Contents

<table>
<thead>
<tr>
<th>Preface to the Second Edition</th>
<th>page ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the First Edition</td>
<td>xi</td>
</tr>
</tbody>
</table>

PART ONE BASIC THEORY

1. **Introductory Examples**
 1.1 Elliptic Curves
 1.2 Riemann Surfaces of Higher Genus
 1.3 Double Planes
 1.4 Mixed Hodge Theory Revisited

2. **Cohomology of Compact Kähler Manifolds**
 2.1 Cohomology of Compact Differentiable Manifolds
 2.2 What Happens on Kähler Manifolds
 2.3 How Lefschetz Further Decomposes Cohomology

3. **Holomorphic Invariants and Cohomology**
 3.1 Is the Hodge Decomposition Holomorphic?
 3.2 A Case Study: Hypersurfaces
 3.3 How Log-Poles Lead to Mixed Hodge Structures
 3.4 Algebraic Cycles and Their Cohomology Classes
 3.5 Tori Associated with Cohomology
 3.6 Abel–Jacobi Maps

4. **Cohomology of Manifolds Varying in a Family**
 4.1 Smooth Families and Monodromy
 4.2 An Example: Lefschetz Fibrations and Their Topology
 4.3 Variations of Hodge Structures Make Their First Appearance
 4.4 Period Domains Are Homogeneous

v
Contents

4.5 Period Maps 148
4.6 Abstract Variations of Hodge Structure 155
4.7 The Abel–Jacobi Map Revisited 157

5 Period Maps Looked at Infinitesimally 160
5.1 Deformations of Compact Complex Manifolds 160
5.2 Enter: the Thick Point 164
5.3 The Derivative of the Period Map 167
5.4 An Example: Deformations of Hypersurfaces 170
5.5 Infinitesimal Variations of Hodge Structure 174
5.6 Application: A Criterion for the Period Map to be an Immersion 177
5.7 Counterexamples to Infinitesimal Torelli 178

PART TWO ALGEBRAIC METHODS 187

6 Spectral Sequences 189
6.1 Fundamental Notions 189
6.2 Hypercohomology Revisited 192
6.3 The Hodge Filtration Revisited 196
6.4 Derived Functors 199
6.5 Algebraic Interpretation of the Gauss–Manin Connection 203

7 Koszul Complexes and Some Applications 207
7.1 The Basic Koszul Complexes 207
7.2 Koszul Complexes of Sheaves on Projective Space 210
7.3 Castelnuovo’s Regularity Theorem 213
7.4 Macaulay’s Theorem and Donagi’s Symmetrizer Lemma 219
7.5 Applications: The Noether–Lefschetz Theorems 223

8 Torelli Theorems 230
8.1 Infinitesimal Torelli Theorems 230
8.2 Global Torelli Problems 235
8.3 Generic Torelli for Hypersurfaces 240
8.4 Moduli 245

9 Normal Functions and Their Applications 255
9.1 Normal Functions and Infinitesimal Invariants 255
9.2 The Griffiths Group of Hypersurface Sections 262
9.3 The Theorem of Green and Voisin 267

10 Applications to Algebraic Cycles: Nori’s Theorem 272
10.1 A Detour into Deligne Cohomology with Applications 272
Contents

10.2 The Statement of Nori’s Theorem 276
10.3 A Local-to-Global Principle 281
10.4 Jacobi Modules and Koszul Cohomology 284
10.5 Linking the Two Spectral Sequences Through Duality 287
10.6 A Proof of Nori’s Theorem 290
10.7 Applications of Nori’s Theorem 296

PART THREE DIFFERENTIAL GEOMETRIC METHODS 307
11 Further Differential Geometric Tools 309
11.1 Chern Connections and Applications 309
11.2 Subbundles and Quotient Bundles 313
11.3 Principal Bundles and Connections 317
11.4 Connections on Associated Vector Bundles 321
11.5 Totally Geodesic Submanifolds 324
12 Structure of Period Domains 328
12.1 Homogeneous Bundles on Homogeneous Spaces 328
12.2 Reductive Domains and Their Tangent Bundle 330
12.3 Canonical Connections on Reductive Spaces 332
12.4 Higgs Principal Bundles 334
12.5 The Horizontal and Vertical Tangent Bundles 337
12.6 On Lie Groups Defining Period Domains 341
13 Curvature Estimates and Applications 346
13.1 Higgs Bundles, Hodge Bundles, and their Curvature 347
13.2 Logarithmic Higgs Bundles 356
13.3 Polarized Variations Give Polystable Higgs Bundles 359
13.4 Curvature Bounds over Curves 364
13.5 Geometric Applications of Higgs Bundles 369
13.6 Curvature of Period Domains 372
13.7 Applications 375
14 Harmonic Maps and Hodge Theory 383
14.1 The Eells–Sampson Theory 383
14.2 Harmonic and Pluriharmonic Maps 387
14.3 Applications to Locally Symmetric Spaces 389
14.4 Harmonic and Higgs Bundles 398
Contents

PART FOUR ADDITIONAL TOPICS

15 **Hodge Structures and Algebraic Groups**
- 15.1 Hodge Structures Revisited
- 15.2 Mumford–Tate Groups
- 15.3 Mumford–Tate Subdomains and Period Maps

16 **Mumford–Tate Domains**
- 16.1 Shimura Domains
- 16.2 Mumford–Tate Domains
- 16.3 Mumford–Tate Varieties and Shimura Varieties
- 16.4 Examples of Mumford–Tate Domains

17 **Hodge Loci and Special Subvarieties**
- 17.1 Hodge Loci
- 17.2 Equivariant Maps Between Mumford–Tate Domains
- 17.3 The Moduli Space of Cubic Surfaces is a Shimura Variety
- 17.4 Shimura Curves and Their Embeddings
- 17.5 Characterizations of Special Subvarieties

Appendix A Projective Varieties and Complex Manifolds

Appendix B Homology and Cohomology

Appendix C Vector Bundles and Chern Classes

Appendix D Lie Groups and Algebraic Groups

References

Index

© in this web service Cambridge University Press
www.cambridge.org