

AN INTRODUCTION TO THE ATOMIC AND RADIATION PHYSICS OF PLASMAS

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion and inertial fusion utilise atomic and radiation physics to interpret measurements. This book develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles, using the physics of various fields of study, including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate-level atomic and radiation physics with the advanced material required for postgraduate study and research, the text adopts a highly pedagogical approach and includes numerous exercises within each chapter to reinforce students' understanding of key concepts.

G. J. TALLENTS is Professor in Physics at the York Plasma Institute at the University of York. His current research centres on the effects of high plasma density on spectroscopy and the interaction of extreme ultraviolet lasers with solid targets.

AN INTRODUCTION TO THE ATOMIC AND RADIATION PHYSICS OF PLASMAS

G. J. TALLENTS
University of York

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108419543
DOI: 10.1017/9781108303538

© G. J. Tallents 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

 $Names: Tallents,\,G.\,\,J.,\,author.$

Title: An introduction to the atomic and radiation physics of plasmas / G.J.
Tallents, University of York.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2018. | Includes bibliographical references and index.

 $Identifiers: LCCN\ 2017042303\ |\ ISBN\ 9781108419543\ (hardback)\ |\ ISBN\ 1108419542\ (hardback$

Subjects: LCSH: Plasma radiation. | Radiation-Measurement.

Classification: LCC QC718.5.R3 T35 2018 | DDC 530.4/4–dc23 LC record available at https://lccn.loc.gov/2017042303

ISBN 978-1-108-41954-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Preface

Cambridge University Press 978-1-108-41954-3 — An Introduction to the Atomic and Radiation Physics of Plasmas G. J. Tallents Frontmatter <u>More Information</u>

Contents

	J		1 0
1	Plasma and Atomic Physics		
	1.1 Pla	sma Physics	3
	1.2 Fre	ee Electron Speed and Energy Distributions	9
	1.3 The	e Density of Quantum States for Free Electrons	11
	1.4 The	e Degree of Ionisation	12
	1.5 The	e Bohr Energy Level Model for Atoms and Ions	15
	Exercises		18
2	The Propa	gation of Light	20
	2.1 Ele	ectromagnetic Waves in Plasmas	21
	2.2 Ele	ectromagnetic Waves in a Magnetised Plasma	27
	2.3 Ab	sorption of Light	31
	2.4 Foo	cused Laser Light in Plasmas	34
	2.5 Rac	diation and Charge Acceleration	46
	Exercises		49
3	Scattering		52
	3.1 Sca	attering by a Free Electron	53
	3.2 Sca	attering by Bound Electrons	55
	3.3 Sca	attering by a Multi-Electron Atom	58
	3.4 Ref	fractive Index Values	62
	3.5 Co.	herent and Incoherent Thomson Scattering by Free Electron	ns 70
	3.6 Sca	attering of Unpolarised Light and Compton Scattering	74
	Exercises		77
4	Radiation Emission in Plasmas		80
	4.1 The	e Planck Radiation Law	80
	4.2 The	e Einstein A and B Coefficients	87

© in this web service Cambridge University Press

v

page ix

vi		Contents	
	4.3	Emission and Absorption	90
	4.4	Introducing the Equation of Radiative Transfer	93
	Exer	cises	95
5	Radiation Emission Involving Free Electrons		97
	5.1	Cyclotron Radiation	97
	5.2	Bremsstrahlung	101
	5.3	Inverse Bremsstrahlung Absorption	103
	5.4	Radiative Recombination	104
	5.5	Photo-Ionisation	108
	5.6	Generalised Expressions for Radiative Processes Involving	
		Free Electrons	109
	Exer	cises	111
6	Opacity		113
	6.1	The Equation of Radiative Transfer	114
	6.2	Intensities in an Optically Thick Planar Geometry	115
	6.3	Radiation Pressure in a Planar Geometry	117
	6.4	Radiation Diffusion in a Planar Geometry	118
	6.5	The Rosseland Mean Opacity	120
	6.6	Intensities Absorbed in a Thin Layer	122
	6.7	Relationships between the Frequency-Averaged Opacities	123
	Exer	cises	125
7	Discrete Bound Quantum States: Hydrogen and Hydrogen-Like Ions		127
	7.1	A Quantum Mechanical Treatment of Atoms and Ions	128
	7.2	The Hydrogen Atom	129
	7.3	Magnetic Moment, Electron Spin and Degeneracy	136
	7.4	Hydrogen Fine Structure	138
	7.5	Spectroscopic Notation	145
	7.6	Hyperfine Structure: The Effect of Nuclear Spin	145
	7.7	Summary for Hydrogen and Hydrogen-Like Ions	149
	Exercises		149
8	Discrete Bound States: Many-Electron Atoms and Ions		152
	8.1	Exchange Parity and the Pauli Exclusion Principle	153
	8.2	The Central Field Approximation	154
	8.3	The Coulomb and Spin-Orbit Interactions	159
	8.4	Summary for Multi-Electron Atoms and Ions	164
	Exercises		164

		Contents	vii
9	Discrete Bound States: Molecules		
	9.1	The Hydrogen Molecule Ion H ₂ ⁺	167
	9.2	Covalent and Ionic Molecular Bonds	172
	9.3	Molecular Vibrational and Rotational States	172
	Exerci	ises	174
10	Radiat	tive Transitions between Discrete Quantum States	177
	10.1	Quantum Theory of the Atom–Radiation Interaction	178
	10.2	Selection Rules	189
	10.3	Lineshapes	190
	10.4	Transitions between States Affected by Zeeman and Stark effects	203
	Exerci	ises	205
11	Collis	ions	208
	11.1	Collisions in Plasmas	208
	11.2	A Consequence of the Conservation of Angular Momentum in	
		Collisions	210
	11.3	The Evaluation of Collisional Cross-Sections	211
	11.4	The Evaluation of Inelastic Collisional Cross-Sections	217
	11.5	Scaling of Inelastic Cross-Sections	219
	11.6	Collisional Excitation for Forbidden Transitions	221
	11.7	Inelastic Atomic and Ionic Collisions	221
	11.8	Collisional Ionisation	221
	11.9	Charge Exchange Recombination	222
	11.10	Dissociative Recombination	224
	Exerci	ises	224
12	Collis	ional-Radiative Models	226
	12.1	Collisional Excitation and De-Excitation	226
	12.2	Collisional Ionisation and Three-Body Recombination	229
	12.3	Collisional and Radiative Processes	231
	12.4	The Escape Factor Approximation for the Effects of Radiation	234
	12.5	Coronal Equilibrium	236
	12.6	Dielectronic Recombination and Auto-Ionisation	239
	12.7	Criteria for LTE	243
	12.8	Spectral Line Intensity Ratios	244
	12.9	The Average Ionisation	246
	Exercises		250
13	High-l	Density Plasmas	255
	13.1	Examples of High-Density Plasmas	256
	13.2	The Ion–Ion Plasma Coupling Constant	258

viii		Contents	
	13.3	The Fermi Energy and Pressure of Free Electrons	259
	13.4	The Saha–Boltzmann Equation at High Density	263
	13.5	The Thomas–Fermi Model	265
	13.6	The Average Atom Model	267
	13.7	Continuum Lowering	268
	13.8	Collisional Rates at High Density	270
	13.9	Radiative Rates at High Density	274
	Exerc	ises	276
	Appei	ndix Vectors, Maxwell's Equations, the Harmonic Oscillator and	
	a Sum Rule		278
	A.1	Vector Analysis	278
	A.2	Maxwell's Equations	283
	A.3	The Harmonic Oscillator	285
	A.4	The Thomas-Reiche-Kuhn Sum Rule	288
	References		291
	Index		297

Preface

This book provides an introduction to the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas. Such study necessarily requires a wide range of modern physics understanding involving electricity and magnetism, relativity, atomic structure, quantum mechanics, particle collision theory, statistical physics and more. Indeed, the analysis of light emission and collisional processes relevant to plasmas has provided much of the experimental evidence for quantum mechanics. The atomic and radiation physics of plasmas is, consequently, an ideal subject for study as an extension to material taught to physics undergraduates. The book combines undergraduate-level studies of the quantum mechanics of ions/atoms with the atomic and radiation physics of plasmas, though non-quantum models are used extensively. Atomic and radiation physics is presented at a level aimed at undergraduates in their final two years through to graduate students and researchers. Material needed for research in plasma physics and astrophysics is derived.

Plasma physicists working in a range of areas from astrophysics, magnetic fusion and inertial fusion to low-temperature plasmas of technological significance utilise atomic and radiation physics to interpret measurements. Plasma physics is a growing research area with the construction of the ITER tokamak, new laser-plasma facilities and the development of new methods of creating plasma, such as with free-electron lasers. Atomic and radiation physics is also an essential component in the theoretical development and simulation of astrophysical and laboratory plasmas. One aim of this book is to emphasise the overlap of atomic/radiation physics between astrophysical and laboratory plasmas, an imbrication exploited in the expanding field of laboratory astrophysics where physical scenarios relevant to astrophysics are simulated in the laboratory.

Due to the range of understanding required for research in the atomic and radiation physics of plasmas, the underlying physics is often not developed in research publications in astrophysics and plasma spectroscopy. An aim of this book has been

ix

x Preface

to start with the knowledge obtained by physics graduates before they begin to specialise and to develop formulae and explain techniques used in plasma spectroscopy. The areas of plasma research utilising aspects of atomic and radiation physics are briefly introduced before spectroscopic applications are covered, but this book concentrates on the underlying atomic and radiation physics.

As this is a textbook, rather than a monograph, some presented treatments are not the most comprehensively complete available, but illustrate the way to standard formulae and techniqes. Similarly, the citations presented are representative and do not give a full coverage of the development of topics. I offer my apologies to those whose contribution to knowledge is described but not cited.

Exercises are included at the end of each chapter and form an integral component of the text. Where a numerical answer is required, this is added in brackets, sometimes along with comment indicating, for example, wider implications of the exercise. Material is presented using the International System of Units (SI) unless explicitly defined otherwise. The convention common in laboratory plasma work to define temperatures (T) in units of energy (k_BT) using electron volts (eV) is widely used in the text. Here k_B is Boltzmann's constant. In SI units, $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ and corresponds to 11605°K . While formulas are developed in SI units, research areas often use centimeter-gram-second (CGS) units, so some expressions are converted from SI where numerical values are presented.

Much of the content presented here has been developed for courses taught at the University of York. The treatment of the atomic physics of the hydrogen and multi-electron atoms has been taught to third-year students for several years, while other material has featured in lecture courses presented to MSc and PhD students of fusion energy. I am grateful to the University of York for the opportunity to develop some of these lecture courses into the present book and also thank many students for their questions, comments and corrections. I am grateful to Professor Geoff Pert FRS for his comments on a draft of the manuscript and to Dr Erik Wagenaars for providing lecture material.