Knowledge of the origin and spread of farming has been revolutionised in recent years by the application of new scientific techniques, especially the analysis of ancient DNA from human genomes. In this book, Stephen Shennan presents the latest research on the spread of farming by archaeologists, geneticists and other archaeological scientists. He shows that it resulted from a population expansion from present-day Turkey. Using ideas from the disciplines of human behavioural ecology and cultural evolution, he explains how this process took place. The expansion was not the result of ‘population pressure’ but of the opportunities for increased fertility by colonising new regions that farming offered. The knowledge and resources for the farming ‘niche’ were passed on from parents to their children. However, Shennan demonstrates that the demographic patterns associated with the spread of farming resulted in population booms and busts, not continuous expansion.

Stephen Shennan is Professor of Theoretical Archaeology at the UCL Institute of Archaeology, where he was Director from 2005–2014. His main interest is explaining stability and change in prehistory in the light of evolutionary ideas. He has published over 120 papers and books, including Quantifying Archaeology (2nd edition, 1997), Genes, Memes and Human History (2002) and Pattern and Process in Cultural Evolution (edited, 2009). He is a Fellow of the British Academy and a member of the Academia Europaea. He received the Rivers Medal of the Royal Anthropological Institute in 2010 and a Shanghai Archaeological Forum Research Award for his EUROEVOL project in 2015.
CAMBRIDGE WORLD ARCHAEOLOGY

SERIES EDITOR
NORMAN YOFFEE, UNIVERSITY OF MICHIGAN

EDITORIAL BOARD
TOM DILLEHAY, VANDERBILT UNIVERSITY
CORISANDE FENWICK, UNIVERSITY COLLEGE LONDON
TIM PAUKEtat, UNIVERSITY OF ILLINOIS
STEPHEN SHENNAN, UNIVERSITY COLLEGE LONDON
CARLA SINOPOLI, UNIVERSITY OF MICHIGAN
DAVID WENGROW, UNIVERSITY COLLEGE LONDON

The Cambridge World Archaeology series is addressed to students and professional archaeologists, and to academics in related disciplines. Most volumes present a survey of the archaeology of a region of the world, providing an up-to-date account of research and integrating recent findings with new concerns of interpretation. While the focus is on a specific region, broader cultural trends are discussed and the implications of regional findings for cross-cultural interpretations considered. The authors also bring anthropological and historical expertise to bear on archaeological problems and show how both new data and changing intellectual trends in archaeology shape inferences about the past. More recently, the series has expanded to include thematic volumes.

RECENT BOOKS IN THE SERIES
ANTONIO SAGONA, The Archaeology of the Caucasus
D.T. POTTS, The Archaeology of Elam
ROBIN CONINGHAM AND RUTH YOUNG, The Archaeology of South Asia
CLAUDIA SAGONA, The Archaeology of Malta
FRANCES F. BERDAN, Aztec Archaeology and Ethnohistory
PETER MAGEE, The Archaeology of Prehistoric Arabia
KOJI MIZOGUCHI, The Archaeology of Japan
MIKE SMITH, The Archaeology of Australia's Deserts
A. BERNARD KNAPP, The Archaeology of Cyprus
LI LIU AND XINGCAN CHEN, The Archaeology of China
STEPHEN D. HOUSTON AND TAKESHI INOMATA, The Classic Maya
PHILIP L. KOHL, The Making of Bronze Age Eurasia
LAWRENCE BAHAM AND PETER MITCHELL, The First Africans
ROBIN DENNELL, The Palaeolithic Settlement of Asia
CHRISTOPHER POOL, Olmec Archaeology and Early Mesoamerica
SAMUEL M. WILSON, The Archaeology of the Caribbean
RICHARD BRADLEY, The Prehistory of Britain
LUDMILA KORYAKOVA AND ANDREJ EPMAKHOV, The Urals and Western Siberia in the Bronze and Iron Ages
DAVID WENGROW, The Archaeology of Early Egypt
PAUL RAINBIRD, The Archaeology of Micronesia
PETER M.M.G. AKKERMANS AND GLENN M. SCHWARTZ, The Archaeology of Syria
TIMOTHY INSOLL, The Archaeology of Islam in Sub-Saharan Africa
THE FIRST FARMERS OF EUROPE

An Evolutionary Perspective

STEPHEN SHENNAN

Institute of Archaeology, University College London
Para Lúcia, a luz da minha vida
CONTENTS

Table:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>Preface and Acknowledgements</td>
<td>xv</td>
</tr>
<tr>
<td>1 Introduction: Population, Resources and Life Histories</td>
<td>1</td>
</tr>
<tr>
<td>Malthus and Boserup</td>
<td>2</td>
</tr>
<tr>
<td>Life History Theory</td>
<td>3</td>
</tr>
<tr>
<td>The Evolutionary Demography of Becoming a Farmer</td>
<td>6</td>
</tr>
<tr>
<td>Synthesis</td>
<td>9</td>
</tr>
<tr>
<td>Structure of the Book</td>
<td>12</td>
</tr>
<tr>
<td>2 The Origins of Agriculture in South-West Asia</td>
<td>16</td>
</tr>
<tr>
<td>Explaining Origins</td>
<td>16</td>
</tr>
<tr>
<td>Diet Breadth and the Broad Spectrum Revolution</td>
<td>19</td>
</tr>
<tr>
<td>Increased Sedentism and the Exploitation of Low Return-Rate Resources</td>
<td>22</td>
</tr>
<tr>
<td>Population Patterns</td>
<td>26</td>
</tr>
<tr>
<td>Climate Patterns</td>
<td>29</td>
</tr>
<tr>
<td>Cereal Agriculture</td>
<td>30</td>
</tr>
<tr>
<td>Animal Domestication</td>
<td>38</td>
</tr>
<tr>
<td>Population Patterns in the Pre-Pottery Neolithic</td>
<td>43</td>
</tr>
<tr>
<td>The Social Context</td>
<td>47</td>
</tr>
<tr>
<td>3 The First Westward Expansion of Farming</td>
<td>55</td>
</tr>
<tr>
<td>The Earliest Neolithic in Cyprus</td>
<td>59</td>
</tr>
<tr>
<td>Anatolia and the Aegean</td>
<td>63</td>
</tr>
<tr>
<td>Genetic Evidence for the Nature of the Aegean Expansion</td>
<td>70</td>
</tr>
<tr>
<td>The Balkans</td>
<td>71</td>
</tr>
<tr>
<td>Subsistence and Culture of the Balkan Early Neolithic</td>
<td>74</td>
</tr>
<tr>
<td>Explaining the Expansion</td>
<td>76</td>
</tr>
<tr>
<td>4 The Spread of Farming into Central Europe</td>
<td>79</td>
</tr>
<tr>
<td>The Genetic Evidence for the Mechanism of LBK Expansion</td>
<td>80</td>
</tr>
<tr>
<td>The Archaeological Record of Farmer–Forager Interaction</td>
<td>82</td>
</tr>
<tr>
<td>LBK Origins</td>
<td>86</td>
</tr>
</tbody>
</table>
Contents

The Speed of the LBK Spread 88
LBK Economic and Social Organisation 91
Population Ecology of the LBK Expansion 95
The Decline and Disappearance of the LBK 101
Cultural Transmission, Niche Construction and the LBK 105

5 Maritime Expansion in the Central and West Mediterranean 106
The History of Central and West Mediterranean Expansion 108
The Adriatic and Italy 110
Southern France 114
Iberia 120
Summary and Conclusion 126

6 Continental Temperate Europe 7000–5500 BP: Internal Expansion and Adaptation 129
Post-LBK Demographic and Cultural Patterns in Central Europe 131
Expansion in the West and the Development of New Social Patterns 134
The ‘Young Neolithic’: c.6400–5500 BP in Northern France, Germany and the Low Countries 142
Post-LBK Genetics and the Re-Emergence of Indigenous Hunter-Gatherers 151
Settlement and Subsistence 152
Summary and Conclusion 158

7 First Farmers in Southern Scandinavia 160
The Genetic Evidence 162
The Spread of Farming into Southern Scandinavia 164
Animal Traction, the Plough and the Wheel 170
Social Intensification in the Southern Scandinavian Neolithic 174
The Decline of the TRB 179
Summary and Conclusion 181

8 The Farming Colonisation of Britain and Ireland 183
Immigration or Diffusion? 183
The Process of Colonisation 187
Population Boom and Bust in Britain and Ireland 189
Early Neolithic Subsistence Patterns 192
Middle Neolithic Subsistence and the Population ‘Bust’ 195
Social and Cultural Change 198
After the Crash 203
Summary and Conclusion 205

9 Conclusion: Evolutionary Patterns and Processes 207
Notes 215
References 217
Index 247
FIGURES

1.1 Map of the spread of farming from south-west Asia to Europe page 12
1.1 Reconstructed air temperatures from the GISP 2 ice core in Greenland 17
2.2 Map of sites and regions mentioned in Chapter 2 20
2.3 Long-term trends in the abundance of large and small game in the southern Levant 23
2.4 a) Map of archaeological sites in the Levant and central Anatolia with radiocarbon dates falling in the time frame 16,000–9000 BP; b) Summed radiocarbon probability distribution (SPD) for the Levant and central Anatolia for the period 16,000–9000 BP 27
2.5 Summed radiocarbon probability distributions for the three sub-regions shown in Fig 2.4a and the period 16,000–9000 BP. a) Southern Levant; b) Northern Levant/Upper Mesopotamia; c) South-central Anatolia 29
2.6 Mapped bio-climatic scenarios for cereal growth during different time periods during the Pleistocene–Holocene transition 31
2.7 Schematic diagram of the approximate relative frequencies of selected grains from the Euphrates sites at the end of the Pleistocene and Early Holocene 32
2.8 Communal storage building at the PPNA site of Jerf el Ahmar 34
2.9 Increase through time in the proportion of the non-shattering ear trait in south-west Asia. a) Barley; b) Einkorn wheat 35
2.10 Proportions of groundstone tools on Epipalaeolithic to PPNI/C sites in south-west Asia 38
2.11 Proportions of domestic animals from faunal assemblages in different regions of south-west Asia through time 42
2.12 Plan of communal structure and surrounding buildings from the PPNA settlement of Wadi Faynan, Jordan 49
3.1 a) Logistic growth curve 56
b) The classic ‘wave of advance’ model 56
3.2 Map of sites and regions mentioned in Chapter 3 60
3.3 Summed calibrated radiocarbon dates for the Aegean–Anatolian region 66
List of Figures

3.4 Neolithisation of western Anatolia with suggested routes of colonisation 69
4.1 Examples of earlier and later LBK pottery 80
4.2 a) Plan and reconstruction of an LBK house 81
 b) Plan of the Langweiler 8 LBK settlement in the Merzbach valley 81
4.3 a) The distribution of the LBK 82
 b) Map of sites and regions mentioned in Chapter 4 83
4.4 Map of the distribution of LBK settlement in Germany 90
4.5 Radiocarbon population proxy for four regions in Central Europe:
 a) Southern Germany; b) Rhineland and Hesse; c) Central Germany; d) Kuyavia 92
4.6 LBK population density in the Lower Rhine Basin 93
4.7 The ideal despotic distribution 96
4.8 The LBK settlement pattern in Lower Bavaria 100
4.9 Chronological distribution of enclosures in Central Europe:
 a) Number of enclosures; b) Number of enclosures weighted by their size 102
4.10 The three dimensions affecting the outcomes of Read and LeBlanc’s decision-making model 104
5.1 Map of sites and regions mentioned in Chapter 5 109
5.2 Early Neolithic enclosures in the Tavoliere plain, south-east Italy 111
5.3 Radiocarbon population proxy for Apulia, south-east Italy 112
5.4 The geographical pattern of similarity in sheep morphology in the Early Neolithic of the western Mediterranean 116
5.5 Radiocarbon population proxy for Mediterranean France and the Rhône valley 119
5.6 a) Iberian Mesolithic and Neolithic summed radiocarbon probabilities 122
 b) Summed radiocarbon date range population proxy for Mediterranean and south-west Iberia 122
5.7 Early Neolithic regional crop variation in Catalonia 126
6.1 Map of sites and regions mentioned in Chapter 6 130
6.2 Middle Neolithic core area distribution in Germany 132
6.3 Radiocarbon population proxies for:
 a) Paris Basin; b) Western France 135
6.4 a) Examples of jadeite axes from the Carnac mound of Mané er Hroëck, Brittany 140
 b) The distribution of jadeite axes in Europe 140
6.5 Map of the Michelsberg distribution in the Scheldt basin of the Low Countries showing the contrast with the LBK 143
6.6 Radiocarbon population proxy for eastern Switzerland 144
6.7 ‘Young Neolithic’ core area distribution in Germany 145
6.8 Plan of the ‘rondel’ enclosure at Künzing-Unternberg, Bavaria 147
6.9 a) Plan of the causewayed enclosure of Bazoches-sur-Vesle 148
 b) Map showing the distribution of dates of causewayed enclosures in temperate Europe 148
List of Figures

6.10 a) Map of enclosure catchments in the Rhineland; b) The increasing size of the largest cooperating group

6.11 Comparison between the changing values of residual \(^{14}C\) in the atmosphere (an indirect indicator of climate) and archaeological measures of population in Franche-Comté

7.1 Map of sites and regions mentioned in Chapter 7

7.2 Temperature and population in southern Scandinavia at the Mesolithic–Neolithic transition

7.3 a) Map of the mean length of the agricultural growing season in southern Scandinavia; b) Map of the distribution of type 1 and 2 point-butted axes.

7.4 Radiocarbon population proxies for three regions in southern Scandinavia. a) Jutland; b) Danish islands; c) Scania

7.5 Plough marks and wheel tracks preserved under a long barrow at Flintbek LA 3, north Germany

7.6 Chronology of different site types and activities in Neolithic southern Scandinavia

7.7 The distribution of megalithic tombs in northern Europe

7.8 Plan of Doserygg enclosure and megaliths

8.1 Map of sites and regions mentioned in Chapter 8

8.2 Contact and colonisation routes from continental Europe to Britain

8.3 Radiocarbon population proxies for Britain and Ireland. a) Wessex and Sussex; b) Rest of England and Wales; c) Scotland; d) Ireland

8.4 Radiocarbon population proxy and pollen-inferred land clearance history for Neolithic Britain

8.5 Summed probability distribution of direct dates on cereals and wild plant remains through time in Neolithic and Bronze Age Britain

8.6 Summed probability distribution of direct radiocarbon dates on identified crops from northern England and Scotland

8.7 Chronology of causewayed enclosure building in Britain

9.1 The invisible cliff: modelled Malthusian transition interval and quality of life demographic variables as food availability decreases
PREFACE AND ACKNOWLEDGEMENTS

The origins of this book go back to the late 1990s and it represents the tip of the iceberg of a vast amount of earlier work with numerous colleagues that has depended on generous support from grant-giving bodies. Prior to that time my main research interests had focussed on the beginnings of the European Bronze Age, but by 1995 I had published the report on my excavation of a Bronze Age site in the prehistoric copper-mining region of Austria and was free to devote more attention to my growing interest in cultural evolution and, linked to that, in prehistoric population patterns and their implications. My inaugural lecture at the UCL Institute of Archaeology in 1998, published in Current Anthropology two years later, was entitled, ‘Population, culture history and the dynamics of culture change’ and began to develop this topic, which I took forward again with my book, *Genes, Memes and Human History*, in 2002.

I had also become much more interested in the idea of looking for broad regional and inter-regional patterns in prehistory than in the archaeology of individual sites and micro-regions and I felt that the potential for this was being neglected in the archaeological intellectual climate of the time, which had turned against ‘grand narratives’. There seemed to be great scope for combining my evolutionary and ‘big picture’ interests by turning to the origins of the European Neolithic and the spread of farming into Europe. Fortunately this view was shared by funders, and later by journal editors, despite the claim by many grant and paper reviewers that ‘noise’ from factors affecting data recovery and survival would overwhelm any historical signal.

In 1999 James Steele and I were successful in obtaining a research grant from the UK Arts and Humanities Research Board (as it then was) for a project entitled ‘Spatial and Chronological Patterns in the Neolithisation of Europe’ that involved collating available sources of radiocarbon dates. This was the first in a series of grants from the Arts and Humanities Research Council (as it later became) that made it possible to develop this agenda. ‘The origin and spread of Neolithic Plant Economies in the Near East and Europe’ followed in 2001, with James Steele and James Conolly, and ‘The origin and spread of stock-keeping
Preface and Acknowledgements

In 2000 a group of colleagues, including Mark Collard, Mark Lake and James
Steele, and I had been successful in obtaining a five-year Arts and Humanities
Research Board Research Centre award for a ‘Centre for the Evolutionary
Analysis of Cultural Behaviour’, which enabled a variety of theoretical and
methodological research projects in cultural evolution to be carried out, and
this continued with the award of a continuation of the Centre in 2006 as the
‘Centre for the Evolution of Cultural Diversity’, under the direction of James
Steele. At the same time, grants from the Leverhulme Trust to Mark Lake and
to me for the projects ‘Strontium isotope analysis and multi-agent modelling’
and ‘Ceramic analysis and cultural process’, the latter with Paolo Biagi, also
focussed on Early Neolithic themes. All these developments culminated in
2010 when I obtained a European Research Council Advanced Grant for the
This made it possible to bring together and update previous data-gathering
work as well as develop new analyses, in order to produce the basis for a new
‘big picture’ account of the arrival of farming in Europe and its impact, with
a particular focus on the demographic dimension. It was Todd Whitelaw who,
after reading the draft grant application, suggested that I should commit to pro-
ducing a synthesis at the end of the project and not just a series of papers. My
knowledge of a key region for understanding the spread of farming, western
Anatolia, was then enormously enhanced when in 2012 I was kindly invited
by Joachim Burger of Johannes Gutenberg University in Mainz to be a co-
investigator on his Marie Curie Initial Training Network project ‘Bridging the
European and Anatolian Neolithic’. This enabled me to have a PhD student
in this field, Beatrijs de Groot, as well as visit the area, get to know a new set
of colleagues, and to contribute as a co-author to Joachim’s important ancient
DNA papers on the spread of farming. Since the end of the EUROEVOL
project in 2015 I have been able to continue with very similar population and
economy agendas by collaborating with Andy Bevan, Mike Parker Pearson,
Tim Kerg, Neil Roberts and Ralph Fyfe, on two projects again funded by the
Leverhulme Trust. Andy Bevan’s data-mining work is now taking the potential
for ‘big picture’ studies of prehistoric patterns to new levels.

It will be obvious that without the support of the funding bodies named
above none of this would have happened. I am also extremely grateful to all
those who have generously shared data with us over the years. Without data
sharing large-scale projects would be impossible, and the growing expectation
from journals that authors of papers make available the data on which they are
based is one of the most important developments of the last few years, both in
archaeology and more widely.

Of course, I have also incurred an enormous number of personal debts to
the people I have worked with on these various projects and it is a pleasure
to record them. My fellow investigators on the grant applications, who made
them possible, have already been mentioned. Key to the success of these projects though has been a wonderful group of very talented post-docs with whom it has been a privilege to work. They include Alex Bentley (with whom I’ve continued to collaborate) and Michela Spataro, from the early days, as well as Barbara Stopp and Fiona Coward. Sue Colledge has been there virtually from the beginning, in 2001 with the Neolithic plant economies project, and has played an essential role in project organisation and data management through to the end of the EUROEVOL research, as well as in her specialist field of archaeobotany. The same role has also been played by Katie Manning, the archaeozoologist, who came to the stock-keeping project at a difficult moment and stayed for EUROEVOL. Here they were joined by Sean Downey, Kevin Edinborough and Tim Kerig, and then Enrico Crema and Adrian Timpson when Sean and Tim moved on to other positions. Enrico and Adrian’s outstanding computing and statistical skills were fundamental to producing the project’s later papers and final database. The new Leverhulme projects too are very fortunate in their post-docs, Alessio Palmisano, Kevan Edinborough, Peter Schauer and the pollen analyst Jessie Woodbridge of the University of Plymouth. I should also add that EUROEVOL benefitted greatly from the input of our invited ‘critical friend’ reviewers Sander van der Leeuw, James Conolly and Mike O’Brien during the course of the project.

Needless to say, there are many other debts. It has been an inspiration in the last few years to work with Mark Thomas and to learn from the creativity of his rigorous model-building and testing methods, so much more demanding than the usual archaeological story-telling. He was crucial to the development of some of the EUROEVOL methods and our joint supervision of the recently completed PhD project of Elizabeth Gallagher on modelling farming origins has been a very stimulating experience. I have also been fortunate to learn from him something of the complexity of making inferences from ancient DNA data, as this has completely changed our picture of the origin and spread of farming in the last couple of years and forms one of the foundations of this book. I hasten to add though that any misunderstandings and misinterpretations of the genetics presented here are entirely my own. In this respect I must also absolve Joachim Burger, who has provided patient answers to many genetics questions but is not responsible for what I’ve done with them. Joachim also tried out drafts of several chapters on his students to my considerable benefit. In addition, I’m grateful to Jamie Jones, Barbara Horejs, Andreas Zimmermann, Tim Kerig, Jutta Lechterbeck, Oreto García Puchol and Mike Parker Pearson for reading and commenting on specific chapters. None are responsible for what I’ve done with their suggestions. Oreto and her co-editor Domingo Salazar-García were also kind enough to invite me to contribute a concluding chapter to their book *Times of Neolithic Transition along the Western Mediterranean*, from which I learned a great deal.
Preface and Acknowledgements

Over the long period in which the material and ideas for this book have been accumulating I have also been inspired and influenced in various ways by others whom I’ve talked to and/or worked with. They include Jean-Pierre Bocquet-Appel, Sam Bowles, Rob Boyd, Cyprian Broodbank, Clive Gamble, Ian Hodder, Anne Kandler, Tim Kohler, Kristian Kristiasen, Kevin Laland, Ruth Mace, Ian Morris, Johannes Müller, Eduardo Neves, Mike O’Brien, Colin Renfrew, Pete Richerson, Eric Smith, Alasdair Whittle and my outstanding colleagues at the Institute of Archaeology, UCL, especially, in relation to the topic of this book, Dorian Fuller. The Institute provides the best possible open-minded, stimulating and congenial community for archaeological teaching and research, not to mention the wonderful library with its knowledgeable and helpful librarians. It has been a privilege to work there for the last 21 years.

Producing the book has incurred its own debts. I’d like to thank Norman Yoffee for his encouragement and support for its publication, as well as Beatrice Rehl at Cambridge University Press. Two readers for the press, including Mary Stiner who waived her anonymity, were very encouraging and made many helpful comments. I’m most grateful to Denitsa Nenova for producing the excellent illustrations, in particular for being so tolerant and understanding when I changed my mind about things. Sue Colledge systematically tracked down and obtained the necessary permissions for them. Rachel Tyson was the most meticulous copy-editor that anybody could wish for, and Clare Owen at Out of House Publishing was a pleasure to work with in the final stages of production.

Finally, since these projects began my wife, Lúcia Nagib, has been an endless source of love and support as well as an inspiration for the dynamism, perceptiveness and creativity of her own research and publications in the field of film studies. Without her nothing in life would seem interesting or worthwhile and it is to her that this book is dedicated.