Detailed Contents

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Boxes</td>
<td>xix</td>
</tr>
<tr>
<td>List of Screenshots</td>
<td>xi</td>
</tr>
<tr>
<td>Preface to the Fourth Edition</td>
<td>xxiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxvii</td>
</tr>
<tr>
<td>Outline of the Remainder of this Book</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and Mathematical Foundations
1. What is Econometrics? 2
2. Is Financial Econometrics Different? 3
3. Steps Involved in Formulating an Econometric Model 4
4. Points to Consider When Reading Articles 6
5. Functions 7
6. Differential Calculus 19
7. Matrices 28

Chapter 2 Statistical Foundations and Dealing with Data
1. Probability and Probability Distributions 41
2. A Note on Bayesian versus Classical Statistics 47
3. Descriptive Statistics 48
4. Types of Data and Data Aggregation 63
5. Arithmetic and Geometric Series 67
6. Future Values and Present Values 68
7. Returns in Financial Modelling 77
8. Portfolio Theory Using Matrix Algebra 82

Chapter 3 A Brief Overview of the Classical Linear Regression Model
1. What is a Regression Model? 94
2. Regression versus Correlation 95
3. Simple Regression 95
4. Some Further Terminology 103
Detailed Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 The Assumptions Underlying the Model</td>
<td>106</td>
</tr>
<tr>
<td>3.6 Properties of the OLS Estimator</td>
<td>107</td>
</tr>
<tr>
<td>3.7 Precision and Standard Errors</td>
<td>110</td>
</tr>
<tr>
<td>3.8 An Introduction to Statistical Inference</td>
<td>115</td>
</tr>
<tr>
<td>3.9 A Special Type of Hypothesis Test</td>
<td>129</td>
</tr>
<tr>
<td>3.10 An Example of a Simple (t)-test of a Theory</td>
<td>131</td>
</tr>
<tr>
<td>3.11 Can UK Unit Trust Managers Beat the Market?</td>
<td>133</td>
</tr>
<tr>
<td>3.12 The Overreaction Hypothesis</td>
<td>134</td>
</tr>
<tr>
<td>3.13 The Exact Significance Level</td>
<td>138</td>
</tr>
<tr>
<td>Appendix 3.1 Mathematical Derivations of CLRM Results</td>
<td>139</td>
</tr>
</tbody>
</table>

Chapter 4 Further Development and Analysis of the Classical Linear Regression Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Generalising the Simple Model</td>
<td>146</td>
</tr>
<tr>
<td>4.2 The Constant Term</td>
<td>147</td>
</tr>
<tr>
<td>4.3 How are the Parameters Calculated?</td>
<td>149</td>
</tr>
<tr>
<td>4.4 Testing Multiple Hypotheses: The (F)-test</td>
<td>150</td>
</tr>
<tr>
<td>4.5 Data Mining and the True Size of the Test</td>
<td>157</td>
</tr>
<tr>
<td>4.6 Qualitative Variables</td>
<td>158</td>
</tr>
<tr>
<td>4.7 Goodness of Fit Statistics</td>
<td>159</td>
</tr>
<tr>
<td>4.8 Hedonic Pricing Models</td>
<td>163</td>
</tr>
<tr>
<td>4.9 Tests of Non-Nested Hypotheses</td>
<td>167</td>
</tr>
<tr>
<td>4.10 Quantile Regression</td>
<td>168</td>
</tr>
<tr>
<td>Appendix 4.1 Mathematical Derivations of CLRM Results</td>
<td>173</td>
</tr>
<tr>
<td>Appendix 4.2 A Brief Introduction to Factor Models and Principal Components Analysis</td>
<td>175</td>
</tr>
</tbody>
</table>

Chapter 5 Classical Linear Regression Model Assumptions and Diagnostic Tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>182</td>
</tr>
<tr>
<td>5.2 Statistical Distributions for Diagnostic Tests</td>
<td>183</td>
</tr>
<tr>
<td>5.3 Assumption (1): (E(u_t) = 0)</td>
<td>184</td>
</tr>
<tr>
<td>5.4 Assumption (2): var(u_t) = (\sigma^2 < \infty)</td>
<td>185</td>
</tr>
<tr>
<td>5.5 Assumption (3): cov(u_t, u_j) = 0 for (i \neq j)</td>
<td>189</td>
</tr>
<tr>
<td>5.6 Assumption (4): The (x_t) are Non-Stochastic</td>
<td>208</td>
</tr>
<tr>
<td>5.7 Assumption (5): The Disturbances are Normally Distributed</td>
<td>209</td>
</tr>
<tr>
<td>5.8 Multicollinearity</td>
<td>213</td>
</tr>
<tr>
<td>5.9 Adopting the Wrong Functional Form</td>
<td>217</td>
</tr>
<tr>
<td>5.10 Omission of an Important Variable</td>
<td>221</td>
</tr>
<tr>
<td>5.11 Inclusion of an Irrelevant Variable</td>
<td>221</td>
</tr>
<tr>
<td>5.12 Parameter Stability Tests</td>
<td>222</td>
</tr>
<tr>
<td>5.13 Measurement Errors</td>
<td>230</td>
</tr>
</tbody>
</table>
Detailed Contents

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Univariate Time-Series Modelling and Forecasting</th>
<th>246</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>246</td>
</tr>
<tr>
<td>6.2</td>
<td>Some Notation and Concepts</td>
<td>247</td>
</tr>
<tr>
<td>6.3</td>
<td>Moving Average Processes</td>
<td>251</td>
</tr>
<tr>
<td>6.4</td>
<td>Autoregressive Processes</td>
<td>254</td>
</tr>
<tr>
<td>6.5</td>
<td>The Partial Autocorrelation Function</td>
<td>262</td>
</tr>
<tr>
<td>6.6</td>
<td>ARMA Processes</td>
<td>263</td>
</tr>
<tr>
<td>6.7</td>
<td>Building ARMA Models: The Box–Jenkins Approach</td>
<td>269</td>
</tr>
<tr>
<td>6.8</td>
<td>Examples of Time-Series Modelling in Finance</td>
<td>272</td>
</tr>
<tr>
<td>6.9</td>
<td>Exponential Smoothing</td>
<td>274</td>
</tr>
<tr>
<td>6.10</td>
<td>Forecasting in Econometrics</td>
<td>277</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Multivariate Models</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Motivations</td>
<td>293</td>
</tr>
<tr>
<td>7.2</td>
<td>Simultaneous Equations Bias</td>
<td>295</td>
</tr>
<tr>
<td>7.3</td>
<td>So how can Simultaneous Equations Models be Validly Estimated?</td>
<td>297</td>
</tr>
<tr>
<td>7.4</td>
<td>Can the Original Coefficients be Retrieved from the πs?</td>
<td>297</td>
</tr>
<tr>
<td>7.5</td>
<td>Simultaneous Equations in Finance</td>
<td>299</td>
</tr>
<tr>
<td>7.6</td>
<td>A Definition of Exogeneity</td>
<td>300</td>
</tr>
<tr>
<td>7.7</td>
<td>Triangular Systems</td>
<td>303</td>
</tr>
<tr>
<td>7.8</td>
<td>Estimation Procedures for Simultaneous Equations Systems</td>
<td>304</td>
</tr>
<tr>
<td>7.9</td>
<td>An Application of a Simultaneous Equations Approach</td>
<td>307</td>
</tr>
<tr>
<td>7.10</td>
<td>Vector Autoregressive Models</td>
<td>312</td>
</tr>
<tr>
<td>7.11</td>
<td>Does the VAR Include Contemporaneous Terms?</td>
<td>318</td>
</tr>
<tr>
<td>7.12</td>
<td>Block Significance and Causality Tests</td>
<td>319</td>
</tr>
<tr>
<td>7.13</td>
<td>VARs with Exogenous Variables</td>
<td>322</td>
</tr>
<tr>
<td>7.14</td>
<td>Impulse Responses and Variance Decompositions</td>
<td>322</td>
</tr>
<tr>
<td>7.15</td>
<td>VAR Model Example: The Interaction Between Property Returns and the Macroeconomy</td>
<td>325</td>
</tr>
<tr>
<td>7.16</td>
<td>A Couple of Final Points on VARs</td>
<td>331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Modelling Long-Run Relationships in Finance</th>
<th>334</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Stationarity and Unit Root Testing</td>
<td>334</td>
</tr>
<tr>
<td>8.2</td>
<td>Tests for Unit Roots in the Presence of Structural Breaks</td>
<td>346</td>
</tr>
<tr>
<td>8.3</td>
<td>Cointegration</td>
<td>351</td>
</tr>
<tr>
<td>8.4</td>
<td>Equilibrium Correction or Error Correction Models</td>
<td>353</td>
</tr>
<tr>
<td>8.5</td>
<td>Testing for Cointegration in Regression: A Residuals-Based Approach</td>
<td>355</td>
</tr>
</tbody>
</table>
Detailed Contents

8.6 Methods of Parameter Estimation in Cointegrated Systems 356
8.7 Lead–Lag and Long-Term Relationships Between Spot and Futures Markets 358
8.8 Testing for and Estimating Cointegration in Systems 365
8.9 Purchasing Power Parity 370
8.10 Cointegration Between International Bond Markets 371
8.11 Testing the Expectations Hypothesis of the Term Structure of Interest Rates 377

Chapter 9 Modelling Volatility and Correlation 384

9.1 Motivations: An Excursion into Non-Linearity Land 384
9.2 Models for Volatility 389
9.3 Historical Volatility 389
9.4 Implied Volatility Models 390
9.5 Exponentially Weighted Moving Average Models 390
9.6 Autoregressive Volatility Models 391
9.7 Autoregressive Conditionally Heteroscedastic (ARCH) Models 392
9.8 Generalised ARCH (GARCH) Models 396
9.9 Estimation of ARCH/GARCH Models 399
9.10 Extensions to the Basic GARCH Model 404
9.11 Asymmetric GARCH Models 404
9.12 The GJR model 405
9.13 The EGARCH Model 405
9.14 Tests for Asymmetries in Volatility 406
9.15 GARCH–in–Mean 408
9.16 Uses of GARCH-Type Models 408
9.17 Testing Non–Linear Restrictions 411
9.18 Volatility Forecasting: Some Examples and Results 414
9.19 Stochastic Volatility Models Revisited 419
9.20 Forecasting Covariances and Correlations 423
9.21 Covariance Modelling and Forecasting in Finance 424
9.22 Simple Covariance Models 426
9.23 Multivariate GARCH Models 427
9.24 Direct Correlation Models 431
9.25 Extensions to the Basic Multivariate GARCH Model 433
9.26 A Multivariate GARCH Model for the CAPM 434
9.27 Estimating a Time–Varying Hedge Ratio 435
9.28 Multivariate Stochastic Volatility Models 439

Appendix 9.1 Parameter Estimation Using Maximum Likelihood 440
Detailed Contents

Chapter 10 Switching and State Space Models 447
- 10.1 Motivations 447
- 10.2 Seasonalities in Financial Markets 449
- 10.3 Modelling Seasonality in Financial Data 450
- 10.4 Estimating Simple Piecewise Linear Functions 458
- 10.5 Markov Switching Models 459
- 10.6 A Markov Switching Model for the Real Exchange Rate 462
- 10.7 A Markov Switching Model for the Gilt–Equity Yield Ratio 464
- 10.8 Threshold Autoregressive Models 468
- 10.9 Estimation of Threshold Autoregressive Models 470
- 10.10 Specification Tests 471
- 10.11 A SETAR Model for the French franc–German mark Exchange Rate 472
- 10.12 Threshold Models for FTSE Spot and Futures 474
- 10.13 Regime Switching Models and Forecasting 477
- 10.14 State Space Models and the Kalman Filter 477

Chapter 11 Panel Data 490
- 11.1 Introduction: What Are Panel Techniques? 490
- 11.2 What Panel Techniques Are Available? 491
- 11.3 The Fixed Effects Model 493
- 11.4 Time-Fixed Effects Models 495
- 11.5 Investigating Banking Competition 496
- 11.6 The Random Effects Model 500
- 11.7 Panel Data Application to Credit Stability of Banks 501
- 11.8 Panel Unit Root and Cointegration Tests 505
- 11.9 Further Reading 514

Chapter 12 Limited Dependent Variable Models 516
- 12.1 Introduction and Motivation 516
- 12.2 The Linear Probability Model 517
- 12.3 The Logit Model 519
- 12.4 Using a Logit to Test the Pecking Order Hypothesis 520
- 12.5 The Probit Model 522
- 12.6 Choosing Between the Logit and Probit Models 522
- 12.7 Estimation of Limited Dependent Variable Models 522
- 12.8 Goodness of Fit Measures for Linear Dependent Variable Models 523
- 12.9 Multinomial Linear Dependent Variables 526
- 12.10 The Pecking Order Hypothesis Revisited 529
- 12.11 Ordered Response Linear Dependent Variables Models 530
- 12.12 Are Unsolicited Credit Ratings Biased Downwards? An Ordered Probit Analysis 532
Detailed Contents

12.13 Censored and Truncated Dependent Variables 537
Appendix 12.1 The Maximum Likelihood Estimator for Logit and Probit Models 544

Chapter 13 Simulation Methods 546
13.1 Motivations 546
13.2 Monte Carlo Simulations 547
13.3 Variance Reduction Techniques 548
13.4 Bootstrapping 552
13.5 Random Number Generation 556
13.6 Disadvantages of the Simulation Approach 557
13.7 An Example of Monte Carlo Simulation 558
13.8 An Example of how to Simulate the Price of a Financial Option 558
13.9 An Example of Bootstrapping to Calculate Capital Risk Requirements 561

Chapter 14 Additional Econometric Techniques for Financial Research 571
14.1 Event Studies 571
14.2 Tests of the CAPM and the Fama–French Methodology 586
14.3 Extreme Value Theory 592
14.4 The Generalised Method of Moments 607

Chapter 15 Conducting Empirical Research or Doing a Project or Dissertation in Finance 617
15.1 What is an Empirical Research Project? 617
15.2 Selecting the Topic 618
15.3 Sponsored or Independent Research? 620
15.4 The Research Proposal 622
15.5 Working Papers and Literature on the Internet 623
15.6 Getting the Data 623
15.7 Choice of Computer Software 625
15.8 Methodology 626
15.9 How Might the Finished Project Look? 626
15.10 Presentational Issues 631

Appendix 1 Sources of Data Used in This Book and the Accompanying Software Manuals 632
Appendix 2 Tables of Statistical Distributions 633
Glossary 646
References 672
Index 688