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1 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is among the most important matrix factorizations

of the computational era, providing a foundation for nearly all of the data methods in this

book. The SVD provides a numerically stable matrix decomposition that can be used for

a variety of purposes and is guaranteed to exist. We will use the SVD to obtain low-rank

approximations to matrices and to perform pseudo-inverses of non-square matrices to find

the solution of a system of equations Ax = b. Another important use of the SVD is as the

underlying algorithm of principal component analysis (PCA), where high-dimensional data

is decomposed into its most statistically descriptive factors. SVD/PCA has been applied to

a wide variety of problems in science and engineering.

In a sense, the SVD generalizes the concept of the fast Fourier transform (FFT), which

will be the subject of the next chapter. Many engineering texts begin with the FFT, as it

is the basis of many classical analytical and numerical results. However, the FFT works in

idealized settings, and the SVD is a more generic data-driven technique. Because this book

is focused on data, we begin with the SVD, which may be thought of as providing a basis

that is tailored to the specific data, as opposed to the FFT, which provides a generic basis.

In many domains, complex systems will generate data that is naturally arranged in

large matrices, or more generally in arrays. For example, a time-series of data from an

experiment or a simulation may be arranged in a matrix with each column containing all of

the measurements at a given time. If the data at each instant in time is multi-dimensional, as

in a high-resolution simulation of the weather in three spatial dimensions, it is possible to

reshape or flatten this data into a high-dimensional column vector, forming the columns of

a large matrix. Similarly, the pixel values in a grayscale image may be stored in a matrix,

or these images may be reshaped into large column vectors in a matrix to represent the

frames of a movie. Remarkably, the data generated by these systems are typically low rank,

meaning that there are a few dominant patterns that explain the high-dimensional data. The

SVD is a numerically robust and efficient method of extracting these patterns from data.

1.1 Overview
Here we introduce the SVD and develop an intuition for how to apply the SVD by demon-

strating its use on a number of motivating examples. The SVD will provide a foundation for

many other techniques developed in this book, including classification methods in Chap-

ter 5, the dynamic mode decomposition (DMD) in Chapter 7, and the proper orthogonal

decomposition (POD) in Chapter 11. Detailed mathematical properties are discussed in the

following sections.
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4 Singular Value Decomposition (SVD)

High dimensionality is a common challenge in processing data from complex systems.

These systems may involve large measured data sets including audio, image, or video

data. The data may also be generated from a physical system, such as neural recordings

from a brain, or fluid velocity measurements from a simulation or experiment. In many

naturally occurring systems, it is observed that data exhibit dominant patterns, which may

be characterized by a low-dimensional attractor or manifold [252, 251].

As an example, consider images, which typically contain a large number of measure-

ments (pixels), and are therefore elements of a high-dimensional vector space. However,

most images are highly compressible, meaning that the relevant information may be rep-

resented in a much lower-dimensional subspace. The compressibility of images will be

discussed in depth throughout this book. Complex fluid systems, such as the Earth’s atmo-

sphere or the turbulent wake behind a vehicle also provide compelling examples of the low-

dimensional structure underlying a high-dimensional state-space. Although high-fidelity

fluid simulations typically require at least millions or billions of degrees of freedom, there

are often dominant coherent structures in the flow, such as periodic vortex shedding behind

vehicles or hurricanes in the weather.

The SVD provides a systematic way to determine a low-dimensional approximation

to high-dimensional data in terms of dominant patterns. This technique is data-driven in

that patterns are discovered purely from data, without the addition of expert knowledge or

intuition. The SVD is numerically stable and provides a hierarchical representation of the

data in terms of a new coordinate system defined by dominant correlations within the data.

Moreover, the SVD is guaranteed to exist for any matrix, unlike the eigendecomposition.

The SVD has many powerful applications beyond dimensionality reduction of high-

dimensional data. It is used to compute the pseudo-inverse of non-square matrices, provid-

ing solutions to underdetermined or overdetermined matrix equations, Ax = b. We will

also use the SVD to de-noise data sets. The SVD is likewise important to characterize the

input and output geometry of a linear map between vector spaces. These applications will

all be explored in this chapter, providing an intuition for matrices and high-dimensional

data.

Deinition of the SVD

Generally, we are interested in analyzing a large data set X ∈ C
n×m:

X =

⎡

⎣x1 x2 · · · xm

⎤

⎦ . (1.1)

The columns xk ∈ C
n may be measurements from simulations or experiments. For exam-

ple, columns may represent images that have been reshaped into column vectors with as

many elements as pixels in the image. The column vectors may also represent the state of

a physical system that is evolving in time, such as the fluid velocity at a set of discrete

points, a set of neural measurements, or the state of a weather simulation with one square

kilometer resolution.

The index k is a label indicating the kth distinct set of measurements. For many of the

examples in this book, X will consist of a time-series of data, and xk = x(k�t). Often the

state-dimension n is very large, on the order of millions or billions of degrees of freedom.
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1.1 Overview 5

The columns are often called snapshots, and m is the number of snapshots in X. For many

systems n ≫ m, resulting in a tall-skinny matrix, as opposed to a short-fat matrix when

n ≪ m.

The SVD is a unique matrix decomposition that exists for every complex-valued matrix

X ∈ C
n×m:

X = U�V∗ (1.2)

where U ∈ C
n×n and V ∈ C

m×m are unitary matrices1 with orthonormal columns, and

� ∈ R
n×m is a matrix with real, nonnegative entries on the diagonal and zeros off the

diagonal. Here ∗ denotes the complex conjugate transpose2. As we will discover throughout

this chapter, the condition that U and V are unitary is used extensively.

When n ≥ m, the matrix � has at most m nonzero elements on the diagonal, and may

be written as � =

[

�̂

0

]

. Therefore, it is possible to exactly represent X using the economy

SVD:

X = U�V∗ =
[

Û Û
⊥
]

[

�̂

0

]

V∗ = Û�̂V∗. (1.3)

The full SVD and economy SVD are shown in Fig. 1.1. The columns of Û⊥ span a vector

space that is complementary and orthogonal to that spanned by Û. The columns of U are

called left singular vectors of X and the columns of V are right singular vectors. The

diagonal elements of �̂ ∈ C
m×m are called singular values and they are ordered from

largest to smallest. The rank of X is equal to the number of nonzero singular values.

Computing the SVD

The SVD is a cornerstone of computational science and engineering, and the numerical

implementation of the SVD is both important and mathematically enlightening. That said,

most standard numerical implementations are mature and a simple interface exists in many

modern computer languages, allowing us to abstract away the details underlying the SVD

computation. For most purposes, we simply use the SVD as a part of a larger effort, and we

take for granted the existence of efficient and stable numerical algorithms. In the sections

that follow we demonstrate how to use the SVD in various computational languages, and

we also discuss the most common computational strategies and limitations. There are

numerous important results on the computation of the SVD [212, 106, 211, 292, 238].

A more thorough discussion of computational issues can be found in [214]. Randomized

numerical algorithms are increasingly used to compute the SVD of very large matrices as

discussed in Section 1.8.

Matlab. In Matlab, computing the SVD is straightforward:

>>X = randn(5,3); % Create a 5x3 random data matrix
>>[U,S,V] = svd(X); % Singular Value Decomposition

1 A square matrix U is unitary if UU∗ = U∗U = I.
2 For real-valued matrices, this is the same as the regular transpose X∗ = XT .
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6 Singular Value Decomposition (SVD)

=X Û Û

⊥

U

Σ̂

0

Σ

V
∗

= Û

Σ̂ V
∗

Figure 1.1 Schematic of matrices in the full and economy SVD.

For non-square matrices X, the economy SVD is more efficient:

>>[Uhat,Shat,V] = svd(X,’econ’); % economy sized SVD

Python

>>> import numpy as np
>>> X = np.random.rand(5, 3) % create random data matrix
>>> U, S, V = np.linalg.svd(X,full_matrices=True) % full SVD
>>> Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False)

% economy SVD

R

> X <- replicate(3, rnorm(5))
> s <- svd(X)
> U <- s$u
> S <- diag(s$d)
> V <- s$v

Mathematica

In:= X=RandomReal[{0,1},{5,3}]
In:= {U,S,V} = SingularValueDecomposition[X]

Other Languages

The SVD is also available in other languages, such as Fortran and C++. In fact, most SVD

implementations are based on the LAPACK (Linear Algebra Package) [13] in Fortran. The
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1.2 Matrix Approximation 7

SVD routine is designated DGESVD in LAPACK, and this is wrapped in the C++ libraries

Armadillo and Eigen.

Historical Perspective

The SVD has a long and rich history, ranging from early work developing the theoretical

foundations to modern work on computational stability and efficiency. There is an excellent

historical review by Stewart [502], which provides context and many important details.

The review focuses on the early theoretical work of Beltrami and Jordan (1873), Sylvester

(1889), Schmidt (1907), and Weyl (1912). It also discusses more recent work, including

the seminal computational work of Golub and collaborators [212, 211]. In addition, there

are many excellent chapters on the SVD in modern texts [524, 17, 316].

Uses in This Book and Assumptions of the Reader

The SVD is the basis for many related techniques in dimensionality reduction. These

methods include principal component analysis (PCA) in statistics [418, 256, 257], the

Karhunen–Loève transform (KLT) [280, 340], empirical orthogonal functions (EOFs) in

climate [344], the proper orthogonal decomposition (POD) in fluid dynamics [251], and

canonical correlation analysis (CCA) [131]. Although developed independently in a range

of diverse fields, many of these methods only differ in how the data is collected and pre-

processed. There is an excellent discussion about the relationship between the SVD, the

KLT and PCA by Gerbrands [204].

The SVD is also widely used in system identification and control theory to obtain

reduced order models that are balanced in the sense that states are hierarchically ordered

in terms of their ability to be observed by measurements and controlled by actuation [388].

For this chapter, we assume that the reader is familiar with linear algebra with some

experience in computation and numerics. For review, there are a number of excellent books

on numerical linear algebra, with discussions on the SVD [524, 17, 316].

1.2 Matrix Approximation
Perhaps the most useful and defining property of the SVD is that it provides an optimal

low-rank approximation to a matrix X. In fact, the SVD provides a hierarchy of low-rank

approximations, since a rank-r approximation is obtained by keeping the leading r singular

values and vectors, and discarding the rest.

Schmidt (of Gram-Schmidt) generalized the SVD to function spaces and developed an

approximation theorem, establishing truncated SVD as the optimal low-rank approxima-

tion of the underlying matrix X [476]. Schmidt’s approximation theorem was rediscovered

by Eckart and Young [170], and is sometimes referred to as the Eckart-Young theorem.

Theorem 1 (Eckart-Young [170]) The optimal rank-r approximation to X, in a least-

squares sense, is given by the rank-r SVD truncation X̃:

argmin
X̃, s.t. rank(X̃)=r

‖X − X̃‖F = Ũ�̃Ṽ∗. (1.4)
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8 Singular Value Decomposition (SVD)

Here, Ũ and Ṽ denote the first r leading columns of U and V, and �̃ contains the leading

r × r sub-block of �. ‖ · ‖F is the Frobenius norm.

Here, we establish the notation that a truncated SVD basis (and the resulting approxi-

mated matrix X̃) will be denoted by X̃ = Ũ�̃Ṽ∗. Because � is diagonal, the rank-r SVD

approximation is given by the sum of r distinct rank-1 matrices:

X̃ =

r
∑

k=1

σkukv∗
k = σ1u1v∗

1 + σ2u2v∗
2 + · · · + σrurv∗

r . (1.5)

This is the so-called dyadic summation. For a given rank r , there is no better approximation

for X, in the ℓ2 sense, than the truncated SVD approximation X̃. Thus, high-dimensional

data may be well described by a few dominant patterns given by the columns of Ũ and Ṽ.

This is an important property of the SVD, and we will return to it many times. There

are numerous examples of data sets that contain high-dimensional measurements, resulting

in a large data matrix X. However, there are often dominant low-dimensional patterns in

the data, and the truncated SVD basis Ũ provides a coordinate transformation from the

high-dimensional measurement space into a low-dimensional pattern space. This has the

benefit of reducing the size and dimension of large data sets, yielding a tractable basis for

visualization and analysis. Finally, many systems considered in this text are dynamic (see

Chapter 7), and the SVD basis provides a hierarchy of modes that characterize the observed

attractor, on which we may project a low-dimensional dynamical system to obtain reduced

order models (see Chapter 12).

Truncation

The truncated SVD is illustrated in Fig. 1.2, with Ũ, �̃ and Ṽ denoting the truncated

matrices. If X does not have full rank, then some of the singular values in �̂ may be zero,

and the truncated SVD may still be exact. However, for truncation values r that are smaller

than the number of nonzero singular values (i.e., the rank of X), the truncated SVD only

approximates X:

X ≈ Ũ�̃Ṽ∗. (1.6)

There are numerous choices for the truncation rank r , and they are discussed in Sec. 1.7.

If we choose the truncation value to keep all non-zero singular values, then X = Ũ�̃Ṽ
∗

is

exact.

Example: Image Compression

We demonstrate the idea of matrix approximation with a simple example: image compres-

sion. A recurring theme throughout this book is that large data sets often contain underlying

patterns that facilitate low-rank representations. Natural images present a simple and intu-

itive example of this inherent compressibility. A grayscale image may be thought of as a

real-valued matrix X ∈ R
n×m, where n and m are the number of pixels in the vertical and

horizontal directions, respectively3. Depending on the basis of representation (pixel-space,

Fourier frequency domain, SVD transform coordinates), images may have very compact

approximations.

3 It is not uncommon for image size to be specified as horizontal by vertical, i.e. XT ∈ R
m×n, although we stick

with vertical by horizontal to be consistent with generic matrix notation.
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Figure 1.2 Schematic of truncated SVD. The subscript ‘rem’ denotes the remainder of Û, �̂ or V

after truncation.

Consider the image of Mordecai the snow dog in Fig. 1.3. This image has 2000 × 1500

pixels. It is possible to take the SVD of this image and plot the diagonal singular values,

as in Fig. 1.4. Figure 1.3 shows the approximate matrix X̃ for various truncation values

r . By r = 100, the reconstructed image is quite accurate, and the singular values account

for almost 80% of the image variance. The SVD truncation results in a compression of

the original image, since only the first 100 columns of U and V, along with the first 100

diagonal elements of �, must be stored in Ũ, �̃ and Ṽ.

First, we load the image:

A=imread(’../DATA/dog.jpg’);
X=double(rgb2gray(A)); % Convert RBG->gray, 256 bit->double.
nx = size(X,1); ny = size(X,2);
imagesc(X), axis off, colormap gray

and take the SVD:

[U,S,V] = svd(X);

Next, we compute the approximate matrix using the truncated SVD for various ranks

(r = 5, 20, and 100):

for r=[5 20 100]; % Truncation value
Xapprox = U(:,1:r)*S(1:r,1:r)*V(:,1:r)’; % Approx. image
figure, imagesc(Xapprox), axis off
title([’r=’,num2str(r,’%d’),’]);

end
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10 Singular Value Decomposition (SVD)

Figure 1.3 Image compression of Mordecai the snow dog, truncating the SVD at various ranks r .

Original image resolution is 2000 × 1500.

Finally, we plot the singular values and cumulative energy in Fig. 1.4:

subplot(1,2,1), semilogy(diag(S),’k’)
subplot(1,2,2), plot(cumsum(diag(S))/sum(diag(S)),’k’)

1.3 Mathematical Properties and Manipulations
Here we describe important mathematical properties of the SVD including geometric inter-

pretations of the unitary matrices U and V as well as a discussion of the SVD in terms of
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