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Preface

This book is about the growing intersection of data-driven methods, applied optimization,

and the classical fields of engineering mathematics and mathematical physics. We have

been developing this material over a number of years, primarily to educate our advanced

undergrad and beginning graduate students from engineering and physical science depart-

ments. Typically, such students have backgrounds in linear algebra, differential equations,

and scientific computing, with engineers often having some exposure to control theory

and/or partial differential equations. However, most undergraduate curricula in engineering

and science fields have little or no exposure to data methods and/or optimization. Likewise,

computer scientists and statisticians have little exposure to dynamical systems and control.

Our goal is to provide a broad entry point to applied data science for both of these groups

of students. We have chosen the methods discussed in this book for their (1) relevance,

(2) simplicity, and (3) generality, and we have attempted to present a range of topics, from

basic introductory material up to research-level techniques.

Data-driven discovery is currently revolutionizing how we model, predict, and control

complex systems. The most pressing scientific and engineering problems of the mod-

ern era are not amenable to empirical models or derivations based on first-principles.

Increasingly, researchers are turning to data-driven approaches for a diverse range of com-

plex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and

autonomy. These systems are typically nonlinear, dynamic, multi-scale in space and time,

high-dimensional, with dominant underlying patterns that should be characterized and

modeled for the eventual goal of sensing, prediction, estimation, and control. With modern

mathematical methods, enabled by unprecedented availability of data and computational

resources, we are now able to tackle previously unattainable challenge problems. A small

handful of these new techniques include robust image reconstruction from sparse and noisy

random pixel measurements, turbulence control with machine learning, optimal sensor and

actuator placement, discovering interpretable nonlinear dynamical systems purely from

data, and reduced order models to accelerate the study and optimization of systems with

complex multi-scale physics.

Driving modern data science is the availability of vast and increasing quantities of data,

enabled by remarkable innovations in low-cost sensors, orders-of-magnitudes increases in

computational power, and virtually unlimited data storage and transfer capabilities. Such

vast quantities of data are affording engineers and scientists across all disciplines new

opportunities for data-driven discovery, which has been referred to as the fourth paradigm

of scientific discovery [245]. This fourth paradigm is the natural culmination of the first

three paradigms: empirical experimentation, analytical derivation, and computational

investigation. The integration of these techniques provides a transformative framework for

ix
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x Preface

data-driven discovery efforts. This process of scientific discovery is not new, and indeed

mimics the efforts of leading figures of the scientific revolution: Johannes Kepler (1571–

1630) and Sir Isaac Newton (1642–1727). Each played a critical role in developing the

theoretical underpinnings of celestial mechanics, based on a combination of empirical

data-driven and analytical approaches. Data science is not replacing mathematical physics

and engineering, but is instead augmenting it for the twenty-first century, resulting in more

of a renaissance than a revolution.

Data science itself is not new, having been proposed more than 50 years ago by John

Tukey who envisioned the existence of a scientific effort focused on learning from data,

or data analysis [152]. Since that time, data science has been largely dominated by two

distinct cultural outlooks on data [78]. The machine learning community, which is pre-

dominantly comprised of computer scientists, is typically centered on prediction quality

and scalable, fast algorithms. Although not necessarily in contrast, the statistical learning

community, often centered in statistics departments, focuses on the inference of inter-

pretable models. Both methodologies have achieved significant success and have provided

the mathematical and computational foundations for data-science methods. For engineers

and scientists, the goal is to leverage these broad techniques to infer and compute models

(typically nonlinear) from observations that correctly identify the underlying dynamics

and generalize qualitatively and quantitatively to unmeasured parts of phase, parameter,

or application space. Our goal in this book is to leverage the power of both statistical and

machine learning to solve engineering problems.

Themes of This Book
There are a number of key themes that have emerged throughout this book. First, many

complex systems exhibit dominant low-dimensional patterns in the data, despite the rapidly

increasing resolution of measurements and computations. This underlying structure enables

efficient sensing, and compact representations for modeling and control. Pattern extraction

is related to the second theme of finding coordinate transforms that simplify the system.

Indeed, the rich history of mathematical physics is centered around coordinate transfor-

mations (e.g., spectral decompositions, the Fourier transform, generalized functions, etc.),

although these techniques have largely been limited to simple idealized geometries and

linear dynamics. The ability to derive data-driven transformations opens up opportunities

to generalize these techniques to new research problems with more complex geometries

and boundary conditions. We also take the perspective of dynamical systems and control

throughout the book, applying data-driven techniques to model and control systems that

evolve in time. Perhaps the most pervasive theme is that of data-driven applied optimiza-

tion, as nearly every topic discussed is related to optimization (e.g., finding optimal low-

dimensional patterns, optimal sensor placement, machine learning optimization, optimal

control, etc.). Even more fundamentally, most data is organized into arrays for analysis,

where the extensive development of numerical linear algebra tools from the early 1960s

onward provides many of the foundational mathematical underpinnings for matrix decom-

positions and solution strategies used throughout this text.
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Online Material
We have designed this book to make extensive use of online supplementary material,

including codes, data, videos, homeworks, and suggested course syllabi. All of this material

can be found at the following website:

databookuw.com

In addition to course resources, all of the code and data used in the book are available.

The codes online are more extensive than those presented in the book, including code

used to generate publication quality figures. Data visualization was ranked as the top used

data-science method in the Kaggle 2017 The State of Data Science and Machine Learning

study, and so we highly encourage readers to download the online codes and make full use

of these plotting commands.

We have also recorded and posted video lectures on YouTube for most of the topics in

this book. We include supplementary videos for students to fill in gaps in their background

on scientific computing and foundational applied mathematics. We have designed this text

both to be a reference as well as the material for several courses at various levels of student

preparation. Most chapters are also modular, and may be converted into stand-alone boot

camps, containing roughly 10 hours of materials each.

How to Use This Book
Our intended audience includes beginning graduate students, or advanced undergraduates,

in engineering and science. As such, the machine learning methods are introduced at a

beginning level, whereas we assume students know how to model physical systems with

differential equations and simulate them with solvers such as ode45. The diversity of topics

covered thus range from introductory to state-of-the-art research methods. Our aim is

to provide an integrated viewpoint and mathematical toolset for solving engineering and

science problems. Alternatively, the book can also be useful for computer science and
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statistics students who often have limited knowledge of dynamical systems and control.

Various courses can be designed from this material, and several example syllabi may be

found on the book website; this includes homework, data sets, and code.

First and foremost, we want this book to be fun, inspiring, eye-opening, and empowering

for young scientists and engineers. We have attempted to make everything as simple as

possible, while still providing the depth and breadth required to be useful in research. Many

of the chapter topics in this text could be entire books in their own right, and many of them

are. However, we also wanted to be as comprehensive as may be reasonably expected for

a field that is so big and moving so fast. We hope that you enjoy this book, master these

methods, and change the world with applied data science!
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Common Optimization Techniques, Equations,
Symbols, and Acronyms

Most Common Optimization Strategies
Least-Squares (discussed in Chapters 1 and 4) minimizes the sum of the squares of the

residuals between a given fitting model and data. Linear least-squares, where the residuals

are linear in the unknowns, has a closed form solution which can be computed by taking

the derivative of the residual with respect to each unknown and setting it to zero. It is

commonly used in the engineering and applied sciences for fitting polynomial functions.

Nonlinear least-squares typically requires iterative refinement based upon approximating

the nonlinear least-squares with a linear least-squares at each iteration.

Gradient Descent (discussed in Chapters 4 and 6) is the industry leading, convex opti-

mization method for high-dimensional systems. It minimizes residuals by computing the

gradient of a given fitting function. The iterative procedure updates the solution by moving

downhill in the residual space. The Newton–Raphson method is a one-dimensional version

of gradient descent. Since it is often applied in high-dimensional settings, it is prone to find

only local minima. Critical innovations for big data applications include stochastic gradient

descent and the backpropagation algorithm which makes the optimization amenable to

computing the gradient itself.

Alternating Descent Method (ADM) (discussed in Chapter 4) avoids computations of the

gradient by optimizing in one unknown at a time. Thus all unknowns are held constant

while a line search (non-convex optimization) can be performed in a single variable. This

variable is then updated and held constant while another of the unknowns is updated. The

iterative procedure continues through all unknowns and the iteration procedure is repeated

until a desired level of accuracy is achieved.

Augmented Lagrange Method (ALM) (discussed in Chapters 3 and 8) is a class of

algorithms for solving constrained optimization problems. They are similar to penalty

methods in that they replace a constrained optimization problem by a series of uncon-

strained problems and add a penalty term to the objective which helps enforce the desired

constraint. ALM adds another term designed to mimic a Lagrange multiplier. The aug-

mented Lagrangian is not the same as the method of Lagrange multipliers.

Linear Program and Simplex Method are the workhorse algorithms for convex opti-

mization. A linear program has an objective function which is linear in the unknown

and the constraints consist of linear inequalities and equalities. By computing its feasible

region, which is a convex polytope, the linear programming algorithm finds a point in the

polyhedron where this function has the smallest (or largest) value if such a point exists.

The simplex method is a specific iterative technique for linear programs which aims to take

a given basic feasible solution to another basic feasible solution for which the objective

function is smaller, thus producing an iterative procedure for optimizing.

xiii
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xiv Common Optimization Techniques, Equations, Symbols, and Acronyms

Most Common Equations and Symbols
Linear Algebra

Linear System of Equations

Ax = b. (0.1)

The matrix A ∈ R
p×n and vector b ∈ R

p are generally known, and the vector x ∈ R
n is

unknown.

Eigenvalue Equation

AT = T�. (0.2)

The columns ξ k of the matrix T are the eigenvectors of A ∈ C
n×n corresponding to

the eigenvalue λk: Aξ k = λkξ k . The matrix � is a diagonal matrix containing these

eigenvalues, in the simple case with n distinct eigenvalues.

Change of Coordinates

x = �a. (0.3)

The vector x ∈ R
n may be written as a ∈ R

n in the coordinate system given by the columns

of � ∈ R
n×n.

Measurement Equation

y = Cx. (0.4)

The vector y ∈ R
p is a measurement of the state x ∈ R

n by the measurement matrix

C ∈ R
p×n.

Singular Value Decomposition

X = U�V∗ ≈ Ũ�̃Ṽ
∗
. (0.5)

The matrix X ∈ C
n×m may be decomposed into the product of three matrices U ∈ C

n×n,

� ∈ C
n×m, and V ∈ C

m×m. The matrices U and V are unitary, so that UU∗ = U∗U = In×n

and VV∗ = V∗V = Im×m, where ∗ denotes complex conjugate transpose. The columns of

U (resp. V) are orthogonal, called left (resp. right) singular vectors. The matrix � contains

decreasing, nonnegative diagonal entries called singular values.

Often, X is approximated with a low-rank matrix X̃ = Ũ�̃Ṽ
∗
, where Ũ and Ṽ contain

the first r ≪ n columns of U and V, respectively, and �̃ contains the first r × r block of

�. The matrix Ũ is often denoted � in the context of spatial modes, reduced order models,

and sensor placement.

www.cambridge.org/9781108422093
www.cambridge.org


Cambridge University Press
978-1-108-42209-3 — Data-Driven Science and Engineering
Steven L. Brunton , J. Nathan Kutz 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Common Optimization Techniques, Equations, Symbols, and Acronyms xv

Regression and Optimization

Overdetermined and Underdetermined Optimization for Linear Systems

argmin
x

(‖Ax − b‖2 + λg(x)) or (0.6a)

argmin
x

g(x) subject to ‖Ax − b‖2 ≤ ǫ , (0.6b)

Here g(x) is a regression penalty (with penalty parameter λ for overdetermined systems).

For over- and underdetermined linear systems of equations, which result in either no solu-

tions or an infinite number of solutions of Ax = b, a choice of constraint or penalty, which

is also known as regularization, must be made in order to produce a solution.

Overdetermined and Underdetermined Optimization for Nonlinear Systems

argmin
x

(f (A, x, b) + λg(x)) or (0.7a)

argmin
x

g(x) subject to f (A, x, b) ≤ ǫ (0.7b)

This generalizes the linear system to a nonlinear system f (·) with regularization g(·). These

over- and underdetermined systems are often solved using gradient descent algorithms.

Compositional Optimization for Neural Networks

argmin
Aj

(

fM(AM , · · · f2(A2, (f1(A1, x)) · · · ) + λg(Aj )
)

(0.8)

Each Ak denotes the weights connecting the neural network from the kth to (k + 1)th

layer. It is typically a massively underdetermined system which is regularized by g(Aj ).

Composition and regularization are critical for generating expressive representations of the

data as well as preventing overfitting.

Dynamical Systems and Reduced Order Models

Nonlinear Ordinary Differential Equation (Dynamical System)

d

dt
x(t) = f(x(t), t;β). (0.9)

The vector x(t) ∈ R
n is the state of the system evolving in time t , β are parameters, and f is

the vector field. Generally, f is Lipschitz continuous to guarantee existence and uniqueness

of solutions.

Linear Input–Output System

d

dt
x = Ax + Bu (0.10a)

y = Cx + Du. (0.10b)

The state of the system is x ∈ R
n, the inputs (actuators) are u ∈ R

q , and the outputs

(sensors) are y ∈ R
p. The matrices A, B, C, D define the dynamics, the effect of actuation,

the sensing strategy, and the effect of actuation feed-through, respectively.
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xvi Common Optimization Techniques, Equations, Symbols, and Acronyms

Nonlinear Map (Discrete-Time Dynamical System)

xk+1 = F(xk). (0.11)

The state of the system at the kth iteration is xk ∈ R
n, and F is a possibly nonlinear

mapping. Often, this map defines an iteration forward in time, so that xk = x(k�t); in this

case the flow map is denoted F�t .

Koopman Operator Equation (Discrete-Time)

Ktg = g ◦ Ft 	⇒ Ktϕ = λϕ. (0.12)

The linear Koopman operator Kt advances measurement functions of the state g(x) with

the flow Ft . Eigenvalues and eigenvectors of Kt are λ and ϕ(x), respectively. The operator

Kt operates on a Hilbert space of measurements.

Nonlinear Partial Differential Equation

ut = N(u, ux, uxx, · · · , x, t;β). (0.13)

The state of the PDE is u, the nonlinear evolution operator is N, subscripts denote

partial differentiation, and x and t are the spatial and temporal variables, respectively.

The PDE is parameterized by values in β. The state u of the PDE may be a con-

tinuous function u(x, t), or it may be discretized at several spatial locations, u(t) =
[

u(x1, t) u(x2, t) · · · u(xn, t)
]T ∈ R

n.

Galerkin Expansion

The continuous Galerkin expansion is:

u(x, t) ≈
r

∑

k=1

ak(t)ψk(x). (0.14)

The functions ak(t) are temporal coefficients that capture the time dynamics, and ψk(x) are

spatial modes. For a high-dimensional discretized state, the Galerkin expansion becomes:

u(t) ≈
∑r

k=1 ak(t)ψk. The spatial modes ψk ∈ R
n may be the columns of � = Ũ.
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Complete Symbols
Dimensions
K Number of nonzero entries in a K-sparse vector s

m Number of data snapshots (i.e., columns of X)

n Dimension of the state, x ∈ R
n

p Dimension of the measurement or output variable, y ∈ R
p

q Dimension of the input variable, u ∈ R
q

r Rank of truncated SVD, or other low-rank approximation

Scalars
s Frequency in Laplace domain

t Time

δ learning rate in gradient descent

�t Time step

x Spatial variable

�x Spatial step

σ Singular value

λ Eigenvalue

λ Sparsity parameter for sparse optimization (Section 7.3)

λ Lagrange multiplier (Sections. 3.7, 8.4, and 11.4)

τ Threshold

Vectors
a Vector of mode amplitudes of x in basis �, a ∈ R

r

b Vector of measurements in linear system Ax = b

b Vector of DMD mode amplitudes (Section 7.2)

Q Vector containing potential function for PDE-FIND

r Residual error vector

s Sparse vector, s ∈ R
n

u Control variable (Chapters 8, 9, and 10)

u PDE state vector (Chapters 11 and 12)

w Exogenous inputs

wd Disturbances to system

wn Measurement noise

wr Reference to track

x State of a system, x ∈ R
n

xk Snapshot of data at time tk

xj Data sample j ∈ Z := {1, 2, · · · ,m} (Chapters 5 and 6)

x̃ Reduced state, x̃ ∈ R
r , so that x ≈ Ũx̃

x̂ Estimated state of a system

y Vector of measurements, y ∈ R
p

yj Data label j ∈ Z := {1, 2, · · · ,m} (Chapters 5 and 6)

ŷ Estimated output measurement

z Transformed state, x = Tz (Chapters 8 and 9)

ǫ Error vector
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Vectors, continued
β Bifurcation parameters

ξ Eigenvector of Koopman operator (Sections 7.4 and 7.5)

ξ Sparse vector of coefficients (Section 7.3)

φ DMD mode

ψ POD mode

ϒ Vector of PDE measurements for PDE-FIND

Matrices
A Matrix for system of equations or dynamics

Ã Reduced dynamics on r-dimensional POD subspace

AX Matrix representation of linear dynamics on the state x

AY Matrix representation of linear dynamics on the observables y

(A, B, C, B) Matrices for continuous-time state-space system

(Ad , Bd , Cd , Bd) Matrices for discrete-time state-space system

(Â, B̂, Ĉ, B̂) Matrices for state-space system in new coordinates z = T−1x

(Ã, B̃, C̃, B̃) Matrices for reduced state-space system with rank r

B Actuation input matrix

C Linear measurement matrix from state to measurements

C Controllability matrix

F Discrete Fourier transform

G Matrix representation of linear dynamics on the states and inputs

[xT uT ]T

H Hankel matrix

H′ Time-shifted Hankel matrix

I Identity matrix

K Matrix form of Koopman operator (Chapter 7)

K Closed-loop control gain (Chapter 8)

Kf Kalman filter estimator gain

Kr LQR control gain

L Low-rank portion of matrix X (Chapter 3)

O Observability matrix

P Unitary matrix that acts on columns of X

Q Weight matrix for state penalty in LQR (Sec. 8.4)

Q Orthogonal matrix from QR factorization

R Weight matrix for actuation penalty in LQR (Sec. 8.4)

R Upper triangular matrix from QR factorization

S Sparse portion of matrix X (Chapter 3)

T Matrix of eigenvectors (Chapter 8)

T Change of coordinates (Chapters 8 and 9)

U Left singular vectors of X, U ∈ R
n×n

Û Left singular vectors of economy SVD of X, U ∈ R
n×m

Ũ Left singular vectors (POD modes) of truncated SVD of X, U ∈ R
n×r

V Right singular vectors of X, V ∈ R
m×m

Ṽ Right singular vectors of truncated SVD of X, V ∈ R
m×r
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Matrices, continued
� Matrix of singular values of X, � ∈ R

n×m

�̂ Matrix of singular values of economy SVD of X, � ∈ R
m×m

�̃ Matrix of singular values of truncated SVD of X, � ∈ R
r×r

W Eigenvectors of Ã

Wc Controllability Gramian

Wo Observability Gramian

X Data matrix, X ∈ R
n×m

X′ Time-shifted data matrix, X′ ∈ R
n×m

Y Projection of X matrix onto orthogonal basis in randomized SVD (Sec. 1.8)

Y Data matrix of observables, Y = g(X), Y ∈ R
p×m (Chapter 7)

Y′ Shifted data matrix of observables, Y′ = g(X′), Y′ ∈ R
p×m (Chapter 7)

Z Sketch matrix for randomized SVD, Z ∈ R
n×r (Sec. 1.8)

� Measurement matrix times sparsifying basis, � = C� (Chapter 3)

� Matrix of candidate functions for SINDy (Sec. 7.3)

Ŵ Matrix of derivatives of candidate functions for SINDy (Sec. 7.3)

 Matrix of coefficients of candidate functions for SINDy (Sec. 7.3)

 Matrix of nonlinear snapshots for DEIM (Sec. 12.5)

� Diagonal matrix of eigenvalues

ϒ Input snapshot matrix, ϒ ∈ R
q×m

� Matrix of DMD modes, � � X′V�−1W

� Orthonormal basis (e.g., Fourier or POD modes)

Tensors

(A,B,M) N -way array tensors of size I1 × I2 × · · · × IN

Norms
‖ · ‖0 ℓ0 pseudo-norm of a vector x the number of nonzero elements in x

‖ · ‖1 ℓ1 norm of a vector x given by ‖x‖1 =
∑n

i=1 |xi |
‖ · ‖2 ℓ2 norm of a vector x given by ‖x‖2 =

√

∑n
i=1(x

2
i )

‖ · ‖2 2-norm of a matrix X given by ‖X‖2 = maxx
‖Xx‖2

‖x‖2

‖ · ‖F Frobenius norm of a matrix X given by ‖X‖F =
√

∑n
i=1

∑m
j=1 |Xij|2

‖ · ‖∗ Nuclear norm of a matrix X given by ‖X‖∗ = trace
(√

X∗X
)

=
∑m

i=1 σi

(for m ≤ n)

〈·, ·〉 Inner product. For functions, 〈f (x), g(x)〉 =
∫ ∞
−∞ f (x)g∗(x)dx.

〈·, ·〉 Inner product. For vectors, 〈u, v〉 = u∗v.

Operators, Functions, and Maps
F Fourier transform

F Discrete-time dynamical system map

Ft Discrete-time flow map of dynamical system through time t

f Continuous-time dynamical system

G Gabor transform
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xx Common Optimization Techniques, Equations, Symbols, and Acronyms

Operators, Functions, and Maps, continued
G Transfer function from inputs to outputs (Chapter 8)

g Scalar measurement function on x

g Vector-valued measurement functions on x

J Cost function for control

ℓ Loss function for support vector machines (Chapter 5)

K Koopman operator (continuous time)

Kt Koopman operator associated with time t flow map

L Laplace transform

L Loop transfer function (Chapter 8)

L Linear partial differential equation (Chapters 11 and 12)

N Nonlinear partial differential equation

O Order of magnitude

S Sensitivity function (Chapter 8)

T Complementary sensitivity function (Chapter 8)

W Wavelet transform

μ Incoherence between measurement matrix C and basis �

κ Condition number

ϕ Koopman eigenfunction

∇ Gradient operator

∗ Convolution operator
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Most Common Acronyms
CNN Convolutional neural network

DL Deep learning

DMD Dynamic mode decomposition

FFT Fast Fourier transform

ODE Ordinary differential equation

PCA Principal components analysis

PDE Partial differential equation

POD Proper orthogonal decomposition

ROM Reduced order model

SVD Singular value decomposition

Other Acronyms
ADM Alternating directions method

AIC Akaike information criterion

ALM Augmented Lagrange multiplier

ANN Artificial neural network

ARMA Autoregressive moving average

ARMAX Autoregressive moving average with exogenous input

BIC Bayesian information criterion

BPOD Balanced proper orthogonal decomposition

DMDc Dynamic mode decomposition with control

CCA Canonical correlation analysis

CFD Computational fluid dynamics

CoSaMP Compressive sampling matching pursuit

CWT Continuous wavelet transform

DEIM Discrete empirical interpolation method

DCT Discrete cosine transform

DFT Discrete Fourier transform

DMDc Dynamic mode decomposition with control

DNS Direct numerical simulation

DWT Discrete wavelet transform

ECOG Electrocorticography

eDMD Extended DMD

EIM Empirical interpolation method

EM Expectation maximization

EOF Empirical orthogonal functions

ERA Eigensystem realization algorithm

ESC Extremum-seeking control

GMM Gaussian mixture model

HAVOK Hankel alternative view of Koopman

JL Johnson–Lindenstrauss

KL Kullback–Leibler

ICA Independent component analysis
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xxii Common Optimization Techniques, Equations, Symbols, and Acronyms

Other Acronyms, continued
KLT Karhunen–Loève transform

LAD Least absolute deviations

LASSO Least absolute shrinkage and selection operator

LDA Linear discriminant analysis

LQE Linear quadratic estimator

LQG Linear quadratic Gaussian controller

LQR Linear quadratic regulator

LTI Linear time invariant system

MIMO Multiple input, multiple output

MLC Machine learning control

MPE Missing point estimation

mrDMD Multi-resolution dynamic mode decomposition

NARMAX Nonlinear autoregressive model with exogenous inputs

NLS Nonlinear Schrödinger equation

OKID Observer Kalman filter identification

PBH Popov–Belevitch–Hautus test

PCP Principal component pursuit

PDE-FIND Partial differential equation functional identification

of nonlinear dynamics

PDF Probability distribution function

PID Proportional-integral-derivative control

PIV Particle image velocimetry

RIP Restricted isometry property

rSVD Randomized SVD

RKHS Reproducing kernel Hilbert space

RNN Recurrent neural network

RPCA Robust principal components analysis

SGD Stochastic gradient descent

SINDy Sparse identification of nonlinear dynamics

SISO Single input, single output

SRC Sparse representation for classification

SSA Singular spectrum analysis

STFT Short time Fourier transform

STLS Sequential thresholded least-squares

SVM Support vector machine

TICA Time-lagged independent component analysis

VAC Variational approach of conformation dynamics
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