Compressive Imaging: Structure, Sampling, Learning

Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to the most recent trends in compressive imaging: deep learning and neural networks. This highly timely component provides, for the first time, a readable overview of these nascent topics. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

Ben Adcock is Associate Professor of Mathematics at Simon Fraser University. He received the CAIMS/PIMS Early Career Award (2017), an Alfred P. Sloan Research Fellowship (2015) and a Leslie Fox Prize in Numerical Analysis (2011). He has published 15 conference proceedings, two book chapters and over 50 peer-reviewed journal articles. His work has been published in outlets such as SIAM Review and Proceedings of the National Academy of Sciences, and featured on the cover of SIAM News.

Anders C. Hansen is Reader in Mathematics at the University of Cambridge and Professor of Mathematics at the University of Oslo. He received the Leverhulme Prize in Mathematics and Statistics (2017), the 2018 IMA Prize in Mathematics and Applications and the Whitehead Prize (2019). He has had papers published in outlets such as the Journal of the American Mathematical Society and Proceedings of the National Academy of Sciences, and featured on the cover of Physical Review Letters and SIAM News.
Compressive Imaging:
Structure, Sampling, Learning

BEN ADCOCK
Simon Fraser University

ANDERS C. HANSEN
University of Cambridge

with contributions by
VEGARD ANTUN
For

Tina

Gyda, Anna and Christian
Contents

Preface

1 Introduction
1.1 Imaging and Inverse Problems
1.2 What is Compressive Imaging?
1.3 Terminology
1.4 Imaging Modalities
1.5 Conventional Compressed Sensing
1.6 Imaging with Compressed Sensing
1.7 Neural Networks and Deep Learning for Compressive Imaging
1.8 Overview and Highlights
1.9 Disclaimers
1.10 Reading this Book

Part I The Essentials of Compressive Imaging

Summary of Part I

2 Images, Transforms and Sampling
2.1 Images
2.2 Sampling with the Fourier Transform
2.3 Sampling with the Radon Transform
2.4 Binary Sampling with the Walsh Transform

3 A Short Guide to Compressive Imaging
3.1 The Six Stages of the Compressive Imaging Pipeline
3.2 First Example: MRI
3.3 Second Example: X-ray CT
3.4 Third Example: Optical Imaging
3.5 Recovery of Image Sequences

4 Techniques for Enhancing Performance
4.1 Sampling Strategies
4.2 How to Design a Sampling Strategy
4.3 Resolution Enhancement
viii Contents

4.4 Discretization, Model Mismatch and the Inverse Crime 86
4.5 Sparsifying Transforms 88
4.6 Iterative Reweighting 90
4.7 Learning: Incorporating Training Data 93
4.8 An All-Round Model-Based Compressive Imaging Strategy 97

Part II Compressed Sensing, Optimization and Wavelets 101

Summary of Part II 103

5 An Introduction to Conventional Compressed Sensing 105
5.1 Projections 105
5.2 Sparsity and Compressibility 106
5.3 Measurements and Measurement Matrices 108
5.4 ℓ1-Minimization 112
5.5 Recovery Guarantees in Compressed Sensing 114
5.6 Techniques for Uniform Recovery 115
5.7 Techniques for Nonuniform Recovery 123
5.8 Oracle Estimators 125

6 The LASSO and its Cousins 129
6.1 Definitions 129
6.2 Summary 130
6.3 Uniform Recovery Guarantees 133
6.4 Nonuniform Recovery Guarantees 135

7 Optimization for Compressed Sensing 142
7.1 Minimizers, Not Minimum Values 142
7.2 Flavours of Optimization for Compressive Imaging 145
7.3 Gradient Descent 147
7.4 Forward–Backward Splitting 148
7.5 The Primal–Dual Iteration 151
7.6 Nesterov’s Method and NESTA for QCQP 157

8 Analysis of Optimization Algorithms 166
8.1 The rNSP and Inexactness 166
8.2 Compressed Sensing Analysis of the Primal–Dual Iteration 169
8.3 Compressed Sensing Analysis of NESTA 171
8.4 Computability and Complexity of Finding Minimizers 174
8.5 Impossibility of Computing Minimizers from Inexact Input 177
8.6 Complexity Theory for Compressed Sensing Problems 178

9 Wavelets 188
9.1 Introduction 188
9.2 Multiresolution Analysis 192
Contents

9.3 Wavelet Construction from an MRA 193
9.4 Wavelet Design 198
9.5 Compactly Supported Wavelets 200
9.6 Daubechies Wavelets 202
9.7 Wavelets on Intervals 207
9.8 Higher Dimensions 210
9.9 Summary and Orderings 213
9.10 Discrete Wavelet Computations 214
9.11 Beyond Wavelets 219

10 A Taste of Wavelet Approximation Theory 222
10.1 Linear and Nonlinear Approximation 222
10.2 Linear and Nonlinear Wavelet Approximation Rates 224
10.3 Discussion 225
10.4 Proofs of the Approximation Results 228
10.5 Higher Dimensions 234

Part III Compressed Sensing with Local Structure
Summary of Part III 237

11 From Global to Local 241
11.1 The Fourier-Wavelets Problem 241
11.2 Structured Sparsity and the Flip Test 244
11.3 Local Sparsity in Levels 250
11.4 Sampling Operators 252
11.5 Notions of Coherence and Recovery Guarantees 259
11.6 The One-Dimensional Discrete Fourier–Haar Wavelet Problem 262

12 Local Structure and Nonuniform Recovery 267
12.1 Weighted ℓ^1-Minimization 268
12.2 Local Recovery Guarantee 269
12.3 The Sparse Model 270
12.4 The Sparse in Levels Model 271
12.5 The Fourier–Haar Wavelet Problem 276
12.6 Comparison with Oracle Estimators 280
12.7 Coherences of the Discrete Fourier–Haar Matrix 281
12.8 Proof of Theorem 12.4 284
12.9 Improvements for Random Signal Models 297

13 Local Structure and Uniform Recovery 305
13.1 Decoders and Recovery Guarantees 305
13.2 Restricted Isometry and Robust Null Space Properties 307
13.3 Stable and Accurate Recovery via the rNSPL and G-RIPL 308
13.4 Measurement Conditions for Uniform Recovery 314
13.5 Proof of Theorem 13.12 320
14 Infinite-Dimensional Compressed Sensing

14.1 Motivations

14.2 When Vectors Become Functions

14.3 Bandwidth

14.4 Generalized Sampling

14.5 Compressed Sensing in Infinite Dimensions

14.6 Recovery Guarantees for Weighted QCBP

14.7 Feasibility and the SR-LASSO

Part IV Compressed Sensing for Imaging

15 Sampling Strategies for Compressive Imaging

15.1 Overview

15.2 The DS, DIS and DAS Schemes

15.3 Summary of the Measurement Conditions

15.4 When and Why Do Certain Patterns Work Well?

16 Recovery Guarantees for Wavelet-Based Compressive Imaging

16.1 Decoders and Recovery Guarantees

16.2 What does this Mean? Near-Optimal Wavelet Approximation

16.3 Main Recovery Guarantees

16.4 Proofs of the Recovery Guarantees

Part V From Compressed Sensing to Deep Learning

17 Total Variation Minimization

17.1 Definitions

17.2 Two Curious Experiments

17.3 Recovery Guarantees for Fourier Sampling

17.4 Proofs

17.5 Recovery Guarantees for Haar-Incoherent Measurements

17.6 Structure-Dependent Sampling

18 Neural Networks and Deep Learning

18.1 Supervised Machine Learning

18.2 Neural Networks

18.3 The Universal Approximation Theorem

18.4 Architecture Design and Extensions

18.5 Training a Neural Network

18.6 The Success of Deep Learning

18.7 Instabilities in Deep Learning

18.8 Why do Instabilities Occur?
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Deep Learning for Compressive Imaging</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Why Go Beyond Compressed Sensing</td>
<td>458</td>
</tr>
<tr>
<td>19.2</td>
<td>Deep Learning for Inverse Problems</td>
<td>459</td>
</tr>
<tr>
<td>19.3</td>
<td>Experimental Setup</td>
<td>465</td>
</tr>
<tr>
<td>19.4</td>
<td>Testing for Instabilities in Neural Networks for Compressive Imaging</td>
<td>466</td>
</tr>
<tr>
<td>20</td>
<td>Accuracy and Stability of Deep Learning for Compressive Imaging</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Optimal Maps</td>
<td>470</td>
</tr>
<tr>
<td>20.2</td>
<td>Examining Instabilities in Deep Learning for Compressive Imaging</td>
<td>475</td>
</tr>
<tr>
<td>20.3</td>
<td>The Stability versus Performance Tradeoff</td>
<td>484</td>
</tr>
<tr>
<td>20.4</td>
<td>The Tradeoff for Compressed Sensing and Deep Learning</td>
<td>487</td>
</tr>
<tr>
<td>20.5</td>
<td>Can Instabilities be Remedied?</td>
<td>493</td>
</tr>
<tr>
<td>21</td>
<td>Stable and Accurate Neural Networks for Compressive Imaging</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Algorithms for Computing Neural Networks</td>
<td>501</td>
</tr>
<tr>
<td>21.2</td>
<td>Unravelled ISTA</td>
<td>503</td>
</tr>
<tr>
<td>21.3</td>
<td>Unravelling the Primal–Dual Iteration</td>
<td>505</td>
</tr>
<tr>
<td>21.4</td>
<td>Stable and Accurate Neural Networks for Compressed Sensing</td>
<td>509</td>
</tr>
<tr>
<td>21.5</td>
<td>Stable and Accurate Neural Networks for Compressive Imaging</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Epilogue</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>Summary of the Appendices</td>
<td>527</td>
</tr>
</tbody>
</table>

Appendix A Linear Algebra

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Norms</td>
<td>528</td>
</tr>
<tr>
<td>A.2</td>
<td>Orthogonality and Orthonormal Bases</td>
<td>529</td>
</tr>
<tr>
<td>A.3</td>
<td>Matrices</td>
<td>530</td>
</tr>
<tr>
<td>A.4</td>
<td>Matrix Norms</td>
<td>531</td>
</tr>
<tr>
<td>A.5</td>
<td>Further Properties of the Matrix ℓ^2-Norm</td>
<td>532</td>
</tr>
<tr>
<td>A.6</td>
<td>The Singular Value Decomposition</td>
<td>533</td>
</tr>
<tr>
<td>A.7</td>
<td>Least Squares and the Pseudoinverse</td>
<td>533</td>
</tr>
<tr>
<td>A.8</td>
<td>Circulant Matrices and Convolution</td>
<td>535</td>
</tr>
<tr>
<td>A.9</td>
<td>Kronecker products of matrices</td>
<td>535</td>
</tr>
</tbody>
</table>

Appendix B Functional Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Metric Spaces</td>
<td>537</td>
</tr>
<tr>
<td>B.2</td>
<td>Banach and Hilbert Spaces</td>
<td>538</td>
</tr>
<tr>
<td>B.3</td>
<td>The ℓ^p and L^p Spaces</td>
<td>538</td>
</tr>
<tr>
<td>B.4</td>
<td>Operators between Normed Spaces</td>
<td>539</td>
</tr>
<tr>
<td>B.5</td>
<td>Orthogonality in Hilbert Spaces</td>
<td>540</td>
</tr>
<tr>
<td>B.6</td>
<td>Orthonormal Bases of Hilbert Spaces</td>
<td>540</td>
</tr>
</tbody>
</table>
Contents

Appendix C Probability 542
C.1 Definition and Basic Properties 542
C.2 Random Variables 543
C.3 Joint Distributions and Independence 544
C.4 Expectation and Variance 544

Appendix D Convex Analysis and Convex Optimization 546
D.1 Convex Sets and Convex Functions 546
D.2 Subdifferentials 547
D.3 Convex Optimization 548
D.4 The Convex Conjugate 549
D.5 The Proximal Map 551

Appendix E Fourier Transforms and Series 553
E.1 The Fourier Transform 553
E.2 The Fourier Basis 554
E.3 The Discrete Fourier Transform 555

Appendix F Properties of Walsh Functions and the Walsh Transform 556
F.1 Sign Changes 556
F.2 Binary Addition, Translation and Scaling 556
F.3 Orthonormality and Relation to Haar Wavelets 558
F.4 The Paley and Sequency Orderings 560
F.5 Properties of the Hadamard Matrix 561
F.6 The Fast Walsh–Hadamard Transform 562

Notation 563
Abbreviations 567
References 568
Index 596
Preface

The objective of compressive imaging is to develop algorithms for image reconstruction that exploit the low-dimensional structure inherent to natural images to achieve higher-quality reconstructions from fewer measurements. This structure has been used in image compression since the 1990s. But it was not until the 2000s, which saw the advent of the related field of compressed sensing – introduced in the work of Candès, Romberg & Tao and Donoho – that it began to be exploited in the context of image reconstruction. Nowadays, compressive imaging is a large and vibrant subject, spanning mathematics, computer science, engineering and physics. It has fundamentally altered how images are reconstructed in a variety of real-world settings. Classical linear reconstruction techniques have in many cases been replaced by sophisticated nonlinear reconstruction procedures based on convex, or sometimes even nonconvex, optimization problems. Practical applications include Magnetic Resonance Imaging (MRI), X-ray Computed Tomography (X-ray CT), electron or fluorescence microscopy, seismic imaging and various optical imaging modalities, to name but a few. The field continues to evolve at a rapid rate, with the most recent trend being the introduction of tools from machine learning, such as deep learning, as means to achieve even further performance gains.

Objectives of this Book

This book is about compressive imaging and its mathematical underpinnings. It is aimed at graduate students, postdoctoral fellows and faculty in mathematics, computer science, engineering and physics who want to learn about modern image reconstruction techniques. Its goal is to span the gap between theory and practice, giving the reader both an overview of the main themes of compressive imaging and an in-depth mathematical analysis. A consistent theme of the book is the insight such mathematical analysis brings, both in designing methods in the first place and then enhancing their practical performance.

The book consists of 22 chapters, plus appendices containing various prerequisite materials. It is divided into five parts. Part I is a practical guide to compressive imaging, supported by many numerical examples and downloadable code. It is intended for readers without extensive background in the subject. Part II systematically introduces the main mathematical tools of compressive imaging, including conventional compressed sensing, convex optimization and wavelets. Parts III and IV are devoted to compressed sensing theory and its application to image reconstruction, respectively. Finally, Part V
Preface

consider the most recent trends in compressive imaging, namely, deep learning and neural networks. It provides an overview of this nascent topic and includes both mathematical and empirical insights.

This book contains many numerical examples. A companion software library, CIlib, has been developed by Vegard Antun (University of Oslo). It contains a broad set of functions and tools for experimenting with various compressive imaging techniques. It is available at

https://github.com/vegarant/cilib

or through the book’s website:

www.compressiveimagingbook.com

This library also includes code for reproducing most of the figures in the book.

Acknowledgements

Many people have contributed substantially to this book. First and foremost, we owe a great debt of gratitude to Vegard Antun. He has produced all the figures in the book and developed the aforementioned software library. He also provided vital input into many parts of this project. Suffice to say, without Vegard this would be a far worse book!

We also gratefully acknowledge the contributions of our (current and former) students and postdocs who have assisted with this project. They have proofread large parts of the manuscript, providing useful suggestions and pointing out both typos and more serious errors. They have also shown great patience during the final stages of its preparation as other projects suffered inevitable delays. They are (in alphabetical order): Edvard Aksnes, Anyi Bao, Alex Bastounis, Randall Bergman, Simone Brugiapaglia, Juan M. Cardenas, Il-Yong Chun, Matthew Colbrook, Nick Dexter, Einar Gabbassov, Milana Gataric, Nina Gottschling, Alex Jones, Matthew King-Roskamp, Chen Li, Zhen Ning David Liu, Mathias Lohne, Kristian Monsen Haug, Sebastian Moraga, Max Neyra-Nesterenko, Clarice Poon, Francesco Renna, Mohsen Seifi, Yi Sui, Laura Thesing and Qinghong Xu.

Many colleagues have also contributed to this book, through collaborating with us, discussing and answering our many questions, and proofreading parts of the manuscript. This long list includes (in alphabetical order): Simon Arridge, Richard Baraniuk, Stephen Becker, Claire Boyer, Robert Calderbank, Emmanuel Candès, Antonin Chambolle, Felipe Cucker, Ingrid Daubechies, Mike Davies, Ron DeVore, David Donoho, Yonina Eldar, Jalal Fadili, Alhussein Fawzi, Hamza Fawzi, Omar Fawzi, Jeffrey Fessler, Simon Foucart, Michael Friedlander, Pascal Frossard, Anne Gelb, Rémi Gribonval, Karlheinz Gröchenig, David Gross, Nick Higham, Bamdad Hosseini, Arieh Iserles, Mark Iwen, Laurent Jacques, Jakob Sauer Jørgensen, Felix Krahmer, Richard Kueng, Gitta Kutyniok, Bradley Lucier, Jackie Ma, Dustin Mixon, Mohsen Moosavi-Dezfooli, Amirafshar Moshtaghpour, Adrian Nachman, Arkadi Nemirovski, Nilima Nigam, Ozan Öktem, Hooman Owhadi, Gabriel Peyré, Yaniv Plan, Rodrigo Platte, Bogdan Roman, Justin Romberg, Øyvind Ryan, Rayan Saab, Carola Schönlieb, Thomas Strohmer, Andrew Stuart, Joel
Several images were provided to the authors for use in the numerical experiments. We thank Elizabeth Sawchuk (and Bear) for the ‘dog’ image, Vegard Antun for the ‘klubbe’ and ‘kopp’ images, Andy Ellison for the ‘pomegranate’ image and GE Electric Healthcare for the ‘brain’ image. See Fig. 2.2. We also thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine and the National Institute of Biomedical Imaging and Bioengineering for allowing the use of their data in the experiments shown in Figs 20.4 and 20.10. Table 18.1 and Figs 18.5 and 18.8 are from [359]. We thank the authors, Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi and Pascal Frossard, for allowing us to reproduce them. The deep learning experiments in Chapters 19 and 20 were first produced in [36]. We thank the authors of [253, 278, 427, 512, 527] for sharing their code, data and network weights, and thereby allowing us to reproduce their networks and experiments. We also thank Kristian Monsen Haug for his assistance with Fig. 21.1.

Both authors would like to acknowledge their respective institutions for their support: Purdue University, Simon Fraser University, University of Cambridge and University of Oslo. BA also wishes to thank the Isaac Newton Institute for several productive visits. BA acknowledges support from an Alfred P. Sloan Research Fellowship, NSERC (the Natural Sciences and Engineering Research Council of Canada) through grant 611675, NSF (the National Science Foundation) through grant DMS-1318894, PIMS (the Pacific Institute for the Mathematical Sciences) through the Collaborative Research Group ‘High-dimensional Data Analysis’ and SFU’s Big Data Initiative through the ‘Next Big Question Fund’. ACH acknowledges support from a Royal Society University Research Fellowship, EPSRC (the Engineering and Physical Sciences Research Council) through grant EP/L003457/1 and the 2017 Leverhulme Prize. We also acknowledge Cambridge University Press and, in particular, our editor David Tranah, who has been an invaluable source of guidance while writing this manuscript. Lastly, we thank our respective families for their continued love and support throughout this project.

Burnaby, BC, Canada
Ben Adcock
Cambridge, UK
Anders C. Hansen
August 2020