Intensification of Liquid–Liquid Processes

Explore and review novel techniques for intensifying transport and reaction in liquid–liquid and related systems with this essential toolkit. Topics include discussion of the principles of process intensification, the nexus between process intensification and sustainable engineering, and the fundamentals of liquid–liquid contacting, from an expert with over 45 years' experience in the field. Providing promising directions for investment and for new research in process intensification, in addition to a unique review of the fundamentals of the topic, this book is the perfect guide for senior undergraduate students, graduate students, developers, and research staff in chemical engineering and biochemical engineering.

Laurence R. Weatherley is the Albert P Learned Distinguished Professor of Chemical Engineering and Department Chair at the University of Kansas. Prior to joining the University of Kansas, he served as the Chaired Professor of Chemical Engineering, and Head of the Department of Chemical and Process Engineering, at the University of Canterbury in New Zealand. He has served as the Executive Co-Editor of the *Chemical Engineering Journal*. Dr. Weatherley is a Fellow of the Institution of Chemical Engineers, United Kingdom, and a Fellow of the Institution of Professional Engineers of New Zealand.

Cambridge Series in Chemical Engineering

SERIES EDITOR Arvind Varma, Purdue University

EDITORIAL BOARD

Juan de Pablo, University of Chicago Michael Doherty, University of California–Santa Barbara Ignacio Grossman, Carnegie Mellon University Jim Yang Lee, National University of Singapore Antonios Mikos, Rice University

BOOKS IN THE SERIES

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems Chamberlin, Radioactive Aerosols Chau, Process Control: A First Course with MATLAB Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition Cussler and Moggridge, Chemical Product Design, Second Edition De Pablo and Schieber, Molecular Engineering Thermodynamics Deen, Introduction to Chemical Engineering Fluid Mechanics Denn, Chemical Engineering: An Introduction Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer Dorfman and Daoutidis Numerical Methods with Chemical Engineering Applications Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction, Second Edition Fan Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses Fan and Zhu. Principles of Gas-Solid Flows Fox, Computational Models for Turbulent Reacting Flows Franses, Thermodynamics with Chemical Engineering Applications Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors Litster, Design and Processing of Particulate Products Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems Mewis and Wagner, Colloidal Suspension Rheology Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes Nicoud, Chromatographic Processes Noble and Terry, Principles of Chemical Separations with Environmental Applications Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules Pfister, Nicoud, and Morbidelli, Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability Petyluk, Distillation Theory and Its Applications to Optimal Design of Separation Units Ramkrishna and Song, Cybernetic Modeling for Bioreaction Engineering Rao and Nott, An Introduction to Granular Flow Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers Schobert, Chemistry of Fossil Fuels and Biofuels Shell, Thermodynamics and Statistical Mechanics Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes Slattery, Advanced Transport Phenomena Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems Weatherley, Intensification of Liquid-Liquid Processes

Intensification of Liquid–Liquid Processes

LAURENCE R. WEATHERLEY

University of Kansas

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108421010 DOI: 10.1017/9781108355865

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Weatherley, Laurence R., author.

Title: Intensification of liquid-liquid processes / Laurence R. Weatherley, University of Kansas.

Description: First edition. | New York, NY : Cambridge University Press, 2020. | Series: Cambridge series in chemical engineering | Includes bibliographical references and index.

Identifiers: LCCN 2019043644 (print) | LCCN 2019043645 (ebook) | ISBN 9781108421010 (hardback) | ISBN 9781108355865 (epub)

Subjects: LCSH: Chemical processes. | Liquids. | Diffusion. | Liquid-liquid equilibrium. | Catalysts. | Drops.

Classification: LCC TP155.7 .W35 2020 (print) | LCC TP155.7 (ebook) | DDC 660/.28-dc23 LC record available at https://lccn.loc.gov/2019043644 LC ebook record available at https://lccn.loc.gov/2019043645

ISBN 978-1-108-42101-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

1	Introduction		
	1.1	Process Intensification	1
	1.2	Review of Current Equipment Technologies	9
		1.2.1 Mixer Settlers	9
		1.2.2 Mixer Settler Design	11
	1.3	Mixer Settler Columns	23
	1.4	Continuous Column Contactors	24
	1.5	Rotary Contactors	33
		1.5.1 GEA Westfalia Rotary Extractors	35
	1.6	Oscillatory Flow Contactors	39
2	Drop	lets and Dispersions	43
	2.1	Introduction	43
	2.2	Drop Size: Discrete Drops	47
	2.3	Drop Motion	53
	2.4	Dispersions and Swarming Drops	58
	2.5	Drop Size in Stirred Tanks	59
	2.6	Dispersions in Continuous Liquid–Liquid Columns	63
	2.7	Dispersion and Coalescence Modeling: Quantitative Approach	70
3	Mass Transfer		
	3.1	Introduction	81
	3.2	Single Droplet Systems	82
	3.3	Single Oscillating Droplets	88
	3.4	Single Drop Systems: Quantitative Approach	93
		3.4.1 Fluid Transport	97
		3.4.2 Mass Transport	98
	3.5	Marangoni Instabilities	102
	3.6	Stability Criteria	105
	3.7	Theoretical Modeling of Marangoni Disturbances	107
	3.8	Swarming Droplet Systems	114

۷

CAMBRIDGE

vi

Cambridge University Press 978-1-108-42101-0 — Intensification of Liquid–Liquid Processes Laurence R. Weatherley Frontmatter <u>More Information</u>

Contents

4	Mem	Ibrane-Based and Emulsion-Based Intensifications	130
	4.1	General Introduction	130
	4.2	Emulsions	131
	4.3	Surfactants and Emulsion Stability	134
	4.4	Hollow Fiber Technology and Pertraction	140
	4.5	Hybrid Liquid Membrane Systems	145
	4.6	Liquid Membrane Applications in Bioprocessing	147
	4.7	Membrane Emulsification	149
	4.8	Membrane-Based Extraction Processes/Liquid Membrane Processes	150
	4.9	Facilitated Transport	154
	4.10	Colloidal Liquid Aphrons	156
	4.11	Microextraction	15/
	4.12	Recent Developments in Membrane Engineering	158
5	High	Gravity Fields	167
	5.1	Introduction	167
	5.2	Spinning Disk Technology	168
	5.3	Impinging Jets	173
	5.4	Variants of the Spinning Disk Contactor	176
	5.5	Combined Field Contactors	180
	5.6	Modeling of Liquid–Liquid Systems in High Gravity Fields	185
		5.6.1 Fundamental Summary	185
		5.6.2 Modeling of Spinning Disc Contactors	187
		5.6.3 Modeling Spinning Disc Contactors: Impinging Jet Systems	189
	5.7	Spinning Tubes	196
	5.8	The Annular Centrifugal Contactor	198
	5.9	New Applications of High Gravity Systems	204
		5.9.1 Enantioselective Separations	204
		5.9.2 The Rotating Tubular Membrane	206
6	Elect	trically Driven Intensification of Liquid–Liquid Processes	211
	6.1	Introduction	211
	6.2	Summary of Fundamental Equations: Electrostatic Processes	212
		6.2.1 Coulomb's Law	212
		6.2.2 Gauss's Law	213
		6.2.3 Poisson's Equation	214
		6.2.4 Electrically Charged Drops	215
	6.3	Electrokinetic Phenomena	217
	6.4	Drop Formation	220
	6.5	Discrete Drop Size	224
	6.6	Drop Motion in an Electrical Field: Discrete Drops	235
		6.6.1 Calculation of the Electrical Field	235
		6.6.2 Prediction of Drop Motion in an Electrical Field	241
	6.7	Electrostatic Dispersions (Sprays)	243

CAMBRIDGE

Cambridge University Press 978-1-108-42101-0 — Intensification of Liquid–Liquid Processes Laurence R. Weatherley Frontmatter <u>More Information</u>

		Contents	vii		
	6.8	Mass Transfer	251		
	6.9	Interfacial Disturbance	252		
	6.10	Interfacial Mass Transfer: Further Theoretical Aspects	258		
	6.11	Applications and Scale-Up	263		
7	Intensification of Liquid–Liquid Coalescence				
	7.1	Introduction	269		
	7.2	Interfacial Drainage, Drop Size, and Drop-Drop Interactions	275		
	7.3	Probability Theory Applied to Coalescence Modeling	281		
	7.4	Electrically Enhanced Coalescence	283		
	7.5	Surfactants	287		
	7.6	Electrolytes	291		
	7.7	Phase Inversion for Enhanced Coalescence	294		
	7.8	Ultrasonics	296		
	7.9	Membranes and Filaments	302		
8	Ionic Liquid Solvents and Intensification				
	8.1	General Introduction to Ionic Liquids	312		
	8.2	Ionic Liquids and Intensification	315		
	8.3	Ionic Liquids as Reaction Media	320		
	8.4	Toxicity	323		
	8.5	Degradability	328		
	8.6	Role of Ionic Liquids in Biocatalysis	330		
9	Liquid–Liquid Phase-Transfer Catalysis				
	9.1	Introduction	341		
	9.2	Examples in Organic Synthesis	343		
		9.2.1 Synthesis of Phenyl Alkyl Acetonitriles and Aryl Acetonitriles	344		
		9.2.2 Synthesis of <i>p</i> -Chlorophenyl Acetonitrile	344		
		9.2.3 Transfer Hydrogenation	345		
		9.2.4 Alkylations	350		
		9.2.5 Oxidations	354		
		9.2.6 Nitrations	356		
		9.2.7 Organic Polymerizations	358		
		9.2.8 Pseudo-Phase-Transfer Catalysis	359		
	Index	r	365		

CAMBRIDGE

Cambridge University Press 978-1-108-42101-0 — Intensification of Liquid–Liquid Processes Laurence R. Weatherley Frontmatter <u>More Information</u>