Contents

Introduction
1

PART ONE TOPOLOGICAL PROPERTIES
7

1 **General Topology**
9
1.1 Topological Spaces
9
1.2 Compactness
15

2 **Metric Spaces**
18
2.1 Metric Spaces
18
2.2 The Topology of Metric Spaces
21
2.3 Completeness: Tietze’s Extension Theorem
24
2.4 More on Completeness
27
2.5 The Completion of a Metric Space
29
2.6 Topologically Complete Spaces
31
2.7 Baire’s Category Theorem
33
2.8 Lipschitz Functions
35

3 **Polish Spaces and Compactness**
38
3.1 Polish Spaces
38
3.2 Totally Bounded Metric Spaces
39
3.3 Compact Metrizable Spaces
41
3.4 Locally Compact Polish Spaces
47

4 **Semi-continuous Functions**
50
4.1 The Effective Domain and Proper Functions
50
4.2 Semi-continuity
50
4.3 The Brézis–Browder Lemma
53
4.4 Ekeland’s Variational Principle
54
Table of Contents

5 Uniform Spaces and Topological Groups
- 5.1 Uniform Spaces
- 5.2 The Uniformity of a Compact Hausdorff Space
- 5.3 Topological Groups
- 5.4 The Uniformities of a Topological Group
- 5.5 Group Actions
- 5.6 Metrizable Topological Groups

6 Cadlag Functions
- 6.1 Cadlag Functions
- 6.2 The Space $(D[0, 1], d_\infty)$
- 6.3 The Skorohod Topology
- 6.4 The Metric d_B

7 Banach Spaces
- 7.1 Normed Spaces and Banach Spaces
- 7.2 The Space $BL(X)$ of Bounded Lipschitz Functions
- 7.3 Introduction to Convexity
- 7.4 Convex Sets in a Normed Space
- 7.5 Linear Operators
- 7.6 Five Fundamental Theorems
- 7.7 The Petal Theorem and Daneš’s Drop Theorem

8 Hilbert Spaces
- 8.1 Inner-product Spaces
- 8.2 Hilbert Space; Nearest Points
- 8.3 Orthonormal Sequences; Gram–Schmidt Orthonormalization
- 8.4 Orthonormal Bases
- 8.5 The Fréchet–Riesz Representation Theorem; Adjoints

9 The Hahn–Banach Theorem
- 9.1 The Hahn–Banach Extension Theorem
- 9.2 The Separation Theorem
- 9.3 Weak Topologies
- 9.4 Polarity
- 9.5 Weak and Weak* Topologies for Normed Spaces
- 9.6 Banach’s Theorem and the Banach–Alaoglu Theorem
- 9.7 The Complex Hahn–Banach Theorem
Contents

10 Convex Functions 128
10.1 Convex Envelopes 128
10.2 Continuous Convex Functions 130

11 Subdifferentials and the Legendre Transform 133
11.1 Differentials and Subdifferentials 133
11.2 The Legendre Transform 134
11.3 Some Examples of Legendre Transforms 137
11.4 The Episum 139
11.5 The Subdifferential of a Very Regular Convex Function 140
11.6 Smoothness 143
11.7 The Fenchel–Rockafellar Duality Theorem 148
11.8 The Bishop–Phelps Theorem 149
11.9 Monotone and Cyclically Monotone Sets 151

12 Compact Convex Polish Spaces 155
12.1 Compact Polish Subsets of a Dual Pair 155
12.2 Extreme Points 157
12.3 Dentability 160

13 Some Fixed Point Theorems 162
13.1 The Contraction Mapping Theorem 162
13.2 Fixed Point Theorems of Caristi and Clarke 165
13.3 Simplices 167
13.4 Sperner’s Lemma 168
13.5 Brouwer’s Fixed Point Theorem 170
13.6 Schauder’s Fixed Point Theorem 171
13.7 Fixed Point Theorems of Markov and Kakutani 173
13.8 The Ryll–Nardzewski Fixed Point Theorem 175

PART TWO MEASURES ON POLISH SPACES 177

14 Abstract Measure Theory 179
14.1 Measurable Sets and Functions 179
14.2 Measure Spaces 182
14.3 Convergence of Measurable Functions 184
14.4 Integration 187
14.5 Integrable Functions 188
Contents

15 Further Measure Theory 191
15.1 Riesz Spaces 191
15.2 Signed Measures 194
15.3 $M(X), L^1$ and L^∞ 196
15.4 The Radon–Nikodym Theorem 199
15.5 Orlicz Spaces and L^p Spaces 203

16 Borel Measures 210
16.1 Borel Measures, Regularity and Tightness 210
16.2 Radon Measures 214
16.3 Borel Measures on Polish Spaces 215
16.4 Lusin’s Theorem 216
16.5 Measures on the Bernoulli Sequence Space $\Omega(N)$ 218
16.6 The Riesz Representation Theorem 222
16.7 The Locally Compact Riesz Representation Theorem 225
16.8 The Stone–Weierstrass Theorem 226
16.9 Product Measures 228
16.10 Disintegration of Measures 231
16.11 The Gluing Lemma 234
16.12 Haar Measure on Compact Metrizable Groups 236
16.13 Haar Measure on Locally Compact Polish Topological Groups 238

17 Measures on Euclidean Space 243
17.1 Borel Measures on \mathbb{R} and \mathbb{R}^d 243
17.2 Functions of Bounded Variation 245
17.3 Spherical Derivatives 247
17.4 The Lebesgue Differentiation Theorem 249
17.5 Differentiating Singular Measures 250
17.6 Differentiating Functions in bv_0 251
17.7 Rademacher’s Theorem 254

18 Convergence of Measures 257
18.1 The Norm $\|\cdot\|_{TV}$ 257
18.2 The Weak Topology w 258
18.3 The Portmanteau Theorem 260
18.4 Uniform Tightness 264
18.5 The β Metric 266
18.6 The Prokhorov Metric 269
18.7 The Fourier Transform and the Central Limit Theorem 271
18.8 Uniform Integrability 276
18.9 Uniform Integrability in Orlicz Spaces 278
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Introduction to Choquet Theory</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>19.1 Barycentres</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>19.2 The Lower Convex Envelope Revisited</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>19.3 Choquet’s Theorem</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>19.4 Boundaries</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>19.5 Peak Points</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>19.6 The Choquet Ordering</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>19.7 Dilations</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>PART THREE INTRODUCTION TO OPTIMAL TRANSPORTATION</td>
<td>297</td>
</tr>
<tr>
<td>20</td>
<td>Optimal Transportation</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>20.1 The Monge Problem</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>20.2 The Kantorovich Problem</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>20.3 The Kantorovich–Rubinstein Theorem</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>20.4 (c)-concavity</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>20.5 (c)-cyclical Monotonicity</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>20.6 Optimal Transport Plans Revisited</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>20.7 Approximation</td>
<td>313</td>
</tr>
<tr>
<td>21</td>
<td>Wasserstein Metrics</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>21.1 The Wasserstein Metrics (W_p)</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>21.2 The Wasserstein Metric (W_1)</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>21.3 (W_1) Compactness</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>21.4 (W_p) Compactness</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>21.5 (W_p)-Completeness</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>21.6 The Mallows Distances</td>
<td>323</td>
</tr>
<tr>
<td>22</td>
<td>Some Examples</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>22.1 Strictly Subadditive Metric Cost Functions</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>22.2 The Real Line</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>22.3 The Quadratic Cost Function</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>22.4 The Monge Problem on (R^d)</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>22.5 Strictly Convex Translation Invariant Costs on (R^d)</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>22.6 Some Strictly Concave Translation–Invariant Costs on (R^d)</td>
<td>336</td>
</tr>
</tbody>
</table>

Further Reading | 339

Index | 342