Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Acronyms</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Introduction to Autonomous Space Vehicles and Robotics

1.1 Space Exploration: The Unmanned Spacecraft That Ventured into Space
1.2 Exploring Mars
1.3 Robotic Spacecraft for Planetary Landing and Exploration
1.4 Exploring a Comet
1.5 Grabbing an Asteroid
1.6 Routing Space Debris
1.7 Venturing into Deep Space: Spacecraft with Endurance
1.8 Planetary Rovers and Robot Walkers, Hoppers, and Crawlers for Exploration
1.9 Underwater Rovers and Aquanauts
1.10 Humanoid Space Robots and Robonauts
1.11 Robot Arms for Tele-Robotic Servicing
1.12 Tumbling Cubes
1.13 Collaborative Robotic Systems
1.14 The Meaning of Autonomy
1.15 Dynamics and Control of Space Vehicles
1.16 The Future
References

2 Space Vehicle Orbit Dynamics

2.1 Orbit Dynamics: An Introduction
2.2 Planetary Motion: The Two-Body Problem
 2.2.1 Kepler’s Laws
 2.2.2 Keplerian Motion of Two Bodies
 2.2.3 Orbital Elements
 2.2.4 Two-Body Problem in a Plane: Position and Velocity in an Elliptic Orbit
 2.2.5 Orbital Energy: The Visa-Viva Equation
 2.2.6 Position and Time in Elliptic Orbit
 2.2.7 Lambert’s Theorem
2.2.8 Orbit Inclination, Argument of the Ascending Node, Argument of the Perigee, and True Anomaly 43
2.2.9 The f and g Functions 46
2.3 Types of Orbits 47
2.3.1 Geosynchronous Earth Orbits 47
2.3.2 Geostationary Orbits 47
2.3.3 Geosynchronous Transfer Orbit 47
2.3.4 Polar Orbits 48
2.3.5 Walking Orbits 48
2.3.6 Sun Synchronous Orbits 48
2.4 Impulsive Orbit Transfer 48
2.4.1 Co-Planar Hohmann Transfer 49
2.4.2 Non-Planar Hohmann Transfer 51
2.5 Preliminary Orbit Determination 53
2.5.1 Two Position Vectors of the Satellite 53
2.5.2 Three Position Vectors of the Satellite 54
2.5.3 Two Sets of Observations of the Range at Three Locations 55
2.5.4 Range and Range Rates Measured at Three Locations 56
2.6 Lambert’s Problem 56
2.7 Third Body and Other Orbit Perturbations 58
2.7.1 Circular Restricted Three-Body Problem 59
2.8 Lagrange Planetary Equations 62
2.8.1 Geostationary Satellites 65
2.9 Gauss’ Planetary Equations: Force Perturbations 65
2.9.1 Effect of Atmospheric Drag 67
2.9.2 Space Shuttle in a Low Earth Orbit 68
2.9.3 Lunar Orbits 69
2.9.4 Third-Body Perturbation and Orbital Elements in Earth Orbit 71
2.10 Spacecraft Relative Motion 71
2.10.1 Hill-Clohessy-Wiltshire Equations 71
2.10.2 Linear Orbit Theory with Perturbations 74
2.10.3 Nonlinear Equations of Relative Motion with Perturbations 75
2.10.4 Nonlinear Equations of Relative Motion with Reference to an Elliptic Orbit 77
2.10.5 The Extended Nonlinear Tschauner-Hempel Equations 81
2.11 Orbit Control 85
2.11.1 Delaunay Elements 86
2.11.2 Non-Singular Element Sets 86
2.11.3 Equinoctial Elements 87
2.11.4 Orbital Elements with the Orbit Plane Quaternion Replacing the Euler Angles in the 3–1–3 Sequence 88
2.11.5 Gauss Planetary Equations in Terms of Orbit Quaternion Parameters 91
2.11.6 Other Nonclassical Elements 92
Table of Contents

2.12 Orbit Maneuvers
 2.12.1 Feedback Control Laws for Low-Thrust Transfers Based on the GPE 94
 2.12.2 Feedback Control Laws with Constraints on the Control Accelerations 98
2.13 Interception and Rendezvous 100
2.14 Advanced Orbit Perturbations 102
 2.14.1 Gravitational Potential of a Perfect Oblate Spheroid Model of the Central Body 102
 2.14.2 Gravitational Potential due to a Central Body’s Real Geometry 103
 2.14.3 Real Drag Acceleration Acting on the Actual Satellite 104
 2.14.4 Third-Body Perturbations 105
 2.14.5 Solar Radiation Pressure 106
2.15 Launch Vehicle Dynamics: Point Mass Model 107
 2.15.1 Systems with Varying Mass 107
 2.15.2 Basic Rocket Thrust Equation 108
2.16 Applications of the Rocket Equation 109
 2.16.1 Time to Burnout, Velocity, and Altitude in the Boost Phase 109
 2.16.2 Time and Altitude in the Coast Phase 110
 2.16.3 Delta-Vee Solution 110
 2.16.4 Mass-Ratio Decay 110
 2.16.5 Gravity Loss 111
 2.16.6 Specific Impulse 111
2.17 Effects of Mass Expulsion 111
 2.17.1 Staging and Payloads 112
2.18 Electric Propulsion 112
 2.18.1 Application to Mission Design 114
References 115

3 Space Vehicle Attitude Dynamics and Control

3.1 Fundamentals of Satellite Attitude Dynamics 118
3.2 Rigid Body Kinematics and Kinetics 118
 3.2.1 Coordinate Frame Definitions and Transformations 118
 3.2.2 Definition of Frames/ Rotations 118
 3.2.3 The Inertial (i) Frame $X–Y–Z$ 119
 3.2.4 The Local Rotating (r) or Orbiting Frame $x–y–z$ 119
 3.2.5 The Body (b) Frame $b_1–b_2–b_3$ 119
 3.2.6 Defining the Body Frame 120
 3.2.7 Three- and Four-Parameter Attitude Representations 120
3.3 Spacecraft Attitude Dynamics 121
3.4 Environmental Disturbances 123
 3.4.1 Gravity Gradient Torques 123
 3.4.2 Aerodynamic Disturbance Torques 125
 3.4.3 Solar Wind and Radiation Pressure 126
3.4.4 Thruster Misalignments 126
3.4.5 Magnetic Disturbance Torques 126
3.4.6 Control Torques 129
3.5 Numerical Simulation 129
3.6 Spacecraft Stability 129
 3.6.1 Linearized Attitude Dynamic Equation for Spacecraft in Low Earth Orbit 129
 3.6.2 Gravity-Gradient Stabilization 130
 3.6.3 Stability Analysis of the Spacecraft 131
 3.6.4 Influence of Dissipation of Energy on Stability 133
3.7 Introduction and Overview of Spacecraft Attitude Control Concepts 133
 3.7.1 Objectives of Attitude Active Stabilization and Control 134
 3.7.2 Actuators and Thrusters for Spacecraft Attitude Control 134
 3.7.3 Active and Passive Stabilization Techniques 135
 3.7.4 Use of Thrusters on Spinning Satellites 136
3.8 Momentum and Reaction Wheels 136
 3.8.1 Stabilization of Spacecraft 137
 3.8.2 Passive Control with a Gravity-Gradient Boom or a Yo-Yo Device 139
 3.8.3 Reaction Wheel Stabilization 143
 3.8.4 Momentum Wheel and Dual-Spin Stabilization 145
 3.8.5 Momentum Wheel Approximation with MW along Axis 1 148
 3.8.6 Control Moment Gyrosopes 149
 3.8.7 Example of Control System Based on Reaction Wheels 149
 3.8.8 Quaternion Representation of Attitude 152
 3.8.9 The Relations between the Quaternion Rates and Angular Velocities 154
 3.8.10 The Gravity Gradient Stability Equations in Terms of the Quaternion 157
3.9 Definition of the General Control Problem with CMG Actuation 158
 3.9.1 Nonlinear Attitude Control Laws 162
 3.9.2 Minimum Time Maneuvers 163
 3.9.3 Passive Damping Systems 163
 3.9.4 Spin Rate Damping 164
3.10 Magnetic Actuators 164
 3.10.1 Active Control with Magnetic Actuators 165
References 165

4 Manipulators on Space Platforms: Dynamics and Control 167
4.1 Review of Robot Kinematics 167
 4.1.1 The Total Moment of Momentum and Translational Momentum 167
 4.1.2 The Screw Vector and the Generalized Jacobian Matrix of the Manipulator 169
Contents

4.2 Fundamentals of Robot Dynamics: The Lagrangian Approach 170
4.3 Other Approaches to Robot Dynamics Formulation 178
4.4 Fundamentals of Manipulator Deployment and Control 179
4.5 Free-Flying Multi-Link Serial Manipulator in Three Dimensions 183
4.6 Application of the Principles of Momentum Conservation to Satellite-Manipulator Dynamics 185
4.7 Application of the Lagrangian Approach to Satellite-Manipulator Dynamics 185
4.8 Gravity-Gradient Forces and Moments on an Orbiting Body 187
4.8.1 Gravity-Gradient Moment Acting on the Satellite Body and Manipulator Combined 188
4.9 Application to Satellite-Manipulator Dynamics 189
4.10 Dynamic Stability of Satellite-Manipulator Dynamics with Gravity-Gradient Forces and Moment 191
4.11 Three-Axis Control of a Satellite’s Attitude with an Onboard Robot Manipulator 196
4.11.1 Rotation Rate Synchronization Control 196
References 203

5 Kinematics, Dynamics, and Control of Mobile Robot Manipulators 206
5.1 Kinematics of Wheeled Mobile Manipulators: Non-Holonomic Constraints 206
5.2 Dynamics of Manipulators on a Moving Base 209
5.3 Dynamics of Wheeled Mobile Manipulators 209
5.3.1 Manipulability 211
5.3.2 Tip Over and Dynamic Stability Issues 212
5.4 Dynamic Control for Path Tracking by Wheeled Mobile Manipulators 215
5.5 Decoupled Control of the Mobile Platform and Manipulator 222
5.6 Motion Planning for Mobile Manipulators 223
5.7 Non-Holonomic Space Manipulators 224
References 227

6 Planetary Rovers and Mobile Robotics 229
6.1 Planetary Rovers: Architecture 229
6.1.1 Vehicle Dynamics and Control 230
6.1.2 Mission Planning 231
6.1.3 Propulsion and Locomotion 232
6.1.4 Planetary Navigation 233
6.2 Dynamic Modeling of Planetary Rovers 233
6.2.1 Non-Holonomic Constraints 233
6.2.2 Vehicle Generalized Forces 235
6.2.3 Modeling the Suspension System and Limbs 235
6.2.4 Platform Kinetic and Potential Energies 240
Contents

6.2.5 Assembling the Vehicle’s Kinetic and Potential Energies 242
6.2.6 Deriving the Dynamic Equations of Motion 243
6.2.7 Considerations of Slip and Traction 243
6.3 Control of Planetary Rovers 248
6.3.1 Path Following Control: Kinematic Modeling 248
6.3.2 Estimating Slip 251
6.3.3 Slip-Compensated Path Following Control Law Synthesis 251
6.3.4 The Focused D* Algorithm 254
References 254

7 Navigation and Localization 257
7.1 Introduction to Navigation 257
7.1.1 Basic Navigation Activities 257
7.2 Localization, Mapping, and Navigation 258
7.2.1 Introduction to Localization 259
7.3 Random Processes 264
7.3.1 Basics of Probability 269
7.3.2 The Kalman Filter 272
7.3.3 Probabilistic Methods and Essentials of Bayesian Inference 275
7.4 Probabilistic Representation of Uncertain Motion Using Particles 277
7.4.1 Monte Carlo Integration, Normalization, and Resampling 277
7.4.2 The Particle Filter 278
7.4.3 Application to Rover Localization 282
7.4.4 Monte Carlo Localization 284
7.4.5 Probabilistic Localization within a Map, Using Odometry and Range Measurements 285
7.5 Place Recognition and Occupancy Mapping: Advanced Sensing Techniques and Ranging 286
7.5.1 Place Recognition Using Ranging Signatures: Occupancy Mapping of Free Space and Obstacles 287
7.6 The Extended Kalman Filter 287
7.6.1 The Unscented Kalman Filter (UKF) 290
7.7 Nonlinear Least Squares, Maximum Likelihood (ML), Maximum A Posteriori (MAP) Estimation 292
7.7.1 Nonlinear Least Squares Problems Solution Using Gauss-Newton and Levenberg Marquardt Optimization Algorithms 296
7.8 Simultaneous Localization and Mapping (SLAM) 298
7.8.1 Introduction to the Essential Principles and Method of SLAM 298
7.8.2 Multi-Sensor Fusion and SLAM 303
7.8.3 Large-Scale Map Building via Sub-Maps 304
7.8.4 Vision-Based SLAM 305
7.9 Localization in Space and Mobile Robotics 305
References 306
8 Sensing and Estimation of Spacecraft Dynamics

8.1 Introduction

8.2 Spacecraft Attitude Sensors
 8.2.1 The Principle of Operation of Accelerometers and Gyroscopes
 8.2.2 Magnetic Field Sensor
 8.2.3 Sun Sensors
 8.2.4 Earth Horizon Sensors
 8.2.5 Star Sensors
 8.2.6 Use of Navigation Satellite as a Sensor for Attitude Determination

8.3 Attitude Determination

8.4 Spacecraft Large Attitude Estimation
 8.4.1 Attitude Kinematics Process Modeling
 8.4.2 Codeless Satellite Navigation Attitude Sensor Model
 8.4.3 Application of Nonlinear Kalman Filtering to Attitude Estimation

8.5 Nonlinear State Estimation for Spacecraft Rotation Rate Synchronization with an Orbiting Body
 8.5.1 Chaser Spacecraft’s Attitude Dynamics
 8.5.2 Relative Attitude Dynamics
 8.5.3 Nonlinear State Estimation
 8.5.4 The Measurements
 8.5.5 The Controller Synthesis

8.6 Sensors for Localization

8.7 Sensors for Navigation
 8.7.1 Imaging Sensors and Cameras

References

Index