CHEMICAL ENGINEERING DESIGN AND ANALYSIS
Second Edition

This textbook puts design at the center of introducing students to the course in mass and energy balances in chemical engineering. Employers and accreditations increasingly stress the importance of design in the engineering curriculum, and design-driven analysis will motivate students to dig deeply into the key concepts of the field.

The Second Edition has been completely revised and updated. It introduces the central steps in design, and three methods of analysis: mathematical modeling, graphical methods, and dimensional analysis. Students learn how to apply engineering skills—such as simplification of calculations through assumptions and approximations; verification of calculations; identification of significant figures; application of spreadsheets; graphical analysis (standard, semi-log, and log–log); and the use of data maps—in the contexts of contemporary chemical processes such as the hydrogen economy, petrochemical and biochemical processes, polymers, semiconductors, and pharmaceuticals.

T. Michael Duncan joined the School of Chemical Engineering at Cornell University in 1990, where he holds the Thorpe Chair in Chemical Engineering and has served as Associate Director for the undergraduate program since 1993. Duncan has received many teaching awards: he has been selected four times for the Tau Beta Pi / Cornell Engineering Alumni Association Excellence in Teaching Award and was named Professor of the Year for New York State by the Carnegie Foundation in 2007. He is also a Weiss Scholar at Cornell University, a distinction bestowed on three faculty members each year at Cornell, from the entire campus of over 1600 instructors.

Jeffrey A. Reimer is The C. Judson King Endowed Professor and Warren and Katharine Schlinger Distinguished Professor and Chair of the Chemical and Biomolecular Engineering Department at the University of California at Berkeley. Reimer has received many teaching awards, culminating in the university's Distinguished Teaching Award, the highest award bestowed on faculty for their teaching. He is a Fellow of the American Association for the Advancement of Science, a Fellow of the American Physical Society, and a Fellow of the International Society for Magnetic Resonance, and was the recipient of a Humboldt Research Award in 2014.
CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor
Arvind Varma, Purdue University

Editorial Board
Juan de Pablo, University of Chicago
Michael Doherty, University of California, Santa Barbara
Ignacio Grossman, Carnegie Mellon University
Jim Yang Lee, National University of Singapore
Antonios Mikos, Rice University

Books in the Series
Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems
Chamberlin, Radioactive Aerosols
Chau, Process Control: A First Course with MATLAB
Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition
Cussler and Moggridge, Chemical Product Design, Second Edition
De Pablo and Schieber, Molecular Engineering Thermodynamics
Deen, Introduction to Chemical Engineering Fluid Mechanics
Deen, Chemical Engineering: An Introduction
Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer
Dorfman and Daoutidis, Numerical Methods with Chemical Engineering Applications
Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction 2E
Fan, Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses
Fan and Zhu, Principles of Gas–Solid Flows
Fox, Computational Models for Turbulent Reacting Flows
Franses, Thermodynamics with Chemical Engineering Applications
Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
Lim and Shin, *Fed-Batch Cultures: Principles and Applications of Semi-batch Bioreactors*

Litster, *Design and Processing of Particulate Products*

Marchisio and Fox, *Computational Models for Polydisperse Particulate and Multiphase Systems*

Mewis and Wagner, *Colloidal Suspension Rheology*

Morbidelli, Gavriilidis, and Varma, *Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes*

Nicoud, *Chromatographic Processes*

Noble and Terry, *Principles of Chemical Separations with Environmental Applications*

Orbey and Sandler, *Modeling Vapor–Liquid Equilibria: Cubic Equations of State and their Mixing Rules*

Pfister, Nicoud, and Morbidelli, *Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability*

Petyluk, *Distillation Theory and its Applications to Optimal Design of Separation Units*

Ramkrishna and Song, *Cybernetic Modeling for Bioreaction Engineering*

Rao and Nott, *An Introduction to Granular Flow*

Schobert, *Chemistry of Fossil Fuels and Biofuels*

Shell, *Thermodynamics and Statistical Mechanics*

Slattery, *Advanced Transport Phenomena*

Varma, Morbidelli, and Wu, *Parametric Sensitivity in Chemical Systems*
Chemical Engineering Design and Analysis

An Introduction

Second Edition

T. Michael Duncan
Raymond G. Thorpe Professor of Chemical Engineering
Cornell University

Jeffrey A. Reimer
The Warren and Katharine Schlinger Distinguished Professor in Chemical Engineering
The C. Judson King Endowed Professor of Chemical and Biomolecular Engineering
University of California at Berkeley
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.
It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.
www.cambridge.org
Information on this title: www.cambridge.org/9781108421478
DOI: 10.1017/9781108377096

Second edition © Cambridge University Press 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1998
10th printing 2011
Second edition 2019

A catalogue record for this publication is available from the British Library
Library of Congress Cataloging in Publication data
Names: Duncan, T. Michael, author. | Reimer, Jeffrey A. (Jeffrey Allen), author.
Title: Chemical engineering design and analysis : an introduction / T. Michael Duncan, Raymond G. Thorpe Professor of Chemical Engineering, Cornell University, Jeffrey A. Reimer, The Warren and Katharine Schlinger Distinguished Professor in Chemical Engineering, The C. Judson King Professor of Chemical and Biomolecular Engineering, University of California at Berkeley.
Subjects: LCSH: Chemical engineering.
Classification: LCC TP155 .D74 2018 | DDC 660–dc23
LC record available at https://lccn.loc.gov/2018034173

Additional resources for this publication at duncan.cbe.cornell.edu/Graphs

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press www.cambridge.org
To Deborah and Maxwell
T. Michael Duncan

To Karen, Jennifer, Jonathan, Charlotte, and Martin
Jeffrey A. Reimer
Brief Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xviii</td>
</tr>
<tr>
<td>1 An Overview of Chemical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>2 Chemical Process Design</td>
<td>8</td>
</tr>
<tr>
<td>3 Models Derived from Laws and Mathematical Analysis</td>
<td>89</td>
</tr>
<tr>
<td>4 Models Derived from Graphical Analysis</td>
<td>243</td>
</tr>
<tr>
<td>5 Dimensional Analysis and Dynamic Similarity</td>
<td>423</td>
</tr>
<tr>
<td>6 Transient-State Processes</td>
<td>499</td>
</tr>
<tr>
<td>Appendix A List of Symbols</td>
<td>546</td>
</tr>
<tr>
<td>Appendix B Units, Conversion Factors, and Physical Constants</td>
<td>548</td>
</tr>
<tr>
<td>Appendix C Significant Figures</td>
<td>551</td>
</tr>
<tr>
<td>Appendix D Log–Log Graph Paper</td>
<td>554</td>
</tr>
<tr>
<td>Appendix E Mathematics, Mechanics, and Thermodynamics</td>
<td>559</td>
</tr>
<tr>
<td>Appendix F Glossary of Chemical Engineering</td>
<td>562</td>
</tr>
<tr>
<td>Index</td>
<td>569</td>
</tr>
</tbody>
</table>
Contents

Preface page xv
Acknowledgements xviii

1 An Overview of Chemical Engineering 1
1.1 Achievements of Chemical Engineering 3
1.2 Opportunities for Chemical Engineering 5
Reference 7

2 Chemical Process Design 8
2.1 Designing a Chemical Process 8
2.1.1 Design Evolution by Successive Problem Solving 8
2.1.2 Analyzing Data to Design Chemical Processes 16
2.1.3 Conventions for Chemical Process Flowsheets 17
2.2 Chemical Process Design and Creative Problem Solving 19
2.2.1 Defining the Real Problem in Successive Problem Solving 19
2.2.2 Conventions for Streams on Chemical Process Flowsheets 23
2.3 Designing a Chemical Process for the Semiconductor Industry 25
2.4 Designing Processes to Produce Hydrogen 29
2.4.1 Hydrogen from Methane 29
2.4.2 Methane from Natural Gas 32
2.4.3 Hydrogen from Coal 35
2.4.4 Hydrogen from Thermal Energy and Water 36
2.4.5 Tips for Chemical Process Design: Analyzing a Process Flowsheet 40
2.5 Designing a Process to Store Hydrogen 42
2.5.1 Options for Storing Hydrogen 42
2.5.2 Storing Hydrogen as Fuel for Vehicles 44
Summary 47
References 48
Chemical Process Design Bibliography 48
Exercises 48
Process Analysis 48
Process Design 57
Problem Redefinition 80
Physical Properties at 1 atm. 86
Contents

3 Models Derived from Laws and Mathematical Analysis 89
3.1 Mass Balances on Processes with No Chemical Reaction 90
 3.1.1 Mass Balances on a Single Unit at Steady State 90
 3.1.2 Mass Balances on a Process with Several Units and a Recycle Stream 95
3.2 Mass Balances on Processes with Chemical Reactions 99
 3.2.1 A Chemical Reactor with a Separator 99
 3.2.2 A Recycle for Minimal Reactant Input and Minimal Waste Output 104
 3.2.3 A Purge for Moderate Reactant Input and Moderate Waste Output 106
3.3 Informal Mass Balances for Design Evolution 110
3.4 Mathematical Modeling with Mass Balances: Summary 114
 3.4.1 Some Tips on System Borders 114
 3.4.2 Mass Balances and Learning Styles 116
3.5 Energy Balances on a Single Unit with No Chemical Reaction 117
 3.5.1 Energy Balances for Temperature and Phase Changes 117
 3.5.2 Energy Balances for Temperature Changes with Variable Heat Capacity 123
 3.5.3 Heat Integration: Matching Energy Needs to Energy Sources 128
3.6 Energy Balances and Chemical Reactions 132
 3.6.1 Chemical Reactions with Complete Conversion 132
 3.6.2 Chemical Reactions with Incomplete Conversion 135
 3.6.3 Chemical Reactions with Conversion Limited by Equilibrium 139
3.7 Chemical Process Economics 145
 3.7.1 Economic Analysis of Operating a Chemical Process 145
 3.7.2 Economic Analysis of Modifying a Chemical Process 150
 3.7.3 Economic Analysis for Evaluating Design Schemes 152
Summary 155
References 156
Exercises 156
 Mass Balances 156
 Mass Balances with Chemical Reactions 172
 Informal Mass Balances 178
 Mass Balances on Spreadsheets 182
 Energy Balances 187
 Energy Balances with Chemical Reactions 195
 Process Economics 201
 Process Design with Mathematical Modeling 215
 Engineering Calculations 241

4 Models Derived from Graphical Analysis 243
4.1 Tie Lines, Mixing Lines, and the Lever Rule 244
 4.1.1 Graphical Mass Balances 244
 4.1.2 Graphical Energy Balances 247
 4.1.3 Graphical Mass Balances for Single-Stage Liquid–Vapor Separations 253
 4.1.4 Combined Mass and Energy Balances on Two-Component Mixtures 262
Contents

4.2 Operating Lines for Two-Phase Systems 267
 4.2.1 Single-Stage Absorbers 267
 4.2.2 Multistage Absorbers 272
 4.2.3 Multistage Liquid–Vapor Separations 277
 4.2.4 Multistage Cascading Flash Drums 283
4.3 Trajectories on Pure-Component Phase Diagrams 289
 4.3.1 Mapping Solid–Liquid–Gas Phases of a Pure Component 289
 4.3.2 Condensation from a Non-condensible Gas 294
Summary 301
References 301
Exercises 302
 Linear and Logarithmic Scales 302
 Graphical Energy Balances on Pure Substances 303
 Graphical Mass Balances on Temperature–Composition and Pressure–Composition Phase Diagrams 306
 Combined Mass and Energy Balances on Two-Component Mixtures: Enthalpy–Composition Phase Diagrams 324
 Operating Lines for Multistage Countercurrent Separators: Absorbers and Strippers 329
 Operating Lines for Multistage Countercurrent Separators: Distillation Columns 350
 Phase Diagrams of Pure Substances 376
 Process Design with Graphical Modeling 390

5 Dimensional Analysis and Dynamic Similarity 423
 5.1 Units and Dimensions 426
 5.2 Dimensional Analysis 428
 5.2.1 Dimensional Analysis of a Pendulum Swinging 428
 5.2.2 Dimensional Analysis of a Person Walking and Running 431
 5.2.3 Dimensional Analysis of a Solid Sphere Moving through a Fluid 436
 5.3 Dynamic Similarity 447
 5.3.1 Dynamic Similarity of Fluid Flow in a Smooth Pipe 447
 5.3.2 Dynamic Similarity of Fluid Flow in a Rough Pipe 452
 5.3.3 Dynamic Similarity of Heat Transfer from a Fluid Flowing in a Tube 454
 5.3.4 Dynamic Similarity of Vapor–Liquid Equilibrium Stages 457
 5.4 Applications of Dimensional Analysis 459
 5.4.1 Dimensional Analysis of Gases 459
 5.4.2 Dimensional Analysis of Biological Systems 463
 5.4.3 Dimensional Analysis of Microchemical Systems 465
Summary 466
References 467
Exercises 468
 Units and Dimensions 468
 Deriving Dimensionless Groups 469
 Analyzing Graphical Data 476
 Design of Dynamically Similar Models 481
 Data Analysis on Spreadsheets 487

© in this web service Cambridge University Press

www.cambridge.org
Contents

6 Transient-State Processes 499
6.1 Transient-State Mass Balances: A Surge Tank 500
6.2 Residence Times and Sewage Treatment 507
6.3 Rate Constants: Modeling Atmospheric Chemistry 512
6.4 Optimization: Batch Reactors 517
6.5 Multiple Steady States: Catalytic Converters 523
6.6 Mass Transfer: Citric Acid Production 528
6.7 Heat Transfer: Chemical Reactor Runaway 531

Summary 534

References 534

Exercises 534

Transient-State Processes 534

Numerical Integration of Differential Equations 542

Appendix A List of Symbols 546
Appendix B Units, Conversion Factors, and Physical Constants 548
Appendix C Significant Figures 551
Appendix D Log–Log Graph Paper 554
Appendix E Mathematics, Mechanics, and Thermodynamics 559
Appendix F Glossary of Chemical Engineering 562
Index 569
Preface

The teaching of introductory chemical engineering traditionally begins with analysis. Our contention is that design is the essential prerequisite to analysis – and that, in fact, beginning the study of chemical engineering with design is more motivating and engaging to students. We originally developed this textbook to demonstrate that design – the quintessential skill for chemical engineers – can be taught at the first-year or second-year level. This new edition, refined and reorganized following many semesters of classroom use at Cornell University and the University of California at Berkeley, continues to adhere to that paradigm.

Why is the central theme of this textbook process design substantiated by analysis? Design is a key skill in the chemical engineering curriculum. Employers and accreditation boards increasingly stress design training, yet design is typically postponed until a capstone course in the final semester. One design experience at the end of a four-year program is not enough and we, along with other educators, believe that design is an experience that must grow with the student’s development. This textbook, we believe, succeeds in providing students with that experience.

THE APPROACH OF THIS TEXT

The choice of textbook for a course, and in particular the first course in the chemical engineering discipline, is a vexing one. Instructors who teach mass and energy balance often feel as though the weight of the whole discipline is resting on their choice; that is, that they must convey a comprehensive set of deep and abiding truths, teach the skill set that will launch a career, and deploy the most modern methods from educational psychology and teaching practice.

Traditional mass and energy balance textbooks represent this approach well. Indeed, these books are so powerful and comprehensive that the independent learner can engage with them in the absence of a professor or classroom; they are a self-study course in print, open to anyone willing to invest the time. Dedicated and brilliant authors prepare traditional comprehensive texts, and many dedicated teachers use them effectively.

We chose to create a different type of textbook – namely a conversational narrative that focuses on design. “To create what never has been,” to quote Theodore von Kármán, is a thrill at all stages of preparation in the discipline, and a delight at all ability levels. As such, we focus our narratives less on comprehensive coverage of topics typical of the traditional Mass And Energy Balance course. We believe that the notion of learning being governed by coverage of topics is a legacy of the twentieth century and has not been substantiated by contemporary educational psychology. Comprehensive coverage of topics further complicates instruction in the introductory course because the number of
Preface

topics encompassed by chemical engineering continues to grow substantially. We offer something special with our textbook – namely that the concepts of algebra and calculus, the visual display of information, and dimensional analysis are timeless themes that are the perfect platform for a book that is neither an encyclopedia nor a list of current industrial/academic topics.

FEATURES OF THIS TEXT

A story-telling approach. We intend this textbook to be read, not studied. We are storytellers, and the student will find this book to be a collection of stories crafted to show the reader how to design chemical processes. The end-of-chapter exercises afford practice at the design skills introduced in the stories. These exercises have been time-tested by students at our institutions. As is true for most designs, the exercises are often without a unique solution (as is true for most designs), and indeed are best worked with fellow students engaged in the process of discussing, posing, correcting, and re-posing ideas.

The essential tools to create new designs. If design is to be a full partner in a foundational course, then it is appropriate to ask what tools are necessary for students to create new designs. Here is where we deviate significantly from other “mass and energy balance” textbooks: we demonstrate three different skills for students to employ in design:

- Like our peer texts, we rely heavily on algebra and macroscopic mathematical models for mass, energy, and asset conservation.
- Unlike others, we affirm that the visual display of information is in its own right a design tool for systems whose behavior is well described phenomenologically, e.g. systems described by thermodynamic phase diagrams.
- Finally, we augment algebra and graphs with dimensional analysis for those systems that elude a fundamental basis. This topic is often relegated to later courses in the curriculum and is so heavily contextualized in those specific topics that its general applicability is lost; Chapter 5 rectifies this omission.

The denouement of our textbook engages all three approaches to design and analyze systems that vary with time.

“Context, concepts, defining question” introduction for each section, which establishes for the student a framework for thinking about chemical engineering

An abundance of design-oriented exercises. A key feature of our textbook is the exercises; 359 exercises in total, including 71 open-ended design exercises. Every exercise has been assigned at least once in our courses at Cornell University and the University of California at Berkeley. The wording, the just-in-time delivery of concepts, and the solutions have been crafted so students can practice design skills and then deploy them in situations completely unfamiliar to them.

ORGANIZATION OF THIS TEXT

The coverage of such a vast array of topics suggests that students need to have been exposed to many chemical engineering topics prior to using this book. On the contrary, we chose to eschew an encyclopedic presentation of chemical engineering information: our textbook organizes skills in a “just-in-time” fashion, where each skill is presented to answer a pending design question.
Preface

After a brief overview of contemporary chemical engineering in Chapter 1, we introduce concepts and methods of qualitative process design in Chapter 2. We then demonstrate three quantitative methods to analyze design options. Chapter 3 introduces mathematical modeling with mass and energy balances, including techniques for informal mass balances, essential for quickly assessing a design change. We further improve this traditional topic by introducing a third tool essential for process design: process economics, which is mathematical modeling based on the conservation of assets. Chapter 4 demonstrates graphical modeling for quantitative process analysis and design; graphical representations of mass and energy balances. Chapter 5 introduces dimensional analysis and dynamic scaling for process design scale-up from pilot plant to commercial process or scale-down from bench scale to microchemical process. Chapter 6 applies mathematical modeling, graphical modeling, and dynamic scaling to transient-state processes.

TOOLS FOR THE INSTRUCTOR

Our online resources include:

- A solutions manual providing detailed solutions for every exercise in our textbook
- Alternative designs (with relative pros and cons)
- A list of common errors
- Additional exercises, similar to the ones in the textbook, which will be posted regularly, together with detailed solutions
- Design projects
- Grading rubrics, which will be posted for:
 - The design exercises published in the second edition
 - The additional design exercises that we will be regularly adding online
- PowerPoint presentations for exercises suitable for in-class team solutions
- Suggestions for abbreviated syllabi
- Lectures in PowerPoint or in Word, with different contexts to support the concepts of many textbook sections. Please contact us for any of this supplementary material.

We have had success in adopting this text for the Mass and Energy Balance course taught in the 14-week semester system. At various times, and with various stages of preparation, we have chosen to amplify some material. For example, well-prepared students can successfully use Chapter 6 for the organizing topics, with back-reflection to earlier chapters when steady-state design is to be considered. We have also used this text in a course that emphasizes Chapters 2 and 3 for a large fraction of the semester, an especially effective approach when students have minimal chemistry, physics, and mathematics backgrounds. Finally, we have discovered in conversations with colleagues around the world, as well as thoughtful reviews provided of a draft of this text, that the introductory chemical engineering course is often used to introduce chemical thermodynamics. This text does not serve that need well, though we have had considerable success with Chapter 4 as preparation for a chemical engineering thermodynamics course without having to parse exercises into constructs “ideal” and “real.” Data drive our description of phase behavior, graphs represent those data well, and graphs can be used to conduct design, including McCabe–Thiele type analyses.

We hope you enjoy reading our book and we welcome your feedback. We are pleased to regularly post new exercises and resources onto our website.
Acknowledgements

We are grateful to the hundreds of Cornell University and University of California at Berkeley students in the past two decades for their patience and critical comments in preparing this textbook. We have been fortunate to work with dozens of dedicated teaching assistants who also improved the text and paid particular attention to the exercises and solutions. During this time we benefited from the steadfast support of Cornell University and the University of California at Berkeley and the freedom to teach and learn alongside our students.

Several textbooks influenced this work. Two fine textbooks on design – Process Synthesis by Dale Rudd, Gary Powers, and Jeffrey Siirola, and Process Modeling by Morton Denn – inspired us and spawned the material on process design (Chapter 2), mathematical modeling (Chapter 3), and transient process (Chapter 6).

Mass and energy balances, introduced in Chapter 3 as examples of mathematical modeling, is a mature topic in chemical engineering. We are grateful to the authors of three excellent textbooks – Richard Felder and Ronald Rousseau, Elementary Principles of Chemical Processes, William Luyben and Leonard Wenzel, Chemical Process Analysis: Mass and Energy Balances, and Gintaras Reklaitis, Introduction to Material and Energy Balances – for permission to adapt and reprint examples and exercises.