldom checked, 362	ban single-use plastic, 289
categories of, 355 exposure, air, water, food, 361	pesticides plus other human actions	Basel Convention, 290
historical	damaging biodiversity, 363	beat plastic pollution, 289
early hazardous waste pickups, 355	pesticides, pollinators	cutting use with pollution prevention,
what was used, 355	bees, what impacts them, 358	289
impacts on honey and bumble bees, 359	colony collapse disorder, 358	EU action, 289
	, , , , , , , , , , , , , , , , , , , ,	

446

plastic pollution, reducing (cont.)	fate of, 9	cancer. See cancer risk assessment
National Geographic's actions to reduce	gases becoming particulates, 7	Tox21
use, 289	lead at Superfund site, 62	example, BPA, 80
Ocean Conservancy, 288	natural chemicals, 4	high throughput, 79
recycling plastic packaging, 289	POP hotspots in Arctic, 8	less animal testing, 80
recycling, needs to be improved, 290	synthetic and industrial pollutants, 4	more predictive, 79
UN Clean Seas campaign, 290	pollution	robotics and technology, 79
plastic pollution, in ocean	blatant, 3	risk assessment, chemical, alternatives to. See
absorbs chemicals, 286	deaths attributed to pollution, 60	chemical risk assessment, alternatives
becoming microplastics, 286	is a design failure, 3	risk reduction
	_	
can it be removed?, 286	devastating amounts of pollution, 10	educating public, 78
colossal amounts, 285	lead in old houses, 62	for children, pesticide standards, 78
entering food chain, 286	poverty and pollution, 78	public pressure, 77
how plastic kills wildlife, small and large,	tiny amounts, 10	using law, 29–30
286	waste electronics, 61	risk reduction, chemical. See chemical risk
low percentage ocean pollution from USA,	where pollution occurs, 5	reduction, See chemical risk reduction
285	why pollution happens, 3	for children in poor countries, 78
low percentage in gyres, 285	is zero pollution possible?, 31	international efforts, 77
high percentage from coastal countries,	pollution prevention or source reduction, 35	using non-regulatory programs, 77
285	pollution, severe and cancer, 60	using precautionary principle, 78
mammoth problem, 286	POPs	for wildlife and natural resources, 79
microplastics	in soil, water, food, 24, 238, 325, 326	road building
		e
defining microplastics, 286	reducing by P ² , 319	pollution and other damage from, 6
in food chain, 286	population, human, 15	Rockström, Johan, 411
in human bodies, 286	population momentum, 15	root causes
now ubiquitous, 286		environmental problems, 14
most found in open sea, 285	radical, nitric oxide	consumption, 15
plastic, solid waste	stratospheric ozone, 142	PAT, 14
a huge problem, 283	radionuclides, 2	population, 14
developing better plastics, 284	plutonium 239, 2	uncontrolled technology, 16
landfilling plastic, 284	radon	
plastic uses, 283	carcinogen, natural, 55	salinization
pyrolysis as option to destroy, 285	outdoor air, 4	how it happens, 14
recycling difficulties, 284	reactive nitrogen	sanitary landfill, 280
recycling PET and HDPE, 284	crossed planetary boundary, 228	sensitive populations, response to, 253
searching for plastic replacements, 284	dead zone	
thermoplastic recyclable, 284		Shanghai, 3
using waste-to-energy to burn, 279, 284	Gulf of Mexico, 228	signal event, 2
	Haber–Bosch process, 228	silicosis, 47
using incineration, 284	human sources, 228	sink, 123
worldwide production, 283	reducing agricultural runoff, 207	algae as carbon sink, 226
plutonium 239, 2	some natural sources, 228	sequestering carbon dioxide, 139
PM _{2.5} composition, 92	Reilly, William, 16	sinks for POPs, 190, 223
pollinators	risk	smog, 95
honey bees and others, 358	definition, 72	air you can see, 95
pollutant transport, 6-8	zero to one, 72	Delhi, India, 106
of acid particulates, 7	risk assessment	photochemical, 95
in air, 7, 96–98	comparative, 27	pollutants, 95
in air, dioxin, 6	comparative, how to do, 29	soil
in air, transboundary, 7	planetary, 29	sends environmental messages, 14
of DDT, grasshopper effect, 8	risk assessment, cancer. See also cancer risk	solid waste, municipal
in sediment, 7	assessment	beaches in less-developed countries, 289
in soil, 8		Chinese ban, 274
in water, transboundary, 6, 7	cancer potency, 81	
·	dioxin most potent carcinogen, 81	food waste, 267–268
transport, biotransport, 8	hazard identification, its importance, 80	challenges, 268
transport, POPs in Arctic, 8	identifying carcinogens, 80	worldwide, 268
pollutants	lifetime studies, 80	great quantities of many wastes, 266
Arctic, land-based bioaccumulation, 8	maximum tolerated dose (MTD), 81	how food becomes waste, 267
categories of, 6	risk assessment, chemical. See also chemical	introduction, 265
concentrations of, 4	risk assessment	landfill monitoring, 280
definition, 2	alternative new methods rapidly	less-developed countries, 266
degradation, hydroxyl radical, 9	developed, 79	food waste, 268

Index

transport. See pollutant transport,

Cambridge University Press 978-1-108-42308-3 — Understanding Environmental Pollution Marquita K. Hill Index

product's history of waste, 266

More Information

promoting recycling to lessen quantity, 278 199 fallout what is in MSW, 266 Superfund toxicity among species, 47 purpose of, 303 why is MSW a concern, 267 why cannot eliminate dioxins, 320 source reduction. See WMH: pollution Superfund sites endocrine disruptor. See environmental prevention cleaned up hormones environmental estrogen, an endocrine Stockholm Convention. See also persistent energy generation use, 306 organic pollutants site-specific-standards, 306 disruptor, 51 dirty dozen, 319 Coeur-d'Alene, very large mining site, 302 formaldehyde, 104, 382 effectiveness of Convention, how seen, 320 Love Canal, a history, 302 glyphosate, 359 exceptions to banning a chemical, 320 National Priority List, 303, 304 hydrogen cyanide (fumigant), 355, 356 PBTs and POPs, eliminating, 342 sustainable iron, can kill children, 328 safer alternatives, 320 agriculture, 368, 369 lead, 335 stratosphere atmospheric layer cities, 283 lead arsenate, 355 contains most ozone, 193 clean water and sanitation, 255 lead shot, 337 normal chemical reactions, 195 forestry, 138, 185 mercury, 104, 342 ozone screens out UV radiation, 193 land management, 110, 111 methyl bromide (fumigant), 356 methyl isocyanate (MIC), 31 reactions with and without chlorine, 195 materials use, 299 methylene chloride, 377 stratospheric ozone-depleting chemical phosphorus source, 231 methylmercury, 104, 342 reactions societies, 38 Antarctic, shows most ozone depletion, 96 future, 14 neonicotinoid (neonic), 358 how ozone destroyed, 195-196 UN Sustainable Development Goals, 220 nicotine sulfate, 355 ice clouds, role of, 196-197 nitrate, 245 sustainable chemistry. See green chemistry ozone "hole" formation, 197 sustainable development organophosphate, 45, 357 polar vortex, role of, 142-144, 197 oxalic acid, 45 agriculture, 353 volcanic eruptions, 198 excess garbage, barrier to development, PAHs, 382 stratospheric ozone-depleting chemicals 282 sources, 319 CFCs and halons, 194 maintaining nature's services, 395 paradichlorobenzene, 383 chemicals causing, 194-195 population growth hinders, 15 paraquat, still manufactured, 364 parathion, skin absorption, 357 had been useful chemicals, 194 UN Clean Seas campaign, 290 meaning of ozone-depleting potential PCBs, 321 (ODP), 195 take-back law. See EPR and product chloracne, 322 Montreal Protocol, 194 human exposure, 322 stewardship natural halocarbons, 195 remediating Hudson River, 322 Tox21. See chemical risk assessment stratospheric ozone depletion PERC, 382 toxic, definitions, 43 assist less-developed countries, 201 pesticides, 319 toxicant, 31 PFAS chemicals, 323 eliminating depleting substances acetylcholine, 357 global warming and ozone depletion, 201 phthalates, leaching from plastic, 52 arsenic, 247 HCFCs, substitutes for CFCs, 200 polysilicon and polysilicon tetrachloride, 176 asbestos, 80, 389 radon, 383 HFC substitutes, potent greenhouse gases, aspirin, 44 rotenone and borax, 356 200 atrazine, an herbicide, 359 Montreal Protocol, 200-201 Roundup, 360 benzene, 80, 104, 382 compliance with, 202 secondary poisoning, 363 benzopyrene, 48, 105, 382 remaining problems, 201–202 biotransformation, 47 smog, 95 substances that deplete the ozone layer, solanine, 45 botulinum toxin, 45 200-201 cadmium, 104 tetraethyl lead, 328 UV exposure, its impacts on Earth, thalidomide, 48 caffeine, 45 199-200 tributyltin, 333 carbon monoxide, 44 stratospheric ozone layer trichloroethylene, 214 children's greater exposures, 48 absorbs UV-B radiation triclosan, 253 chloroform, 104 vinyl chloride, 80 introduction, 198 DDT, 317, 355 history, 193-194 vitamin A, 43, 44 as environmental estrogens, 52 measuring UV-B, 198 toxicants and system impacting definition. See xenobiotic Montreal Protocol accomplishments, 194 immune system, 58 diethylstilbestrol, 52 more UV reaches earth when ozone kidneys, 58 dimethyl sulfoxide, 46 depleted, 198 dioxins, 47, 68, 317 liver, 57 protects earth from UV-B radiation, 198 lungs, 59 bonding to soil and sediment, 49 seasonal ozone depletion, 194 nervous system, 58 exposure, 68 pesticides action on children, 53 UV exposure in fat, 6 impacts on health, 199 reactive gases, 59 poisoning, 47 impacts on sea organisms, 200 sources, 319 skin, local and systemic, 58

UV radiation monitored planetwide,

448

toxicity	uses of, 216–217	examples, 212, 366
absorption, how occurs, 46	small or private treatment systems, 218	freshwater-salinization syndrome, 212
acute and chronic effects, 44	steps in treatment, 216	salinizing North American waterways, 212
arsenic symptoms of poisoning, 248, 249	treatment plants and combined sewer	salt and alkali, 43, 212
children's sensitivity, 47	overflow, 218	water pollutants, priority, 208-212
comparing chemical toxicities, 45	wastewater, untreated, 220, 331	introduction, 211
direct entry into body, 46	cities, 220	pesticides, 211
dose and response, 44	commonly used on crops, 255	water pollutants, toxic. See water pollution:-
dose per time, 45	contaminates Indian food chain, 256	pollutants, priority
excretion, 47	great quantities, 220	water pollution
factors affecting toxicity, 47–49–51	killing a river, 220	Chesapeake Bay, 232–234
lethal dose (LD ₅₀), 45	reducing amounts, 221	closed shellfish beds, 215
movement of toxicant within body, 49	some Indian rivers, 255	coastal beaches, 216
nutrients, dose per time, 45	UN goal, cut in half, 220	eutrophication
protection, most sensitive populations, 47	water body	red tide, an HAB, 227
systemic and local effects, 46	coastal, 214	red tide, Florida, 226–227
toxicity, lead shot not banned, 337	estuary, 214	red tide, wildlife massacre, 227
toxics use reduction (TUR). See pollution	groundwater	red tide, whether massacre, 227
prevention	cleanup, 213	fishable and swimmable, 206
transport	introduction, 212	hypoxia and dead zone, 226, 228
•	reducing pollution, 213	**
transboundary,definition, 7	0.1	introduction to reactive nitrogen, 209,
IDIO " I D	sources, 213	224, 226
UN Convention on Long-Range	VOCs, 213–214	nonpoint source pollution
Transboundary Air Pollution, 126	river	atmospheric deposition, 222
US Geological Survey (USGS), 214	compare to other water bodies, 214 wetlands	best management practices to reduce, 221
waste management hierarchy (WMH), 268	sequester pollutants, 214	difficult to identify source, 207
introduction, 268	water pollutants	how point source differs, 207
waste to product ratio, 266	reactive nitrogen, 224-226. See also fixed	NPS runoff, 207
waste electronics, 309–311	nitrogen	overuse of water, 224
Basel Action Network, 309	beyond planetary boundaries, 225	preventing NPS runoff, 222
China banned e-waste imports, 310	bioavailable to plants, 224	reducing NPS runoff, 222
EPA's actions and proposals, 311	China project to reduce, 229	reducing storm runoff, 221
Europe's program, 311	confronting reactive nitrogen, 225	stormwater runoff, 224
four steps in recycling, 309, 310	dead zones and legacy nitrate, 228	point source and how identified, 207, 221
introduction. See waste, electronics	defining fertilizer overuse, 227	water pollution, falling ocean oxygen, 228
life cycle of electronics, 311	eutrophication, an introduction to, 226	climate change and more, 228
poor recycling, 309	eutrophication also occurs naturally,	reasons for fall, 228
proper recycling, 310	226	watershed
quantity of electronics up, quality down,	eutrophication, harmful algae blooms	definition, 207
311	(HABs), 226	wellhead, 213
raw materials overused, 311	increasing number of dead zones, 226	WMH or waste management hierarchy
	International Nitrogen Management	incineration, 280
shorter life spans, 309	System, 225	can be misused, 280
"smash and bash recycling", 309	introduction, 224	how differs from waste-to-energy, 279, 284
wastewater	reducing agricultural runoff, 228	incineration or combustion, 279
less-developed countries, 255–256	reducing livestock runoff, 229	mass burn, 282
recovering needed phosphorus, 259	why use has soared, 226	preferred by China, 282
reusing gray water, 219	water pollutants, banned discharges, 212	products banned from incinerator, 279
reusing wastewater, 219	water pollutants, conventional	what it is, 279
uses of wastewater, 411	BOD, 209	what it is, 279 why used, 279
wastewater treatment, 411	BOD and hypoxic water, 209	landfilling, an introduction, 280
introduction, 216	· -	bioreactor landfill, 281
primary treatment, 216	introduction, 208, 211	
reduces pollution on beaches, 218	nutrients, 209	landfill ecosystem, 283
reducing point pollution, 218	nutrients, reactive nitrogen and eutrophi-	landfilling and methane production, 280
secondary treatment, 216	cation, 209	landfilling, disposal (lowest step on
septic systems and septage, 218, 219	oil and grease, 210–211	hierarchy), 37
sewer terminology, 215	pathogens, 209	much used in China, 282
sludge	pH beyond normal range, 209	sometimes a first option, 282
industrial, 217	suspended solids (SS), 209	stabilization of landfill, 281
metals contaminants, 217	water pollutants, nonconventional	P ² , design for the environment, 35

Index

449

 P^2 , environmentally preferable products, 271 P2, source reduction, 34 P2, purpose of, 34 P2, use in industry, 34 P², when not enough, pollution prevention (P2), 34-35, 37 apex of hierarchy, 34, 268 environmentally preferable purchasing. See also Green procurement French law reduces food waste, 268 green procurement program, 273 personal actions to practice P2, 273 Pollution Prevention Act, 35, 409 source reduction equates to pollution prevention, 268, 270

toxics use reduction (TUR), 35
recycling
advantages (second step in hierarchy), 36
China's role, 274
composting considered recycling, 274, 276
contaminants in recyclables, 274
common products recycled, 274, 276
construction and demolition debris, 276
end-of-life cars, 277
fills vital need, 273
packaging presents problems, 36, 275
problems that recycling presents, 36
promoting its use, 278–279
products from landfills, recycling, 276

projects in Curitiba, 283
saves energy and material, 275
uncommon examples, 276
reuse
reuse examples, 36
reuse of industrial, 271
reuse similar to pollution prevention, 35
treatment (third step in hierarchy), 36
energy recovery, 36
purposes of, 268
treatment, reasons for, 36

xenobiotic and natural chemicals, 46

zero waste, zero emissions an introduction, 395