Compressive Imaging: Structure, Sampling, Learning

Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging: deep learning and neural networks. This highly timely component provides, for the first time, a readable overview of these nascent topics. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

Ben Adcock is Associate Professor of Mathematics at Simon Fraser University. He received the CAIMS/PIMS Early Career Award (2017), an Alfred P. Sloan Research Fellowship (2015) and a Leslie Fox Prize in Numerical Analysis (2011). He has published 15 conference proceedings, two book chapters and over 50 peer-reviewed journal articles. His work has been published in outlets such as *SIAM Review* and *Proceedings of the National Academy of Sciences*, and featured on the cover of *SIAM News*.

Anders C. Hansen is Reader in Mathematics at the University of Cambridge and Professor of Mathematics at the University of Oslo. He received the Leverhulme Prize in Mathematics and Statistics (2017), the 2018 IMA Prize in Mathematics and Applications and the Whitehead Prize (2019). He has had papers published in outlets such as the *Journal of the American Mathematical Society* and *Proceedings of the National Academy of Sciences*, and featured on the cover of *Physical Review Letters* and *SIAM News*.

Cambridge University Press 978-1-108-42161-4 — Compressive Imaging: Structure, Sampling, Learning Ben Adcock , Anders C. Hansen Frontmatter <u>More Information</u>

Compressive Imaging: Structure, Sampling, Learning

BEN ADCOCK Simon Fraser University

ANDERS C. HANSEN University of Cambridge

with contributions by VEGARD ANTUN

© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108421614 DOI: 10.1017/9781108377447

© Ben Adcock and Anders C. Hansen 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in Singapore by Markono Print Media Pte Ltd

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-42161-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For

Tina

Gyda, Anna and Christian

Contents

Preface

page xiii

1	Intro	duction	1
	1.1	Imaging and Inverse Problems	2
	1.2	What is Compressive Imaging?	3
	1.3	Terminology	5
	1.4	Imaging Modalities	5
	1.5	Conventional Compressed Sensing	7
	1.6	Imaging with Compressed Sensing	12
	1.7	Neural Networks and Deep Learning for Compressive Imaging	17
	1.8	Overview and Highlights	22
	1.9	Disclaimers	23
	1.10	Reading this Book	25
Part I	The Es	sentials of Compressive Imaging	27
	Sumn	nary of Part I	29
2	Images, Transforms and Sampling		30
	2.1	Images	30
	2.2	Sampling with the Fourier Transform	33
	2.3	Sampling with the Radon Transform	36
	2.4	Binary Sampling with the Walsh Transform	40
3	A Short Guide to Compressive Imaging		47
	3.1	The Six Stages of the Compressive Imaging Pipeline	47
	3.2	First Example: MRI	51
	3.3	Second Example: X-ray CT	58
	3.4	Third Example: Optical Imaging	62
	3.5	Recovery of Image Sequences	66
4	Techniques for Enhancing Performance		
	4.1	Sampling Strategies	75
	4.2	How to Design a Sampling Strategy	80
	4.3	Resolution Enhancement	82

viii	Cont	Contents			
	4.4	Discretization, Model Mismatch and the Inverse Crime	86		
	4.5	Sparsifying Transforms	88		
	4.6	Iterative Reweighting	90		
	4.7	Learning: Incorporating Training Data	93		
	4.8	An All-Round Model-Based Compressive Imaging Strategy	97		
Part II	-	ressed Sensing, Optimization and Wavelets	101		
	Sumi	mary of Part II	103		
5	An Introduction to Conventional Compressed Sensing				
	5.1	Projections	105		
	5.2	Sparsity and Compressibility	106		
	5.3	Measurements and Measurement Matrices	108		
	5.4	ℓ^1 -Minimization	112		
	5.5	Recovery Guarantees in Compressed Sensing	114		
	5.6	Techniques for Uniform Recovery	115		
	5.7	Techniques for Nonuniform Recovery	123		
	5.8	Oracle Estimators	125		
6	The LASSO and its Cousins		129		
	6.1	Definitions	129		
	6.2	Summary	130		
	6.3	Uniform Recovery Guarantees	133		
	6.4	Nonuniform Recovery Guarantees	135		
7	Optimization for Compressed Sensing		142		
	7.1	Minimizers, Not Minimum Values	142		
	7.2	Flavours of Optimization for Compressive Imaging	145		
	7.3	Gradient Descent	147		
	7.4	Forward–Backward Splitting	148		
	7.5	The Primal–Dual Iteration	151		
	7.6	Nesterov's Method and NESTA for QCBP	157		
8	Analysis of Optimization Algorithms				
	8.1	The rNSP and Inexactness	166		
	8.2	Compressed Sensing Analysis of the Primal–Dual Iteration	169		
	8.3	Compressed Sensing Analysis of NESTA	171		
	8.4	Computability and Complexity of Finding Minimizers	174		
	8.5	Impossibility of Computing Minimizers from Inexact Input	177		
	8.6	Complexity Theory for Compressed Sensing Problems	178		
9	Wave	elets	188		
	9.1	Introduction	188		
	9.2	Multiresolution Analysis	192		
		-			

		Conter	n ts ix
	0.0		100
	9.3	Wavelet Construction from an MRA	193
	9.4	Wavelet Design	198
	9.5	Compactly Supported Wavelets	200
	9.6	Daubechies Wavelets	202
	9.7	Wavelets on Intervals	207 210
	9.8	Higher Dimensions	210
	9.9 9.10	Summary and Orderings Discrete Wavelet Computations	213
	9.10 9.11	•	214
10	Δ Τας	ste of Wavelet Approximation Theory	222
10	10.1	Linear and Nonlinear Approximation	222
	10.1	**	222
		Discussion	225
		Proofs of the Approximation Results	228
	10.5		234
Part III	Comp	ressed Sensing with Local Structure	237
	-	nary of Part III	239
11	From	n Global to Local	241
	11.1	The Fourier-Wavelets Problem	241
	11.2		244
	11.3	1 2	250
	11.4		252
	11.5	2	259
	11.6	The One-Dimensional Discrete Fourier–Haar Wavelet Problem	262
12	Loca	I Structure and Nonuniform Recovery	267
	12.1	Weighted ℓ^1 -Minimization	268
	12.2	Local Recovery Guarantee	269
	12.3	The Sparse Model	270
	12.4	1	271
	12.5		276
	12.6	1	280
	12.7	Coherences of the Discrete Fourier–Haar Matrix	281
	12.8		284
	12.9	Improvements for Random Signal Models	297
13		I Structure and Uniform Recovery	305
	13.1	Decoders and Recovery Guarantees	305
	13.2	Restricted Isometry and Robust Null Space Properties	307
	13.3	•	308
	13.4	•	314
	13.5	Proof of Theorem 13.12	320

X	Cont	ents	
14	Infini	ite-Dimensional Compressed Sensing	334
	14.1	Motivations	334
	14.2	When Vectors Become Functions	336
	14.3	Bandwidth	337
	14.4	Generalized Sampling	338
	14.5	I	341
		Recovery Guarantees for Weighted QCBP	343
	14.7	Feasibility and the SR-LASSO	344
Part IV	Comp	ressed Sensing for Imaging	349
	Sumn	nary of Part IV	351
15	Sam	pling Strategies for Compressive Imaging	353
	15.1	Overview	353
	15.2	The DS, DIS and DAS Schemes	358
	15.3	Summary of the Measurement Conditions	360
	15.4	When and Why Do Certain Patterns Work Well?	367
16	Recovery Guarantees for Wavelet-Based Compressive Imaging		373
	16.1	Decoders and Recovery Guarantees	373
	16.2	What does this Mean? Near-Optimal Wavelet Approximation	374
	16.3	Main Recovery Guarantees	378
	16.4	Proofs of the Recovery Guarantees	381
17	Total	Variation Minimization	403
	17.1	Definitions	403
	17.2	Two Curious Experiments	405
	17.3	Recovery Guarantees for Fourier Sampling	406
	17.4	Proofs	411
	17.5	Recovery Guarantees for Haar-Incoherent Measurements	419
	17.6	Structure-Dependent Sampling	422
Part V	From C	Compressed Sensing to Deep Learning	427
	Sumn	nary of Part V	429
18	Neural Networks and Deep Learning		431
	18.1	Supervised Machine Learning	431
	18.2	Neural Networks	432
	18.3	The Universal Approximation Theorem	435
	18.4	Architecture Design and Extensions	436
	18.5	Training a Neural Network	439
	18.6	The Success of Deep Learning	445
	18.7	Instabilities in Deep Learning	446
	18.8	Why do Instabilities Occur?	452

		Contents	xi
19	-		458
			458
			459
	19.3	1 1	465
	19.4	Testing for Instabilities in Neural Networks for Compressive Imaging	466
20	Deep Learning for Compressive Imaging 19.1 Why Go Beyond Compressed Sensing 19.2 Deep Learning for Inverse Problems 19.3 Experimental Setup 19.4 Testing for Instabilities in Neural Networks for Compressive Imaging 20.1 Optimal Maps 20.2 Examining Instabilities in Deep Learning for Compressive Imaging 20.3 The Stability of Deep Learning for Compressive Imaging 20.4 The Tradeoff for Compressed Sensing and Deep Learning 20.5 Can Instabilities be Remedied? Stable and Accurate Neural Networks for Compressive Imaging 21.1 Algorithms for Computing Neural Networks 21.2 Urravelling the Primal–Dual Iteration 21.4 Stable and Accurate Neural Networks for Compressed Sensing 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.5 Stable and Accurate Neural Networks for Compressive Imaging 21.6<	470	
	20.1	Optimal Maps	470
	20.2	Examining Instabilities in Deep Learning for Compressive Imaging	475
	20.3	The Stability versus Performance Tradeoff	484
	20.4	The Tradeoff for Compressed Sensing and Deep Learning	487
	20.5	Can Instabilities be Remedied?	493
21	Stab	le and Accurate Neural Networks for Compressive Imaging	501
	21.1	Algorithms for Computing Neural Networks	501
	21.2	Unravelled ISTA	503
	21.3	Unravelling the Primal–Dual Iteration	505
	21.4	Stable and Accurate Neural Networks for Compressed Sensing	509
	21.5	Stable and Accurate Neural Networks for Compressive Imaging	513
	Epilo	ogue	521
	Арр	endices	525
	Sum	mary of the Appendices	527
Appendix /	A	Linear Algebra	528
	A.1	Norms	528
	A.2	Orthogonality and Orthonormal Bases	529
	A.3	Matrices	530
	A.4	Matrix Norms	531
	A.5	Further Properties of the Matrix ℓ^2 -Norm	532
	A.6	The Singular Value Decomposition	533
	A.7	Least Squares and the Pseudoinverse	533
	A.8	Circulant Matrices and Convolution	535
	A.9	Kronecker products of matrices	535
Appendix I	в	Functional Analysis	537
	B .1		537
	B.2	Banach and Hilbert Spaces	538
	B.3	1	538
			539
	B.5		540
	B.6	Orthonormal Bases of Hilbert Spaces	540

xii

Contents

Appendix C	Probability	542
C.1	Definition and Basic Properties	542
C.2	Random Variables	543
C.3	Joint Distributions and Independence	544
C.4	Expectation and Variance	544
Appendix D	Convex Analysis and Convex Optimization	546
D.1	Convex Sets and Convex Functions	546
D.2	Subdifferentials	547
D.3	Convex Optimization	548
D.4	The Convex Conjugate	549
D.5	The Proximal Map	551
Appendix E	Fourier Transforms and Series	553
E.1	The Fourier Transform	553
E.2	The Fourier Basis	554
E.3	The Discrete Fourier Transform	555
Appendix F	Properties of Walsh Functions and the Walsh Transform	556
F.1	Sign Changes	556
F.2	Binary Addition, Translation and Scaling	556
F.3	Orthonormality and Relation to Haar Wavelets	558
F.4	The Paley and Sequency Orderings	560
F.5	Properties of the Hadamard Matrix	561
F.6	The Fast Walsh–Hadamard Transform	562
Note	Notation	
Abb	reviations	567
Refe	References	
Inde	ex	596

Preface

The objective of *compressive imaging* is to develop algorithms for image reconstruction that exploit the low-dimensional structure inherent to natural images to achieve higherquality reconstructions from fewer measurements. This structure has been used in *image* compression since the 1990s. But it was not until the 2000s, which saw the advent of the related field of compressed sensing - introduced in the work of Candès, Romberg & Tao and Donoho – that it began to be exploited in the context of image reconstruction. Nowadays, compressive imaging is a large and vibrant subject, spanning mathematics, computer science, engineering and physics. It has fundamentally altered how images are reconstructed in a variety of real-world settings. Classical linear reconstruction techniques have in many cases been replaced by sophisticated nonlinear reconstruction procedures based on convex, or sometimes even nonconvex, optimization problems. Practical applications include Magnetic Resonance Imaging (MRI), X-ray Computed Tomography (X-ray CT), electron or fluorescence microscopy, seismic imaging and various optical imaging modalities, to name but a few. The field continues to evolve at a rapid rate, with the most recent trend being the introduction of tools from machine learning, such as deep learning, as means to achieve even further performance gains.

Objectives of this Book

This book is about compressive imaging and its mathematical underpinnings. It is aimed at graduate students, postdoctoral fellows and faculty in mathematics, computer science, engineering and physics who want to learn about modern image reconstruction techniques. Its goal is to span the gap between theory and practice, giving the reader both an overview of the main themes of compressive imaging and an in-depth mathematical analysis. A consistent theme of the book is the insight such mathematical analysis brings, both in designing methods in the first place and then enhancing their practical performance.

The book consists of 22 chapters, plus appendices containing various prerequisite materials. It is divided into five parts. Part I is a practical guide to compressive imaging, supported by many numerical examples and downloadable code. It is intended for readers without extensive background in the subject. Part II systematically introduces the main mathematical tools of compressive imaging, including conventional compressed sensing, convex optimization and wavelets. Parts III and IV are devoted to compressed sensing theory and its application to image reconstruction, respectively. Finally, Part V

xiv Preface

considers the most recent trends in compressive imaging, namely, deep learning and neural networks. It provides an overview of this nascent topic and includes both mathematical and empirical insights.

This book contains many numerical examples. A companion software library, *Cllib*, has been developed by Vegard Antun (University of Oslo). It contains a broad set of functions and tools for experimenting with various compressive imaging techniques. It is available at

https://github.com/vegarant/cilib

or through the book's website:

www.compressiveimagingbook.com

This library also includes code for reproducing most of the figures in the book.

Acknowledgements

Many people have contributed substantially to this book. First and foremost, we owe a great debt of gratitude to Vegard Antun. He has produced all the figures in the book and developed the aforementioned software library. He also provided vital input into many parts of this project. Suffice to say, without Vegard this would be a far worse book!

We also gratefully acknowledge the contributions of our (current and former) students and postdocs who have assisted with this project. They have proofread large parts of the manuscript, providing useful suggestions and pointing out both typos and more serious errors. They have also shown great patience during the final stages of its preparation as other projects suffered inevitable delays. They are (in alphabetical order): Edvard Aksnes, Anyi Bao, Alex Bastounis, Randall Bergman, Simone Brugiapaglia, Juan M. Cardenas, Il-Yong Chun, Matthew Colbrook, Nick Dexter, Einar Gabbassov, Milana Gataric, Nina Gottschling, Alex Jones, Matthew King-Roskamp, Chen Li, Zhen Ning David Liu, Mathias Lohne, Kristian Monsen Haug, Sebastian Moraga, Max Neyra-Nesterenko, Clarice Poon, Francesco Renna, Mohsen Seifi, Yi Sui, Laura Thesing and Qinghong Xu.

Many colleagues have also contributed to this book, through collaborating with us, discussing and answering our many questions, and proofreading parts of the manuscript. This long list includes (in alphabetical order): Simon Arridge, Richard Baraniuk, Stephen Becker, Claire Boyer, Robert Calderbank, Emmanuel Candès, Antonin Chambolle, Felipe Cucker, Ingrid Daubechies, Mike Davies, Ron DeVore, David Donoho, Yonina Eldar, Jalal Fadili, Alhussein Fawzi, Hamza Fawzi, Omar Fawzi, Jeffrey Fessler, Simon Foucart, Michael Friedlander, Pascal Frossard, Anne Gelb, Rémi Gribonval, Karlheinz Gröchenig, David Gross, Nick Higham, Bamdad Hosseini, Arieh Iserles, Mark Iwen, Laurent Jacques, Jakob Sauer Jørgensen, Felix Krahmer, Richard Kueng, Gitta Kutyniok, Bradley Lucier, Jackie Ma, Dustin Mixon, Mohsen Moosavi-Dezfooli, Amirafshar Moshtaghpour, Adrian Nachman, Arkadi Nemirovski, Nilima Nigam, Ozan Öktem, Hooman Owhadi, Gabriel Peyré, Yaniv Plan, Rodrigo Platte, Bogdan Roman, Justin Romberg, Øyvind Ryan, Rayan Saab, Carola Schönlieb, Thomas Strohmer, Andrew Stuart, Joel

Cambridge University Press 978-1-108-42161-4 — Compressive Imaging: Structure, Sampling, Learning Ben Adcock , Anders C. Hansen Frontmatter <u>More Information</u>

Preface

xν

Tropp, Michael Unser, Mihaela van der Schaar, Martin Vetterli, Verner Vlačić, Felix Voigtlaender, Michael Wakin, Rachel Ward, Clayton Webster, Pierre Weiss and Ozgur Yilmaz. We extend our thanks to all of them and to anyone whose name we have accidentally left off this list.

Several images were provided to the authors for use in the numerical experiments. We thank Elizabeth Sawchuk (and Bear) for the 'dog' image, Vegard Antun for the 'klubbe' and 'kopp' images, Andy Ellison for the 'pomegranate' image and GE Electric Healthcare for the 'brain' image. See Fig. 2.2. We also thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine and the National Institute of Biomedical Imaging and Bioengineering for allowing the use of their data in the experiments shown in Figs 20.4 and 20.10. Table 18.1 and Figs 18.5 and 18.8 are from [359]. We thank the authors, Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi and Pascal Frossard, for allowing us to reproduce them. The deep learning experiments in Chapters 19 and 20 were first produced in [36]. We thank the authors of [253,278,427,512,527] for sharing their code, data and network weights, and thereby allowing us to reproduce their networks and experiments. We also thank Kristian Monsen Haug for his assistance with Fig. 21.1.

Both authors would like to acknowledge their respective institutions for their support: Purdue University, Simon Fraser University, University of Cambridge and University of Oslo. BA also wishes to thank the Isaac Newton Institute for several productive visits. BA acknowledges support from an Alfred P. Sloan Research Fellowship, NSERC (the Natural Sciences and Engineering Research Council of Canada) through grant 611675, NSF (the National Science Foundation) through grant DMS-1318894, PIMS (the Pacific Institute for the Mathematical Sciences) through the Collaborative Research Group 'High-dimensional Data Analysis' and SFU's Big Data Initiative through the 'Next Big Question Fund'. ACH acknowledges support from a Royal Society University Research Fellowship, EPSRC (the Engineering and Physical Sciences Research Council) through grant EP/L003457/1 and the 2017 Leverhulme Prize. We also acknowledge Cambridge University Press and, in particular, our editor David Tranah, who has been an invaluable source of guidance while writing this manuscript. Lastly, we thank our respective families for their continued love and support throughout this project.

Burnaby, BC, Canada Cambridge, UK August 2020 Ben Adcock Anders C. Hansen