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1 Basic Tools

1.1 The Fourier Transform

Synopsis

The Fourier transform of f(x) is defined as

FðsÞ ¼
ð

∞

�∞

f ðxÞe�i2πxsdx (1.1.1)

The inverse Fourier transform is given by

f ðxÞ ¼
ð

∞

�∞

FðsÞeþi2πxsds (1.1.2)

Caution:

In this section, we use the symbol s to represent the frequency, or Fourier transform

variable, following the terminology of Bracewell (1965). When x refers to time, the

symbol f is often used for frequency instead of s; when x refers to space, the symbol

k is often used for spatial frequency instead of s. Do not confuse this with the use of

s when defining the Laplace transform (Section 1.3) or S when defining the analytic

signal (Section 1.2).

Evenness and Oddness

A function E(x) is even if E(x) = E(−x). A function O(x) is odd if O(x) = −O(−x).

The Fourier transform has the following properties for even and odd functions:

• Even functions. The Fourier transform of an even function is even. A real even

function transforms to a real even function. An imaginary even function transforms

to an imaginary even function.

• Odd functions. The Fourier transform of an odd function is odd. A real odd function

transforms to an imaginary odd function. An imaginary odd function transforms to
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a real odd function (i.e., the “realness” flips when the Fourier transform of an odd

function is taken).

Any function can be expressed in terms of its even and odd parts:

f ðxÞ ¼ EðxÞ þ OðxÞ (1.1.3)

where

EðxÞ ¼ 1

2
½ f ðxÞ þ f ð�xÞ� (1.1.4)

OðxÞ ¼ 1

2
½ f ðxÞ � f ð�xÞ� (1.1.5)

As a consequence, a real function f(x) has a Fourier transform that is

Hermitian, F(s) = F*(−s), where * refers to the complex conjugate.

For a more general complex function, f(x), we can tabulate some additional

properties (Bracewell, 1965):

f ðxÞ⇔FðsÞ
f �ðxÞ⇔F�ð�sÞ

f �ð�xÞ⇔F�ðsÞ
f ð�xÞ⇔Fð�sÞ

2 Re f ðxÞ⇔FðsÞ þ F�ð�sÞ
2 Im f ðxÞ⇔FðsÞ � F�ð�sÞ

f ðxÞ þ f �ð�xÞ⇔ 2 Re FðsÞ
f ðxÞ � f �ð�xÞ⇔ 2 Im FðsÞ

The convolution of two functions f(x) and g(x) is

f ðxÞ�gðxÞ ¼
ðþ∞

�∞

f ðzÞgðx� zÞdz ¼
ðþ∞

�∞

f ðx� zÞgðzÞdz (1.1.6)

Convolution Theorem

If f(x) has the Fourier transform F(s), and g(x) has the Fourier transform

G(s), then the Fourier transform of the convolution f(x)*g(x) is the product

F(s) G(s).

The cross-correlation of two functions f(x) and g(x) is

f �ðxÞ★gðxÞ ¼
ðþ∞

�∞

f �ðz� xÞgðzÞ dz ¼
ðþ∞

�∞

f �ðzÞgðzþ xÞ dz (1.1.7)

where f * refers to the complex conjugate of f. When the two functions are the

same, f *(x)★f(x) is called the autocorrelation of f(x).
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Energy Spectrum

The modulus squared of the Fourier transform |F(s)|2 = F(s) F*(s) is sometimes called

the energy spectrum or simply the spectrum.

If f(x) has the Fourier transform F(s), then the autocorrelation of f(x) has the Fourier

transform |F(s)|2.

Phase Spectrum

The Fourier transformF(s) is most generally a complex function, which can be written as

FðsÞ ¼ jFðsÞjeiφðsÞ ¼ Re FðsÞ þ iIm FðsÞ (1.1.8)

where |F| is the modulus and φ is the phase, given by

φðsÞ ¼ tan�1½Im FðsÞ=Re FðsÞ� (1.1.9)

The function φ(s) is sometimes also called the phase spectrum.

Obviously, both the modulus and phase must be known to completely specify the

Fourier transform F(s) or its transform pair in the other domain, f(x). Consequently, an

infinite number of functions f(x) ⇔ F(s) are consistent with a given spectrum |F(s)|2.

The zero-phase equivalent function (or zero-phase equivalent wavelet) corresponding

to a given spectrum is

FðsÞ ¼ jFðsÞj (1.1.10)

f ðxÞ ¼
ð

∞

�∞

jFðsÞjeþi2πxs ds (1.1.11)

which implies that F(s) is real and f(x) is Hermitian. In the case of zero-phase real

wavelets, both F(s) and f(x) are real even functions.

Theminimum-phase equivalent function or wavelet corresponding to a spectrum is the

unique one that is both causal and invertible. A simple way to compute the minimum-

phase equivalent of a spectrum |F(s)|2 is to perform the following steps (Claerbout, 1992):

(1) Take the logarithm, B(s) = ln |F(s)|.

(2) Take the Fourier transform, B(s) ⇒ b(x).

(3) Multiply b(x) by zero for x < 0 and by 2 for x > 0. If done numerically, leave the

values of b at zero and the Nyquist frequency unchanged.

(4) Transform back, giving B(s) + iφ(s), where φ is the desired phase spectrum.

(5) Take the complex exponential to yield the minimum-phase function:

Fmp(s) = exp[B(s) + iφ(s)] =|F(s)|eiφ(s).

(6) The causal minimum-phase wavelet is the Fourier transform of Fmp(s) ⇒ fmp(x).

Another way of saying this is that the phase spectrum of the minimum-phase

equivalent function is the Hilbert transform (see Section 1.2 on the Hilbert trans-

form) of the log of the energy spectrum.
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Sampling Theorem

A function f(x) is said to be band limited if its Fourier transform is nonzero only

within a finite range of frequencies, |s| < sc, where sc is sometimes called the cut-off

frequency. The function f(x) is fully specified if sampled at equal spacing not

exceeding Δx = 1/(2sc). Equivalently, a time series sampled at interval Δt adequately

describes the frequency components out to the Nyquist frequency fN = 1/(2Δt).

The numerical process to recover the intermediate points between samples is to

convolve with the sinc function:

2sc sincð2scxÞ ¼ 2sc sinðπ2scxÞ=π2scx (1.1.12)

where

sincðxÞ≡ sinðπxÞ
πx

(1.1.13)

which has the properties:

sincð0Þ ¼ 1

sincðnÞ ¼ 0

�

n ¼ nonzero integer (1.1.14)

The Fourier transform of sinc(x) is the boxcar function Π(s):

ΠðsÞ ¼

0 jsj > 1

2

1=2 jsj ¼ 1

2

1 jsj < 1

2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1.1.15)

Plots of the function sinc(x) and its Fourier transformΠ(s) are shown in Figure 1.1.1.

One can see from the convolution and similarity theorems below that con-

volving with 2sc sincð2scxÞ is equivalent to multiplying by Π(s/2sc) in the

Figure 1.1.1 Plots of the function sinc(x) and its Fourier transform Π(s)
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frequency domain (i.e., zeroing out all frequencies |s| > sc and passing all

frequencies |s| < sc).

Spectral Estimation and Windowing

It is often desirable in rock physics and seismic analysis to estimate the spectrum of

a wavelet or seismic trace. The most common, easiest, and, in some ways, the worst

way is simply to chop out a piece of the data, take the Fourier transform, and find its

magnitude. The problem is related to sample length. If the true data function is f(t),

a small sample of the data can be thought of as

fsampleðtÞ ¼
�

f ðtÞ; a ≤ t ≤ b

0; elsewhere
(1.1.16)

or

fsampleðtÞ ¼ f ðtÞ Π
t � 1

2
ðaþ bÞ

b� a

0

B

@

1

C

A
(1.1.17)

where Π(t) is the boxcar function previously discussed. Taking the Fourier transform

of the data sample gives

FsampleðsÞ ¼ FðsÞ�½jb� aj sinc
�

ðb–aÞs
�

e�iπðaþbÞs� (1.1.18)

More generally, we can “window” the sample with some other function ω(t):

fsampleðtÞ ¼ f ðtÞωðtÞ (1.1.19)

yielding

FsampleðsÞ ¼ FðsÞ�WðsÞ (1.1.20)

Thus, the estimated spectrum can be highly contaminated by the Fourier

transform of the window, often with the effect of smoothing and distorting the

spectrum due to the convolution with the window spectrum W(s). This can be

particularly severe in the analysis of ultrasonic waveforms in the laboratory,

where often only the first 1 to 1
1

2
cycles are included in the window. The solution

to the problem is not easy, and there is extensive literature (e.g., Jenkins and

Watts, 1968; Marple, 1987) on spectral estimation. Our advice is to be aware of

the artifacts of windowing and to experiment to determine the sensitivity of the

results, such as the spectral ratio or the phase velocity, to the choice of window

size and shape.
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Fourier Transform Theorems

Tables 1.1.1 and 1.1.2 summarize some useful theorems (Bracewell, 1965). If f(x) has

the Fourier transform F(s), and g(x) has the Fourier transform G(s), then the Fourier

transform pairs in the x-domain and the s-domain are as shown in the tables. Table 1.1.3

lists some useful Fourier transform pairs. The delta function δ(x) is defined as:

δðxÞ ¼ 0; x ≠ 0 ;

ð

∞

�∞

δðxÞdx ¼ 1 (1.1.21)

The Hartley Transform

The Hartley transform, FH (ω), of a function f(t) is defined as

FHðωÞ ¼
1
ffiffiffiffiffi

2π
p

ð

∞

�∞

f ðtÞ casðωtÞdt; (1.1.22)

where

casðtÞ ¼ cosðtÞ þ sinðtÞ ¼
ffiffiffi

2
p

sinðt þ π=4Þ ¼
ffiffiffi

2
p

cosðt � π=4Þ (1.1.23)

Table 1.1.2 Some additional theorems

Derivative of convolution d

dx
½f ðxÞ � gðxÞ� ¼ f 0ðxÞ � gðxÞ ¼ f ðxÞ � g0 ðxÞ

Rayleigh
ð

∞

�∞

jf ðxÞj2dx ¼
ð

∞

�∞

jFðsÞj2ds

Power
ð

∞

�∞

f ðxÞg�ðxÞdx ¼
ð

∞

�∞

FðsÞG�ðsÞds

(f and g real)
ð

∞

�∞

f ðxÞgð�xÞdx ¼
ð

∞

�∞

FðsÞGðsÞds

Table 1.1.1 Fourier transform theorems

Theorem x-domain s-domain

Similarity f(ax) ⇔ 1

jajF
s

a

� �

Addition f(x) + g(x) ⇔ F(s) + G(s)

Shift f(x − a) ⇔ e−i2πasF(s)

Modulation f(x) cos ωx ⇔ 1

2
F s� ω

2π

� �

þ 1

2
F sþ ω

2π

� �

Convolution f(x)*g(x) ⇔ F(s) G(s)

Autocorrelation f(x)*f*(–x) ⇔ |F(s)|2

Derivative f ′(x) ⇔ i2πsF(s)
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The Hartley transform is its own inverse. The Hartley transform is related to the

Fourier transform F(ω) by

FðωÞ ¼ FHðωÞ þ FHð�ωÞ
2

� i
FHðωÞ � FHð�ωÞ

2
(1.1.24)

In other words, the real and imaginary parts of the Fourier transform are the even and

odd parts of the Hartley transform.

1.2 The Hilbert Transform and Analytic Signal

Synopsis

The Hilbert transform of f(x) is defined as

FHiðxÞ ¼
1

π

ð

∞

�∞

f ðzÞdz
z� x

(1.2.1)

Table 1.1.3 Some Fourier transform pairs

x-domain Transform domain

sin πx i

2
δ sþ 1

2

� �

� δ s� 1

2

� �	 


cos πx 1

2
δ sþ 1

2

� �

þ δ s� 1

2

� �	 


δ(x) 1

sinc(x) Π(s)

sinc2(x) Λ(s)

e–πx
2

e–πs
2

–1/πx i sgn(s)

x0

x20 þ x2
π exp(–2πx0|s|)

e–|x| 2

1þ ð2πsÞ2

|x|−1/2 |s|−1/2
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which can be expressed as a convolution of f(x) with (–1/πx) by

FHi ¼ � 1

πx
� f ðxÞ

The Fourier transform of (–1/πx) is (i sgn(s)), that is, +i for positive s and −i for

negative s. Hence, applying the Hilbert transform keeps the Fourier amplitudes or

spectrum the same but changes the phase. Under the Hilbert transform, sin(kx) is

converted to cos(kx), and cos(kx) is converted to −sin(kx). Similarly, the Hilbert

transforms of even functions are odd functions and vice versa.

Caution:

In this section, we use the symbol S to represent the analytic signal. Do not confuse

this with the use of s when defining the Fourier transform (Section 1.1) or the

Laplace transform (Section 1.3).

The inverse of the Hilbert transform is itself the Hilbert transform with a change of sign:

f ðxÞ ¼ � 1

π

ð

∞

�∞

FHiðzÞdz
z� x

(1.2.2)

or

f ðxÞ ¼ � � 1

πx

� �

� FHi (1.2.3)

The analytic signal associated with a real function, f(t), is the complex

function

SðtÞ ¼ f ðtÞ � iFHiðtÞ (1.2.4)

As discussed in the following, the Fourier transform of S(t) is zero for negative

frequencies.

The instantaneous envelope of the analytic signal is

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2ðtÞ þ F2
HiðtÞ

q

(1.2.5)

The instantaneous phase of the analytic signal is

φðtÞ ¼ tan�1½�FHiðtÞ=f ðtÞ�
¼ Im

	

ln
�

SðtÞ
�




(1.2.6)

The instantaneous frequency of the analytic signal is

ω ¼ dφ

dt
¼ Im

d

dt
lnðSÞ

	 


¼ Im
1

S

dS

dt

� �

(1.2.7)
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Claerbout (1992) has suggested that ω can be numerically more stable if the denomi-

nator is rationalized and the functions are locally smoothed, as in the following equation:

ω ¼ Im
〈S�ðtÞ dSðtÞ

dt
〉

〈S�ðtÞSðtÞ〉

2

6

6

4

3

7

7

5

(1.2.8)

where 〈·〉 indicates some form of running average or smoothing.

Causality

The impulse response, I(t), of a real physical system must be causal, that is,

IðtÞ ¼ 0; for t < 0 (1.2.9)

The Fourier transform T(f) of the impulse response of a causal system is sometimes

called the transfer function:

Tðf Þ ¼
ð

∞

�∞

IðtÞe�i2πftdt (1.2.10)

T(f) must have the property that the real and imaginary parts are Hilbert transform

pairs, that is, T(f) will have the form

Tðf Þ ¼ Gðf Þ þ iBðf Þ (1.2.11)

where B(f) is the Hilbert transform of G(f):

Bðf Þ ¼ 1

π

ð

∞

�∞

GðzÞdz
z� f

(1.2.12)

Gðf Þ ¼ � 1

π

ð

∞

�∞

BðzÞdz
z� f

(1.2.13)

Similarly, if we reverse the domains, an analytic signal of the form

SðtÞ ¼ f ðtÞ � iFHiðtÞ (1.2.14)

must have a Fourier transform that is zero for negative frequencies. In fact, one

convenient way to implement the Hilbert transform of a real function is by performing

the following steps:

(1) Take the Fourier transform.

(2) Multiply the Fourier transform by zero for f < 0.

(3) Multiply the Fourier transform by 2 for f > 0.

(4) If done numerically, leave the samples at f = 0 and theNyquist frequency unchanged.

(5) Take the inverse Fourier transform.

The imaginary part of the result will be the negative Hilbert transform of the real part.
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1.3 The Laplace Transform

The Laplace transform of a function f(t) is defined as

L½f ðtÞ�≡FðsÞ≡
ð

∞

0

f ðtÞ e�stdt (1.3.1)

where the transform variable s may be complex. If F(s) is an analytic function of

s except at isolated singular points, then the inverse transform is given by

f ðtÞ ¼ L
�1½FðsÞ� ¼ 1

2πi

ð

γþi∞

γ�i∞

FðsÞ estds (1.3.2)

where Re(s) = γ is to the right of all singularities of F(s). In geophysics, the Laplace

transform is often used to model transient behavior of materials with viscoelastic creep.

Laplace Transform Theorems

Table 1.3.1 shows some useful Laplace transform theorems (Bracewell, 1965).

Table 1.3.2 lists some Laplace transform pairs in the t-domain and the s-domain, given

that f(t) has the Laplace transform F(s), and g(t) has the Laplace transform G(s).

Table 1.3.1 Some Laplace transform theorems

Theorem

L

�

f ðtÞ
�

¼ FðsÞ
Derivative

L
d f ðtÞ
dt

� �

¼ sFðsÞ � f ð0Þ

Integral
L

ðt

0

f ðτÞdτ
� �

¼ FðsÞ
s

Multiplication by time L

�

t f ðtÞ
�

¼ � d

ds
FðsÞ

Division by time L
f ðtÞ
t

� �

¼
ð

∞

s

FðuÞ du

Multiplication by exponential L

�

e�at f ðtÞ
�

¼ Fðsþ aÞ
Time shift L

�

f ðt � τÞHðt � τÞ
�

¼ e�τsFðsÞ
Scale change

L

�

f ðatÞ
�

¼ 1

a
Fðs=aÞ

Convolution
L

ðt

0

f ðτÞgðt � τÞdτ
� �

¼ FðsÞ � GðsÞ
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