Contents

Preface to the Third Edition page xi

1 Basic Tools 1
 1.1 The Fourier Transform 1
 1.2 The Hilbert Transform and Analytic Signal 7
 1.3 The Laplace Transform 10
 1.4 Statistics and Probability 12
 1.5 Coordinate Transformations 21
 1.6 Tensor Properties and Operations 25

2 Elasticity and Hooke's Law 37
 2.1 Elastic Moduli: Isotropic Form of Hooke's Law 37
 2.2 Anisotropic Form of Hooke's Law 44
 2.3 Thomsen's Notation for Weak Elastic Anisotropy 57
 2.4 Sayers' Simplified Notation for Weak VTI Anisotropy 61
 2.5 Tsvankin's Extended Thomsen Parameters for Orthorhombic Media 62
 2.6 Third-Order Nonlinear Elasticity 64
 2.7 Effective Stress Properties of Rocks 66
 2.8 Stress-Induced Anisotropy in Rocks 70
 2.9 Strain Components and Equations of Motion in Cylindrical and Spherical Coordinate Systems 80
 2.10 Deformation of Inclusions and Cavities in Elastic Solids 81
 2.11 Deformation of a Circular Hole: Borehole Stresses 96
 2.12 Eshelby's General Solution for Ellipsoidal Inclusions 102
 2.13 Mohr's Circles 109
 2.14 Static and Dynamic Moduli 112
 2.15 Stress Intensity Factors 115
3 Seismic Wave Propagation

3.1 Seismic Velocities
3.2 Phase, Group, and Energy Velocities
3.3 NMO in Isotropic and Anisotropic Media
3.4 Impedance, Reflectivity, and Transmissivity
3.5 Reflectivity and Amplitude Variations with Offset (AVO) in Isotropic Media
3.6 Plane-Wave Reflectivity in Anisotropic Media
3.7 Elastic Impedance
3.8 Viscoelasticity and Q
3.9 Kramers–Kronig Relations between Velocity Dispersion and Q
3.10 Waves in Layered Media: Full-Waveform Synthetic Seismograms
3.11 Waves in Layered Media: Stratigraphic Filtering and Velocity Dispersion
3.12 Waves in Layered Media: Frequency-Dependent Anisotropy, Dispersion, and Attenuation
3.13 Scale-Dependent Seismic Velocities in Heterogeneous Media
3.14 Scattering Attenuation
3.15 Waves in Cylindrical Rods: the Resonant Bar
3.16 Waves in Boreholes

4 Effective Elastic Media: Bounds and Mixing Laws

4.1 Voigt and Reuss Bounds
4.2 Hashin–Shtrikman–Walpole Bounds
4.3 Improvements on the Hashin–Shtrikman–Walpole Bounds
4.4 Wood’s Formula
4.5 Voigt–Reuss–Hill Average Moduli Estimate
4.6 Composite with Uniform Shear Modulus
4.7 Rock and Pore Compressibilities and Some Pitfalls
4.8 General Comments on Inclusion-Based Estimation Models
4.9 Mori–Tanaka Formulation for Effective Moduli
4.10 Kuster and Toksöz Formulation for Effective Moduli
4.11 Self-Consistent Approximations of Effective Moduli
4.12 Differential Effective Medium Model
4.13 Hudson’s Model for Cracked Media
4.14 Eshelby-Cheng Model for Cracked Anisotropic Media
4.15 T-Matrix Inclusion Models for Effective Moduli
4.16 Elastic Constants in Finely Layered Media: Backus Average
4.17 Elastic Constants in Finely Layered Media: General Layer Anisotropy
4.18 Poroelastic and Viscoelastic Backus Average 280
4.19 Seismic Response to Fractures 285
4.20 Bound-Filling Models 290
4.21 Effective Moduli of Polycrystalline Aggregates 295
4.22 Comments on the Representative Volume Element 304
4.23 A Few Theorems on Strain in an Effective Medium 306

5 Granular Media 309

5.1 Packing and Sorting of Spheres and Irregular Particles 309
5.2 Percolation of Random Ellipsoidal Packs 325
5.3 Thomas–Stieber–Yin-Marion Model for Sand–Shale Systems 329
5.4 Particle Size and Sorting 335
5.5 Random Spherical Grain Packings: Contact Models and Effective Moduli 337
5.6 Ordered Spherical Grain Packings: Effective Moduli 364

6 Fluid Effects on Wave Propagation 367

6.1 Biot’s Velocity Relations 367
6.2 Geertsma–Smit Approximations of Biot’s Relations 372
6.3 Gassmann’s Relations: Isotropic Form 374
6.4 Bounds on Fluid Substitution 384
6.5 Brown and Korringa’s Generalized Gassmann Equations for Mixed Mineralogy 385
6.6 Fluid Substitution in Anisotropic Rocks 387
6.7 Generalized Gassmann’s Equations for Composite Porous Media 390
6.8 Solid Substitution of Frame or Pore-Filling Phases 393
6.9 Fluid Substitution in Thinly Laminated Reservoirs 407
6.10 BAM: Marion’s Bounding Average Method 412
6.11 Mavko–Jizba Squirt Relations 413
6.12 Extension of Mavko–Jizba Squirt Relations for All Frequencies 416
6.13 Biot–Squirt Model 419
6.14 Chapman et al. Squirt Model 421
6.15 Anisotropic Squirt 423
6.16 Common Features of Fluid-Related Velocity Dispersion Mechanisms 427
6.17 Dvorkin-Mavko Attenuation Model 433
6.18 Partial and Multiphase Saturations 438
6.19 Partial Saturation: White and Dutta-Odè Model for Velocity Dispersion and Attenuation 444
Contents

6

6.20 Velocity Dispersion, Attenuation, and Dynamic Permeability in Heterogeneous Poroelastic Media

6.21 Waves in a Pure Viscous Fluid

6.22 Physical Properties of Gases and Fluids

7

7. Empirical Relations

7.1 Velocity–Porosity Models: Critical Porosity and Modified Upper and Lower Bounds

7.2 Velocity–Porosity Models: Wyllie’s Time Average and Geertsma’s Empirical Relations for Compressibility

7.3 Vernik–Kachanov Clastics Models

7.4 Velocity–Porosity Models: Raymer–Hunt–Gardner Relations

7.5 Velocity–Porosity–Clay Models: Han’s Empirical Relations for Shaly Sandstones

7.6 Velocity–Porosity–Clay Models: Tosaya’s Empirical Relations for Shaly Sandstones

7.7 Velocity–Porosity–Clay Models: Castagna’s Empirical Relations for Velocities

7.8 V_p–V_S–Density Models: Brocher’s Compilation

7.9 V_p–V_S Relations

7.10 Velocity–Density Relations

7.11 Eaton and Bowers Pore-Pressure Relations

7.12 Kan and Swan Pore-Pressure Relations

7.13 Attenuation and Quality Factor Relations

7.14 Velocity–Porosity–Strength Relations

7.15 Birch’s Law

7.16 Kerogen Properties

8

8. Flow and Diffusion

8.1 Darcy’s Law

8.2 Viscous Flow

8.3 Capillary Forces

8.4 Kozeny–Carman Relation for Flow

8.5 Permeability Relations with S_w

8.6 Permeability of Fractured Formations

8.7 Diffusion and Filtration: Special Cases

8.8 Heavy Oil Viscosity and Shear Modulus
Table of Contents

8.9 Particles and Bubbles in a Viscoelastic Background

567

8.10 Viscosity of Silicate Melts and Magma

571

9 Electrical Properties

577

9.1 Bounds and Effective Medium Models

577

9.2 Velocity Dispersion and Attenuation

582

9.3 Empirical Relations for Composites

585

9.4 Electrical Conductivity in Porous Rocks

588

9.5 Cross-Property Bounds and Relations between Elastic and Electrical Parameters

596

9.6 Brine Resistivity

608

9.7 Dielectric Constants

611

Appendices

613

A.1 Typical Rock Properties

613

A.2 Conversions

634

A.3 Physical Constants

638

A.4 Moduli and Density of Common Minerals

641

A.5 Properties of Mantle Minerals

650

A.6 Properties of Melts, Magma, and Igneous Rocks

653

A.7 Velocities and Moduli of Ice, Methane Hydrate, and Sea Water

659

A.8 Physical Properties of Common Gases

663

A.9 Velocity, Moduli, and Density of Carbon Dioxide

669

A.10 Standard Temperature and Pressure

672

References

673

Index

716