Contents

Preface to the Second Edition

1 Introduction
 1.1 The challenge
 1.2 Discovery status
 1.3 Outline of the treatment
 1.3.1 Observational techniques
 1.3.2 Host star properties and brown dwarfs
 1.3.3 Theoretical considerations
 1.3.4 Solar system
 1.3.5 Appendices
 1.3.6 Hyperlinks and online resources
 1.4 Astronomical terms and units
 1.5 Definition of a planet
 1.6 Planet categories
 1.6.1 Classification by size or mass
 1.6.2 Giant planets
 1.6.3 Earths and super-Earths
 1.7 On-line reference compilations
 1.8 Future developments

2 Radial velocities
 2.1 Orbits and orbit fitting
 2.1.1 Description of orbits
 2.1.2 Orbits from radial velocities
 2.1.3 Single planet fitting
 2.1.4 Multiple planet fitting
 2.1.5 Bayesian methods
 2.1.6 Algorithmic implementation
 2.1.7 Detectability and selection effects
 2.1.8 Scheduling
 2.2 Measurement principles
 2.2.1 Doppler shifts
 2.2.2 Spectral resolution
 2.2.3 Cross-correlation spectroscopy
 2.2.4 Determination of barycentric velocities
 2.3 Wavelength calibration
 2.3.1 Telluric lines
 2.3.2 Gas cells
 2.3.3 Emission lamps
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4 Infrared calibration</td>
<td>32</td>
</tr>
<tr>
<td>2.3.5 Laser frequency combs</td>
<td>32</td>
</tr>
<tr>
<td>2.3.6 Fabry–Pérot étalons</td>
<td>33</td>
</tr>
<tr>
<td>2.3.7 Radial velocity standards</td>
<td>33</td>
</tr>
<tr>
<td>2.3.8 Fiber coupling</td>
<td>34</td>
</tr>
<tr>
<td>2.4 Accuracy limits and error sources</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1 Photon noise</td>
<td>35</td>
</tr>
<tr>
<td>2.4.2 Detection versus signal-to-noise</td>
<td>35</td>
</tr>
<tr>
<td>2.4.3 Exposure metering</td>
<td>35</td>
</tr>
<tr>
<td>2.4.4 Instrument errors</td>
<td>35</td>
</tr>
<tr>
<td>2.4.5 Stellar activity</td>
<td>36</td>
</tr>
<tr>
<td>2.4.6 Excluding other sources of periodicity</td>
<td>38</td>
</tr>
<tr>
<td>2.4.7 Bisector analysis</td>
<td>39</td>
</tr>
<tr>
<td>2.5 Higher-order radial velocity effects</td>
<td>40</td>
</tr>
<tr>
<td>2.5.1 Gravitational redshift variations</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2 Zeeman effect</td>
<td>40</td>
</tr>
<tr>
<td>2.5.3 Planet-induced tides</td>
<td>41</td>
</tr>
<tr>
<td>2.5.4 Planet radial velocity signals</td>
<td>41</td>
</tr>
<tr>
<td>2.5.5 Determination of inclination</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Radial velocity instruments</td>
<td>45</td>
</tr>
<tr>
<td>2.6.1 Overview</td>
<td>45</td>
</tr>
<tr>
<td>2.6.2 State-of-the-art in échelle spectroscopy</td>
<td>45</td>
</tr>
<tr>
<td>2.6.3 Other optical spectrographs</td>
<td>47</td>
</tr>
<tr>
<td>2.6.4 Infrared spectrographs</td>
<td>47</td>
</tr>
<tr>
<td>2.6.5 Optical–infrared spectrographs</td>
<td>48</td>
</tr>
<tr>
<td>2.6.6 Future instrument plans</td>
<td>49</td>
</tr>
<tr>
<td>2.6.7 Externally dispersed interferometry</td>
<td>49</td>
</tr>
<tr>
<td>2.6.8 Absolute accelerometry</td>
<td>50</td>
</tr>
<tr>
<td>2.7 Introduction to the radial velocity results</td>
<td>50</td>
</tr>
<tr>
<td>2.7.1 The first radial velocity exoplanets</td>
<td>50</td>
</tr>
<tr>
<td>2.7.2 Example radial velocity curves</td>
<td>51</td>
</tr>
<tr>
<td>2.7.3 Present radial velocity census</td>
<td>51</td>
</tr>
<tr>
<td>2.7.4 Reviews</td>
<td>53</td>
</tr>
<tr>
<td>2.7.5 On-line compilations</td>
<td>53</td>
</tr>
<tr>
<td>2.8 Surveys according to stellar type</td>
<td>53</td>
</tr>
<tr>
<td>2.8.1 Main sequence stars</td>
<td>53</td>
</tr>
<tr>
<td>2.8.2 Early-type dwarfs</td>
<td>54</td>
</tr>
<tr>
<td>2.8.3 Evolved stars: subgiants and giants</td>
<td>56</td>
</tr>
<tr>
<td>2.8.4 M dwarfs</td>
<td>57</td>
</tr>
<tr>
<td>2.9 Surveys according to other criteria</td>
<td>59</td>
</tr>
<tr>
<td>2.9.1 Nearby stars and volume-limited samples</td>
<td>59</td>
</tr>
<tr>
<td>2.9.2 Specific nearby stars</td>
<td>59</td>
</tr>
<tr>
<td>2.9.3 Solar twins and Jupiter analogues</td>
<td>59</td>
</tr>
<tr>
<td>2.9.4 Effects of metallicity</td>
<td>60</td>
</tr>
<tr>
<td>2.9.5 Open clusters</td>
<td>61</td>
</tr>
<tr>
<td>2.9.6 Young stars and associations</td>
<td>61</td>
</tr>
<tr>
<td>2.9.7 Follow-up of transit candidates</td>
<td>61</td>
</tr>
<tr>
<td>2.10 Masses and orbits</td>
<td>62</td>
</tr>
<tr>
<td>2.10.1 Mass distribution</td>
<td>62</td>
</tr>
<tr>
<td>2.10.2 Mass of host star</td>
<td>62</td>
</tr>
<tr>
<td>2.10.3 Period distribution</td>
<td>62</td>
</tr>
<tr>
<td>2.10.4 Eccentricities</td>
<td>63</td>
</tr>
<tr>
<td>2.10.5 Brown dwarf desert</td>
<td>64</td>
</tr>
<tr>
<td>2.11 Results according to planet type</td>
<td>66</td>
</tr>
<tr>
<td>2.11.1 Low-mass planets</td>
<td>66</td>
</tr>
</tbody>
</table>
Table of Contents

2.11.2 Super-Earths and Neptunes 66
2.11.3 High-mass planets 66
2.11.4 Hot Jupiters 67
2.12 Multi-planet systems 67
2.12.1 General considerations 67
2.12.2 Architectures and classification 68
2.12.3 Systems with three or more giant planets 68
2.12.4 Systems in mean motion resonance 71
2.12.5 Interacting two-planet systems 77
2.12.6 Non-interacting two-planet systems 77
2.12.7 Super-Earth systems 77
2.13 Binary and multiple stars 78
2.13.1 Present inventory 79
2.13.2 Specific examples 80

3 Astrometry 81
3.1 Introduction 81
3.2 Astrometric accuracy from ground 82
3.2.1 Single aperture 82
3.2.2 Interferometry 83
3.3 Microarcsec astrometry 84
3.3.1 Light deflection 84
3.3.2 Aberration 85
3.3.3 Source motion 85
3.3.4 Astrophysical limits 85
3.4 Modeling planetary systems 86
3.4.1 Proper motion and parallax 86
3.4.2 Multiple planets 86
3.4.3 Keplerian elements 87
3.4.4 Mass and orbit inclination 88
3.4.5 Planet–planet interactions 88
3.4.6 Wavelength dependence 89
3.4.7 Coordinate transformations 89
3.5 Astrometric searches from the ground 90
3.5.1 Single mirror 90
3.5.2 Discoveries and candidates 91
3.5.3 Optical interferometry 91
3.6 Astrometry from space: principles 91
3.7 Astrometry from space: HST 92
3.8 Astrometry from space: Hipparcos 93
3.9 Astrometry from space: Gaia 95
3.9.1 Principles 95
3.9.2 Expected astrometric planet yield 96
3.9.3 Transiting planets from Gaia astrometry 99
3.9.4 Data releases 99
3.10 Other space astrometry projects 99
3.10.1 Proposed space missions 99
3.10.2 Projects no longer under consideration 100
3.11 Radio and sub-mm astrometry 100
3.11.1 Astrometry at radio wavelengths 100
3.11.2 Astrometry at mm/sub-mm wavelengths 101

4 Timing 103
4.1 Candidates and time scales 103
4.2 Pulsars 103
4.2.1 Characteristics 103
4.2.2 Individual pulsars 105
4.2.3 Other considerations 109
4.3 Pulsating stars 110
4.3.1 Context 110
4.3.2 White dwarfs 110
4.3.3 Rapidly pulsating subdwarfs 111
4.4 Eclipsing binaries 112
4.4.1 Context 112
4.4.2 Candidate systems 113
4.4.3 Complicating factors 113
4.4.4 Individual systems 114
4.5 Transit timing variations 117

5 Microlensing 119
5.1 Introduction 119
5.2 Principles 120
5.2.1 Light bending 120
5.2.2 Magnification 122
5.2.3 Optical depth and event rate 123
5.3 Light curves 124
5.3.1 Single lens characterisation 124
5.3.2 Binary lens characterisation 124
5.3.3 Multiple point mass lenses 125
5.3.4 Critical curves, caustics, and cusps 126
5.3.5 Binary lens caustics 126
5.3.6 Magnification maps 127
5.3.7 High-magnification events 128
5.3.8 Short-duration events 129
5.3.9 Repeating events 129
5.3.10 Binary lens, binary source 129
5.3.11 Free-floating objects 129
5.3.12 Planets orbiting a binary system 130
5.4 Light curve modeling 130
5.4.1 Ray shooting 130
5.4.2 Model fitting 131
5.4.3 Lens–source transverse motion 131
5.5 Higher-order effects 131
5.5.1 Blending 131
5.5.2 Finite source size 131
5.5.3 Limb darkening of the source 132
5.5.4 Orbital motion 132
5.5.5 Parallax and lens mass 133
5.5.6 High-resolution imaging 135
5.6 Potentially observable effects 135
5.6.1 Structure in the lens 135
5.6.2 Structure in the source 136
5.6.3 Physical effects 136
5.6.4 Transiting planets 137
5.6.5 Specific targets 137
5.7 Solar system lensing 137
5.8 Astrometric microlensing 138
5.9 Observations 139
5.9.1 Ground-based: first generation (pre–2010) 139
5.9.2 Ground-based: second generation (post–2010) 141
5.9.3 Ground-based: other 142
5.9.4 Space-based: ongoing 143
5.9.5 Space-based: future 143
5.10 Results 143
5.10.1 Individual objects 143
5.10.2 Statistical results 144
5.10.3 Limitations and strengths 151

6 Transits 153
6.1 Introduction 153
6.2 Transit searches: wide angle 155
6.3 Transit searches: specific targets 157
 6.3.1 Radial velocity discoveries 157
 6.3.2 Open and globular clusters 158
 6.3.3 Circumstellar planets 159
 6.3.4 Specific spectral types 160
 6.3.5 Solar system transit observations 161
6.4 Surveys from the ground 162
 6.4.1 HAT/HATNet 162
 6.4.2 WASP/SuperWASP 164
 6.4.3 Other searches reporting detected planets 165
 6.4.4 Other ground-based surveys 169
6.5 Searches from space: CoRoT 171
6.6 Searches from space: Kepler 174
 6.6.1 Instrument details 174
 6.6.2 Target stars and accuracies 175
 6.6.3 K2 mission extension 176
 6.6.4 Future follow-up for Kepler and K2 177
 6.6.5 Synopsis of results 178
 6.6.6 Contributions to other fields 178
6.7 Other planet discoveries from space 178
6.8 Future observations from space 178
 6.8.1 Approved surveys: dedicated 180
 6.8.2 Approved surveys: by-products 180
 6.8.3 Future follow-up from space: approved 181
 6.8.4 Future follow-up from space: candidates 182
6.9 Follow-up observations from the ground 182
 6.9.1 Transit photometry 182
 6.9.2 High time resolution 182
 6.9.3 Interferometric observations 183
 6.9.4 Follow-up from ground: networks 183
6.10 Follow-up observations from space 184
 6.10.1 EPOXI–EPOCh 184
 6.10.2 Hubble Space Telescope 184
 6.10.3 Hipparcos 185
 6.10.4 MOST 186
 6.10.5 Spitzer Space Telescope 186
 6.10.6 Others 187
6.11 Accuracy: photometric and timing 187
 6.11.1 Stellar activity 187
 6.11.2 Photometry from the ground 188
 6.11.3 Defocused transits 189
 6.11.4 Beam-shaping diffusers 189
 6.11.5 Conjugate-plane photometry 189
 6.11.6 Timing accuracy 189
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12</td>
<td>Transit detection and light curve analysis</td>
<td>190</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Detrending</td>
<td>190</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Transit detection</td>
<td>190</td>
</tr>
<tr>
<td>6.12.3</td>
<td>Kepler special cases</td>
<td>191</td>
</tr>
<tr>
<td>6.12.4</td>
<td>Light curve fitting</td>
<td>195</td>
</tr>
<tr>
<td>6.12.5</td>
<td>Candidate confirmation</td>
<td>196</td>
</tr>
<tr>
<td>6.13</td>
<td>Transit light curves</td>
<td>199</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Principal transit observables</td>
<td>199</td>
</tr>
<tr>
<td>6.13.2</td>
<td>Geometric formulation</td>
<td>200</td>
</tr>
<tr>
<td>6.13.3</td>
<td>Light curve fitting</td>
<td>202</td>
</tr>
<tr>
<td>6.13.4</td>
<td>Biases</td>
<td>202</td>
</tr>
<tr>
<td>6.13.5</td>
<td>Circular orbits</td>
<td>202</td>
</tr>
<tr>
<td>6.13.6</td>
<td>Eccentric orbits</td>
<td>203</td>
</tr>
<tr>
<td>6.13.7</td>
<td>Physical quantities</td>
<td>205</td>
</tr>
<tr>
<td>6.13.8</td>
<td>Doppler variability</td>
<td>206</td>
</tr>
<tr>
<td>6.13.9</td>
<td>Secondary eclipse</td>
<td>207</td>
</tr>
<tr>
<td>6.13.10</td>
<td>Planet mass determination</td>
<td>207</td>
</tr>
<tr>
<td>6.13.11</td>
<td>Asterodensity profiling</td>
<td>207</td>
</tr>
<tr>
<td>6.14</td>
<td>Higher-order photometric effects</td>
<td>210</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Limb darkening</td>
<td>211</td>
</tr>
<tr>
<td>6.14.2</td>
<td>Star spots</td>
<td>211</td>
</tr>
<tr>
<td>6.14.3</td>
<td>Stellar rotation and gravity darkening</td>
<td>215</td>
</tr>
<tr>
<td>6.14.4</td>
<td>Binary planets</td>
<td>216</td>
</tr>
<tr>
<td>6.14.5</td>
<td>Exoplanetary rings</td>
<td>217</td>
</tr>
<tr>
<td>6.14.6</td>
<td>Debris and transition disks</td>
<td>218</td>
</tr>
<tr>
<td>6.14.7</td>
<td>Planetary oblateness due to rotation</td>
<td>219</td>
</tr>
<tr>
<td>6.14.8</td>
<td>Atmospheric and topographic features</td>
<td>221</td>
</tr>
<tr>
<td>6.14.9</td>
<td>Night-side emission</td>
<td>221</td>
</tr>
<tr>
<td>6.14.10</td>
<td>Early ultraviolet ingress and bow shocks</td>
<td>221</td>
</tr>
<tr>
<td>6.14.11</td>
<td>Refraction and stellar mirages</td>
<td>222</td>
</tr>
<tr>
<td>6.14.12</td>
<td>Microlensing amplification</td>
<td>223</td>
</tr>
<tr>
<td>6.14.13</td>
<td>Variability-induced motion</td>
<td>223</td>
</tr>
<tr>
<td>6.14.14</td>
<td>Grazing transits</td>
<td>223</td>
</tr>
<tr>
<td>6.14.15</td>
<td>Hill sphere transits</td>
<td>224</td>
</tr>
<tr>
<td>6.14.16</td>
<td>Planet–planet eclipses</td>
<td>225</td>
</tr>
<tr>
<td>6.14.17</td>
<td>Tidal effects</td>
<td>226</td>
</tr>
<tr>
<td>6.14.18</td>
<td>Planetary prolateness under tidal locking</td>
<td>226</td>
</tr>
<tr>
<td>6.14.19</td>
<td>Tidally-induced gravity darkening</td>
<td>229</td>
</tr>
<tr>
<td>6.14.20</td>
<td>Tidally-excited stellar oscillations</td>
<td>230</td>
</tr>
<tr>
<td>6.14.21</td>
<td>Tidal disruption</td>
<td>230</td>
</tr>
<tr>
<td>6.14.22</td>
<td>Disintegrating planets and dusty tails</td>
<td>231</td>
</tr>
<tr>
<td>6.14.23</td>
<td>Artificial bodies and other civilisations</td>
<td>233</td>
</tr>
<tr>
<td>6.14.24</td>
<td>Transits across white dwarfs</td>
<td>233</td>
</tr>
<tr>
<td>6.15</td>
<td>Orbital phase curves</td>
<td>233</td>
</tr>
<tr>
<td>6.15.1</td>
<td>Reflected light</td>
<td>234</td>
</tr>
<tr>
<td>6.15.2</td>
<td>Glint</td>
<td>237</td>
</tr>
<tr>
<td>6.15.3</td>
<td>Beaming, ellipsoidal, and reflection effects</td>
<td>238</td>
</tr>
<tr>
<td>6.15.4</td>
<td>Doppler beaming</td>
<td>238</td>
</tr>
<tr>
<td>6.15.5</td>
<td>Ellipsoidal variations</td>
<td>239</td>
</tr>
<tr>
<td>6.15.6</td>
<td>Collective modeling</td>
<td>240</td>
</tr>
<tr>
<td>6.15.7</td>
<td>Atmospheric effects</td>
<td>242</td>
</tr>
<tr>
<td>6.15.8</td>
<td>Spin–orbit tomography</td>
<td>242</td>
</tr>
<tr>
<td>6.15.9</td>
<td>Multi-planet systems</td>
<td>243</td>
</tr>
<tr>
<td>6.15.10</td>
<td>Algorithmic implementation</td>
<td>243</td>
</tr>
<tr>
<td>6.16</td>
<td>Transits at other wavelengths</td>
<td>243</td>
</tr>
</tbody>
</table>
6.16.1 X-ray 243
6.16.2 Sub-mm and radio 244
6.17 Polarisation 244
 6.17.1 Transit effects 244
 6.17.2 Scattered light 246
6.18 Rossiter–McLaughlin effect 248
 6.18.1 Context 248
 6.18.2 Formalism 248
 6.18.3 Higher-order effects 250
 6.18.4 Transit of Venus 251
 6.18.5 Rossiter–McLaughlin at secondary eclipse 251
 6.18.6 Line-profile (Doppler) tomography 251
 6.18.7 Results 252
 6.18.8 Implications for migration models 255
6.19 Secular timing effects 256
 6.19.1 Parallax and space motion 256
 6.19.2 Distant stellar or planetary companions 257
 6.19.3 General relativistic effects 257
 6.19.4 Apsidal precession 257
 6.19.5 Nodal precession 259
 6.19.6 Tidal decay 260
 6.19.7 Other time-dependent effects 260
 6.19.8 Transient transits 261
6.20 Transit timing variations 262
 6.20.1 General considerations 262
 6.20.2 Classification of configurations 263
 6.20.3 Other treatments of perturbed systems 265
 6.20.4 Orbits and masses 266
 6.20.5 Observations from the ground 269
 6.20.6 Contributions from Kepler 269
 6.20.7 Non-transiting planets 272
 6.20.8 Absence of transit timing variations 272
 6.20.9 Effect on transit search algorithms 272
 6.20.10 Transit duration variations 272
6.21 Trojans 273
 6.21.1 Detection from transit timing variations 274
 6.21.2 Detection from photometric signatures 274
6.22 Exomoons 275
 6.22.1 Detection methods 276
 6.22.2 Photo-dynamical treatment 279
 6.22.3 Sense of orbital motion 280
 6.22.4 Other considerations 281
 6.22.5 Searches and candidates 281
6.23 Exocomets 282
6.24 Transit and eclipse spectroscopy 283
 6.24.1 Principles 283
 6.24.2 Equilibrium temperature and albedo 285
 6.24.3 Observations 287
6.25 Range of properties of transiting planets 287
6.26 Kepler distributions and occurrence rates 288
 6.26.1 Size and period distributions 288
6.27 Mass, radius, and composition 291
 6.27.1 Small-radii Kepler planets 294
Table of Contents

6.27.2 Low-mass gaseous Kepler planets 296
6.27.3 Mass and radius estimation 297
6.27.4 Minimum densities from the Roche radius 298
6.27.5 Effects of photoevaporation 298

6.28 Transiting hot Jupiters 299
6.28.1 Introduction 299
6.28.2 Secondary eclipses 300
6.28.3 Albedos 301
6.28.4 Anomalous (inflated) radii 302
6.28.5 Companion planets 304
6.28.6 Stellar companions 305
6.28.7 Satellites 305
6.28.8 Stellar activity and planet surface gravity 305
6.28.9 Other properties 306

6.29 Host stars 307
6.29.1 Stellar radii 307
6.29.2 Stellar densities 307
6.29.3 Metallicity dependence 308
6.29.4 Mass dependence 308
6.29.5 Rotation and gyrochronology 309
6.29.6 Stellar obliquities 311
6.29.7 Asteroseismology 311
6.29.8 Stellar binarity/multiplicity 313

6.30 Multiple planet systems 313
6.30.1 Overview of Kepler results 313
6.30.2 Hill stability 315
6.30.3 Dynamical stability 316
6.30.4 Resonances in the Kepler systems 318
6.30.5 Mutual inclinations of multi-planet systems 322
6.30.6 The Kepler dichotomy 324

6.31 Circumbinary planets 325

7 Imaging 329
7.1 Introduction 329
7.2 Active optics 331
7.3 Atmospheric effects 331
7.3.1 Adaptive optics 331
7.3.2 Speckle and lucky imaging 332
7.4 Coronagraphic masks 333
7.4.1 Introduction 333
7.4.2 Classification of concepts 334
7.4.3 Discovery space 338
7.4.4 Other considerations 338
7.4.5 Speckle noise 339
7.5 Other considerations 341
7.5.1 Integral field spectroscopy 341
7.5.2 Astrometric orbits 341
7.5.3 Exozodiadic dust 342
7.6 Ground-based imaging instruments 342
7.6.1 First-generation instruments 343
7.6.2 Second-generation instruments 343
7.6.3 Extremely large telescopes 345
7.6.4 Imaging from the Antarctic 347
7.6.5 Interferometry 348
7.7 Space-based imaging instruments 349
Table of Contents

7.7.1 Existing space telescopes 349
7.7.2 Future space telescopes 350
7.7.3 Concepts for future space imaging missions 350
7.8 Other imaging concepts 353
 7.8.1 Medium-term prospects 353
 7.8.2 Future prospects: resolved imaging 354
 7.8.3 Planetary radar 355
 7.8.4 Gravitational wave signatures 356
 7.8.5 Sub-diffraction limit imaging 356
 7.8.6 Desirable innovations 357
7.9 Searches and surveys 357
 7.9.1 Searches with first-generation instruments 358
 7.9.2 Searches with second-generation instruments 359
 7.9.3 Searches around exoplanet host stars 360
 7.9.4 Searches around binary stars 361
7.10 Discoveries 361
 7.10.1 Planets around nearby stars 363
 7.10.2 Planets within debris disks 364
 7.10.3 Disks with spiral arms 367
7.11 Miscellaneous signatures 368
 7.11.1 Planetary and protoplanet collisions 368
 7.11.2 Accretion onto the central star 368
7.12 Imaging at other wavelengths 370
 7.12.1 X-ray and radio wavelengths 370
 7.12.2 Sub-mm and mm wavelengths 370
8 Host stars 373
 8.1 Knowledge from astrometry 373
 8.1.1 Hipparcos distances and proper motions 373
 8.1.2 Gaia 373
 8.1.3 Nearby star census 374
 8.2 Physical properties 376
 8.2.1 Absolute magnitude 376
 8.2.2 Effective temperature 377
 8.2.3 Parameters from spectroscopy 377
 8.2.4 Stellar diameters 378
 8.2.5 Masses and radii 378
 8.2.6 Stellar ages 379
 8.3 Stellar rotation 381
 8.3.1 Diagnostics of rotation 382
 8.3.2 Obliquities 384
 8.3.3 Differential rotation 385
 8.3.4 Angular momentum 386
 8.3.5 Magnetic fields 387
 8.4 Element abundances 388
 8.4.1 Metallicty 388
 8.4.2 Occurrence versus metallicity 389
 8.4.3 Origin of the metallicity difference 392
 8.4.4 Refractory and volatile elements 396
 8.4.5 The r- and s-process elements 399
 8.4.6 The alpha elements 399
 8.4.7 Lithium 400
 8.4.8 Beryllium 403
 8.5 Occurrence versus stellar type 403
 8.5.1 M dwarfs 404
Table of Contents

8.5.2 Solar twins, analogues, and siblings 405
8.5.3 Other stellar classes 406
8.6 Asteroseismology 406
 8.6.1 Principles 406
 8.6.2 Application to CoRoT and Kepler targets 409
 8.6.3 Application to exoplanet host stars 409
 8.6.4 Planet and exoplanet seismology 411
8.7 Stellar variability 411
8.8 Stellar multiplicity 412
8.9 White dwarfs 412
 8.9.1 Survival considerations 412
 8.9.2 Imaging 414
 8.9.3 Dust disks 415
 8.9.4 Elemental pollution 416
 8.9.5 Evidence for differentiation 419
8.10 Star–planet interactions 420
 8.10.1 Overview of the various interactions 420
 8.10.2 Magnetic and chromospheric activity 420
 8.10.3 Stellar winds 422
 8.10.4 X-ray emission 422
 8.10.5 Radio emission 424
 8.10.6 Flares, super-flares and CMEs 427
 8.10.7 Energetic neutral atoms 428
9 Brown dwarfs and free-floating planets 429
 9.1 Introduction 429
 9.1.1 The role of fusion 429
 9.2 Discoveries and observations 431
 9.2.1 The first brown dwarfs 431
 9.2.2 Brown dwarf surveys 431
 9.2.3 Future surveys 433
 9.2.4 Young clusters and star forming regions 434
 9.2.5 Other brown dwarf discoveries 434
 9.3 Follow-up observations 434
 9.3.1 Observations from the ground 434
 9.3.2 Observations from space 434
 9.4 Current census 435
 9.5 Classification 435
 9.6 Physical properties 438
 9.6.1 Luminosity and age 438
 9.6.2 Radius 438
 9.6.3 Temperature 439
 9.6.4 Magnetic field 439
 9.6.5 Variability, rotation, and condensate clouds 439
 9.6.6 X-ray and radio emission 440
 9.6.7 Occurrence as binary companions 441
 9.7 Formation of brown dwarfs 441
 9.8 Disks, outflows, and planets 442
 9.8.1 Disks around brown dwarfs 442
 9.8.2 Jets and outflows 444
 9.8.3 Planets around brown dwarfs 445
 9.8.4 Disk/planet formation around brown dwarfs 445
 9.9 Free-floating objects 446
 9.9.1 By-products of regular star formation 446
 9.9.2 Ejected planets and nomads 447
10 Formation and evolution 449
10.1 Context and present paradigm 449
10.1.1 Historical background 449
10.1.2 Present paradigm 450
10.2 Star formation 451
10.2.1 Molecular clouds 451
10.2.2 Protostars and protostellar collapse 452
10.2.3 Young stellar objects 453
10.3 Protoplanetary disks 454
10.3.1 Minimum-mass solar nebula 455
10.3.2 Disk viscosity and turbulence 456
10.3.3 Radial drift 457
10.3.4 Magnetorotational instability 459
10.3.5 Trapping and particle concentration 460
10.3.6 Disk dispersal and photoevaporation 462
10.3.7 Observational constraints 463
10.3.8 Transition disks 464
10.4 Terrestrial planet formation 467
10.4.1 Stages in formation 467
10.4.2 Dust to rocks: sub-micron to 10 m 468
10.4.3 Rocks to planetesimals: 10 m to 10 km 470
10.4.4 Pebbles as primary building blocks 471
10.4.5 Planetary coagulation 473
10.4.6 Final configuration 476
10.4.7 Size, shape, and internal structure 477
10.5 Giant planet formation 479
10.5.1 Core accretion 479
10.5.2 Gravitational disk instability 487
10.5.3 Comparison of the two mechanisms 490
10.6 Debris disks 491
10.6.1 Discovery 492
10.6.2 Occurrence 493
10.6.3 Dust modeling 495
10.6.4 Other manifestations 497
10.7 Formation of specific planet classes 498
10.7.1 Hot Jupiters 498
10.7.2 Hot Neptunes to Earths 499
10.7.3 Super-Earths 500
10.7.4 Planetary satellites (exomoons) 504
10.8 Resonances 504
10.8.1 Mean motion resonance 504
10.8.2 Resonance trapping and migration 507
10.8.3 Specific resonances 508
10.9 Long-term stability 509
10.9.1 Secular theory 510
10.9.2 Stability 511
10.9.3 Dynamical packing 514
10.9.4 Chaotic orbits 514
10.10 Orbital migration 517
10.10.1 Evidence for migration 517
10.10.2 Gas disk migration 517
10.10.3 Planetesimal disk migration 523
10.10.4 Planet–planet scattering 525
10.10.5 External gravitational perturbations 526
10.10.6 Lidov–Kozai oscillations 527
Table of Contents

Tidal effects

10.10.7 Origin of large stellar obliquities

10.11 Tidal effects

10.11.1 Relevance of tides

10.11.2 Tidal amplitudes

10.11.3 Tidal dynamics

10.11.4 Tidal equilibrium and Darwin stability

10.11.5 Synchronous and non-synchronous rotation

10.11.6 Equilibrium tides and dynamical tides

10.11.7 Non-linear tides

10.11.8 Spin-up of host stars

10.11.9 Tidal heating

10.11.10 Multi-planet systems

10.11.11 Other considerations

Planets in multiple star systems

10.12 Planets in multiple star systems

10.12.1 Binary and multiple stars

10.12.2 Planet configurations and stability

10.12.3 Planet formation in multiple star systems

10.12.4 Discoveries

10.12.5 Individual systems

10.12.6 Occurrence rates

10.12.7 Other insights

Population synthesis

10.13 Population synthesis

10.13.1 Objectives

10.13.2 Observational constraints

10.13.3 Monte Carlo models

Interiors and atmospheres

11 Interiors and atmospheres

11.1 Introduction

11.2 Planet constituents

11.2.1 Gas, rock, and ice

11.2.2 Composition and condensation

11.2.3 The snow line

11.3 Planet interiors

11.3.1 Equations of state

11.3.2 Hydrogen and water

11.3.3 Structural models

11.3.4 Model predictions

11.3.5 Terrestrial planets

11.3.6 Analytical model for rocky interiors

11.3.7 Lava planets

11.3.8 Ocean planets

11.4 Planet atmospheres

11.4.1 Atmospheres of gas giants

11.4.2 General circulation models

11.4.3 Atmospheres of terrestrial planets

11.4.4 Atmospheres of ejected planets

11.4.5 Atmospheric erosion

11.5 Mass–radius relation

11.5.1 General features

11.5.2 Terrestrial planets and super-Earths

11.5.3 Giant planets

11.5.4 Mass–density relation

11.5.5 Diagnostics from rotation

11.6 Transit and eclipse spectra

11.6.1 Data fitting
Table of Contents

11.6.2 Results 607
11.6.3 Atmospheric insights from phase curves 614
11.6.4 Future prospects 617

11.7 Habitability
11.7.1 Habitable zone 619
11.7.2 Tidal heating 626
11.7.3 Habitability criteria 627
11.7.4 Earth-like planets in the habitable zone 632

11.8 Life
11.8.1 Definition 635
11.8.2 Abiogenesis 635
11.8.3 Development of life on Earth 636
11.8.4 Extraterrestrial life 638
11.8.5 Spectroscopic indicators 638
11.8.6 Search for intelligent life 643
11.8.7 Fermi paradox 648

12 The solar system 649
12.1 The Sun 649
12.1.1 A prototype for exoplanet host stars 649
12.1.2 Birth in a cluster 650
12.1.3 Solar nebula abundances 651
12.1.4 Age and early chronology 652
12.1.5 Solar obliquity 653
12.1.6 Dynamical aspects 654
12.1.7 Irradiance and other considerations 656

12.2 Planets
12.2.1 The terrestrial planets 657
12.2.2 The solar system giants 658

12.3 Earth–Moon system
12.3.1 Early chronology 662
12.3.2 Earth's core 663
12.3.3 The Moon 664
12.3.4 The origin of water on Earth 667
12.3.5 Plate tectonics 668
12.3.6 Volcanism and large igneous provinces 670
12.3.7 Impact events 671
12.3.8 Atmosphere of the Earth 672
12.3.9 Disruptive events on Earth 675

12.4 Orbits
12.4.1 Ephemerides 675
12.4.2 Orbits and angular momentum 677
12.4.3 Resonances 677
12.4.4 Orbit stability and chaos 677
12.4.5 Planet rotation 679
12.4.6 Planet obliquities 680

12.5 Minor bodies in the solar system 681
12.5.1 Dwarf planets 682
12.5.2 Planetesimals and protoplanets 682
12.5.3 Exchange of impact ejecta 683
12.5.4 Asteroids 683
12.5.5 Trans-Neptunian objects 684
12.5.6 The Kuiper belt 684
12.5.7 Comets 685
12.5.8 Sedna, Planet X and Planet Nine 686
12.5.9 Retrograde orbits 687
12.5.10 Planetary satellites 687
12.5.11 Trojans 689
12.5.12 Planetary rings 690
12.5.13 Zodiacal dust 691
12.5.14 Interstellar vagabonds 692
12.6 Disk depletion, truncation, and migration 693
12.6.1 Sweeping secular resonances 693
12.6.2 The case for migration 695
12.6.3 The Nice model 695
12.6.4 The Grand Tack model 697
12.6.5 Gas and planetesimal migration 700

Appendix A Numerical quantities 701
Appendix B Notation and acronyms 705
Appendix C Radial velocity exoplanets 713
Appendix D Transiting exoplanets 727
Appendix E Lensing exoplanets 759
Appendix F Imaging exoplanets 761
References 765
Subject index 933
Object index 947