CONTENTS

Preface
- Page ix

Acknowledgments
- Page xii

1. **Classification of Rocket Propulsion Systems and Historical Perspective**
 - 1.1 Introduction
 - 1.2 A Brief History of Rocketry
 - 1.3 Classification of Rocket Propulsion Systems
 - Further Reading
 - Page 10

2. **Mission Analysis Fundamentals**
 - 2.1 Classification of Rocket-Propelled Vehicles
 - 2.2 Mission Requirements for Launch Vehicles
 - 2.3 Mission Requirements for Upper-Stage or Orbital Transfer Vehicles
 - 2.4 Mission Requirements for Ballistic Missiles
 - 2.5 Mission Requirements for Interceptors
 - 2.6 Summary
 - Further Reading
 - Homework Problems
 - Page 20

3. **Trajectory Analysis and Rocket Design**
 - 3.1 Vertical Trajectories – The Rocket Equation
 - 3.2 Burning Time and Acceleration Effects
 - 3.3 Multistage Rockets
 - 3.4 Generalized Trajectories
 - Homework Problems
 - Page 47

4. **Rocket Nozzle Performance**
 - 4.1 Review of Compressible Flow of a Perfect Gas
 - 4.2 Rocket Performance Fundamentals
 - 4.3 Designing Nozzle Aerodynamic Contours
 - 4.4 Non-Conventional Nozzles
 - 4.5 Two-Dimensional Flow Effects
 - 4.6 Nozzle Shocks and Separation
 - 4.7 Two-Phase Flow Losses
 - 4.8 Boundary Layer Losses
 - Page 81

© in this web service Cambridge University Press world.cambridge.org
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Method of Characteristics for Axisymmetric Flows</td>
<td>110</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Homework Problems</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>Combustion and Thermochemistry</td>
<td>134</td>
</tr>
<tr>
<td>5.1</td>
<td>Review of Perfect Gases</td>
<td>134</td>
</tr>
<tr>
<td>5.2</td>
<td>Thermodynamics Review</td>
<td>138</td>
</tr>
<tr>
<td>5.3</td>
<td>Chemical Equilibrium</td>
<td>143</td>
</tr>
<tr>
<td>5.4</td>
<td>Calculating the Adiabatic Flame Temperature</td>
<td>149</td>
</tr>
<tr>
<td>5.5</td>
<td>Rocket Nozzle Thermochemistry</td>
<td>153</td>
</tr>
<tr>
<td>5.6</td>
<td>Computer Codes for Chemical Equilibrium Computations</td>
<td>154</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Homework Problems</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>6</td>
<td>Heat Transfer in Chemical Rockets</td>
<td>177</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>178</td>
</tr>
<tr>
<td>6.2</td>
<td>Cooling Techniques Used in Rockets</td>
<td>182</td>
</tr>
<tr>
<td>6.3</td>
<td>Heat Transfer Fundamentals</td>
<td>188</td>
</tr>
<tr>
<td>6.4</td>
<td>Scaling of Convective Heat Transfer Processes</td>
<td>202</td>
</tr>
<tr>
<td>6.5</td>
<td>Regenerative Cooling System Analysis</td>
<td>203</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>Homework Problems</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>7</td>
<td>Solid Rocket Motors</td>
<td>229</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>229</td>
</tr>
<tr>
<td>7.2</td>
<td>SRM Internal Ballistics</td>
<td>230</td>
</tr>
<tr>
<td>7.3</td>
<td>Specific Impulse, Mass Flow, and Thrust Predictions</td>
<td>236</td>
</tr>
<tr>
<td>7.4</td>
<td>Solid Rocket Motor Components</td>
<td>237</td>
</tr>
<tr>
<td>7.5</td>
<td>Solid Rocket Propellants</td>
<td>247</td>
</tr>
<tr>
<td>7.6</td>
<td>Thrust Vector Control and Throttleable Systems</td>
<td>257</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>Homework Problems</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td>8</td>
<td>Liquid Rocket Engines</td>
<td>282</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction: Basic Elements of an LRE</td>
<td>282</td>
</tr>
<tr>
<td>8.2</td>
<td>Monopropellant Systems</td>
<td>286</td>
</tr>
<tr>
<td>8.3</td>
<td>Bipropellant Systems and Engine Cycles</td>
<td>289</td>
</tr>
<tr>
<td>8.4</td>
<td>LRE Propellant Tanks</td>
<td>298</td>
</tr>
<tr>
<td>8.5</td>
<td>LRE Thrust Chambers</td>
<td>304</td>
</tr>
<tr>
<td>8.6</td>
<td>LRE Injectors</td>
<td>309</td>
</tr>
<tr>
<td>8.7</td>
<td>LRE Combustor/Injector Design and Analysis</td>
<td>327</td>
</tr>
<tr>
<td>8.8</td>
<td>LRE Unsteady Injector Analysis Using Lumped Parameter Methods</td>
<td>330</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>A Note on Additive Manufacturing</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>Homework Problems</td>
<td>337</td>
</tr>
<tr>
<td>9</td>
<td>Liquid Rocket Propellants</td>
<td>348</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction: Classification of Liquid Propellants and Historical</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>What is a Fuel? And What is an Oxidizer?</td>
<td>351</td>
</tr>
<tr>
<td>9.3</td>
<td>Desirable Properties in Liquid Propellants</td>
<td>353</td>
</tr>
<tr>
<td>9.4</td>
<td>Monopropellants</td>
<td>357</td>
</tr>
<tr>
<td>9.5</td>
<td>Storable and Hypergolic Propellants</td>
<td>374</td>
</tr>
<tr>
<td>9.6</td>
<td>Gelled Propellants</td>
<td>388</td>
</tr>
<tr>
<td>9.7</td>
<td>Cryogenic Propellants</td>
<td>389</td>
</tr>
<tr>
<td>9.8</td>
<td>Final Considerations</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>397</td>
</tr>
<tr>
<td>10</td>
<td>Rocket Turbomachinery Fundamentals</td>
<td>401</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction: Elements of Rocket Turbopumps and Historical</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Pump Design Fundamentals</td>
<td>409</td>
</tr>
<tr>
<td>10.3</td>
<td>Inducer Design</td>
<td>416</td>
</tr>
<tr>
<td>10.4</td>
<td>Impeller Design</td>
<td>419</td>
</tr>
<tr>
<td>10.5</td>
<td>Thrust Balance</td>
<td>421</td>
</tr>
<tr>
<td>10.6</td>
<td>Pump Operating Envelope and CFD Analysis</td>
<td>422</td>
</tr>
<tr>
<td>10.7</td>
<td>Turbine Fundamentals</td>
<td>424</td>
</tr>
<tr>
<td>10.8</td>
<td>Shafts, Bearings, and Seals</td>
<td>428</td>
</tr>
<tr>
<td>10.9</td>
<td>Rotordynamics</td>
<td>434</td>
</tr>
<tr>
<td>10.10</td>
<td>A Note on Additive Manufacturing</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>438</td>
</tr>
<tr>
<td>11</td>
<td>Hybrid Rocket Engines</td>
<td>439</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction: General Arrangement and History</td>
<td>439</td>
</tr>
<tr>
<td>11.2</td>
<td>HRE Combustion Fundamentals</td>
<td>442</td>
</tr>
<tr>
<td>11.3</td>
<td>HRE Lumped Parameter Ballistics</td>
<td>443</td>
</tr>
<tr>
<td>11.4</td>
<td>HRE Ballistic Element Analysis</td>
<td>450</td>
</tr>
<tr>
<td>11.5</td>
<td>HRE Combustion Theory</td>
<td>454</td>
</tr>
<tr>
<td>11.6</td>
<td>HRE Propellants</td>
<td>458</td>
</tr>
<tr>
<td>11.7</td>
<td>HRE Design</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Homework Problems</td>
<td>464</td>
</tr>
<tr>
<td>12</td>
<td>Combustion Instability</td>
<td>479</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction: Overview and History</td>
<td>479</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
Contents

12.2 Background 483
12.3 Analysis 493
12.4 Test Methods 508
Further Reading 521

13 Electric Propulsion Fundamentals 526
13.1 Introduction 526
13.2 Background: Historical Developments 528
13.3 Fundamentals of Operation for EP Devices 528
13.4 Types of Electric Propulsion Devices 539
13.5 Electric Propulsion Applications 545
13.6 System Design and Spacecraft Interactions 550
Further Reading 553
Homework Problems 553

Appendix 555
A.1 Numerical Methods 555
A.2 Fluid Properties and Other Resources 563

Index 570

© in this web service Cambridge University Press