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Plasma and Atomic Physics

A plasma is created by adding energy to a gas so that electrons are removed from

atoms, producing free electrons and ions. Electric and magnetic fields interact

strongly with the charged electrons and ions in plasmas (unlike solids, liquids and

gases) and, consequently, plasmas behave differently to imposed electric and mag-

netic fields and modify electromagnetic waves in different ways to solids, liquids

and gases. The different behaviour of plasmas has caused them to be regarded as a

fourth fundamental state of matter in addition to solids, liquids and gases.

More than 99% of the observable universe is plasma. For example, the Sun

is a plasma and has mass comprising 99.85% of the solar system, so the frac-

tion of plasma in the solar system is slightly higher once interplanetary plasma is

included. Present understanding of the universe has been enabled by the detection

of electromagnetic radiation emitted by or passing through plasma material. To

understand the universe, we need to understand plasmas, and, in particular, we need

to understand the processes of light emission and propagation in plasmas.1

Plasmas have many realised and potential applications. The fusion of isotopes of

hydrogen in plasmas confined using magnetic fields or confined by inertia before

a dense plasma can expand should provide a new source of energy production to

replace the burning of fossil fuels, though the exact physics and many technical

issues are not yet resolved [35]. The fuel for a fusion reactor (the deuterium isotope

of hydrogen) is abundant in seawater (at concentration 33 mg/litre). Large-scale

experiments are under way to make fusion reactors because of the enormous poten-

tial impact of the development of a fusion power plant [79, 67].

Plasmas are used in many technological applications, including semiconduc-

tor etching and thin-film coating [15]. Plasma is created during the welding of

1 In astrophysics, plasma material is sometimes referred to as an ‘ionised gas’, while in laboratory plasma work
involving partial ionisation of atoms, the term ‘gaseous electronics’ has been employed to denote the physics
of ‘low-temperature’ plasmas. The use of the word ‘plasma’ to describe both ‘ionised gases’ and ‘gaseous
electronics’, however, is now almost ubiquitous.
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2 Plasma and Atomic Physics

solid material and is under study for biological and medical applications such as

bacterial sterilisation. The emission of light from plasmas has many applications,

ranging from fluorescent tubes to the use of extreme ultra-violet light emitted from

laser plasmas for the lithography of semiconductors [105]. Many different lasers

utilising plasmas have been developed, including argon ion lasers and an exten-

sive array of plasma lasers designed to operate at short wavelengths [108, 91],

with the record for saturated lasing achieved at wavelength 5.9 nm [125, 100]. A

road map for plasma applications shows the range of applicability of plasmas in

technology [97].

A plasma can be defined as a collection of ions and free electrons where the

charged ions and electrons produce collective responses to electric and magnetic

fields, but the net charge density averages to zero over longer-length scales.

Similar definitions have often been used to define material in the plasma state

(see [17, 35, 5]). Our given definition of plasma leads to the concept of the

plasma frequency, which is a minimum frequency for an oscillating field to exist

in a plasma, and to the concept of the Debye length, which is the distance over

which electron and ion charges average to zero. We start our examination of

plasmas by considering the plasma frequency and Debye length in Section 1.1. The

plasma frequency is particularly important for the physics of the propagation of

electromagnetic radiation in a plasma.

To ionise material so that free electrons and ions are present to form a plasma,

elevated temperatures are required, causing plasmas to emit electromagnetic radi-

ation, depending on the temperature of the plasma, in, typically, the infra-red to

X-ray spectral range, though the spectrum of emission can extend to longer wave-

length microwaves and radio waves, and to high-photon-energy gamma rays. In

plasmas, electrons often occupy the excited bound quantum states of the ions and

the free unbound quantum states. Such excitation and ionisation lead to radiation

emission. The atomic physics producing electromagnetic waves in plasmas, and the

subsequent propagation and absorption of electromagnetic radiation in plasmas, are

the main subjects of this book.

For the relatively low-density but hot plasmas found in the laboratory, atoms

and ions can be regarded as having an atomic physics structure close to that of

an isolated atom or ion, but with quantum-state populations far from equilibrium.

Free electrons, photons, ions and atoms have ‘collisions’ with the ions, causing

excitation and ionisation. Astrophysical and space plasmas span energy-density

ranges from extremely low (interstellar space) to extremely high (e.g. dwarf stars),

and are associated with long timescales, often with equilibrium population and

radiation fields.

The atomic and radiation physics of plasmas covers a wide range of modern

physics understanding involving electricity and magnetism, relativity, atomic
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1.1 Plasma Physics 3

structure, quantum mechanics, particle collision theory, statistical physics and

more. The analysis of light emission and collisional processes relevant to plasmas

has provided much of the experimental evidence for quantum mechanics.

Analysis of the emission and absorption of light is an effective and non-invasive

method to measure plasma conditions, such as density and temperature. Analysing

spectral emission and absorption is the sole diagnostic technique applicable to

astrophysical plasmas and is essential for diagnosing conditions in magnetic and

inertial fusion plasmas. To determine plasma conditions, light probing involving

scattering, absorption and radiation phase measurements (interferometry) can be

used in laboratory plasmas. An understanding of radiation interaction in plasmas

allows the interpretation of such probing.

There are books which concentrate on the diagnosis of plasma conditions using

radiation emission – a subject known as plasma spectroscopy [51, 38]. Compre-

hensive research-level treatments of the atomic [95] and radiation [93] physics

of plasmas, as well as an introduction to astronomical spectroscopy [111] and a

graduate-level text emphasising atomic physics of relevance to astrophysics [86]

are available. Codes and databases relevant to the atomic physics of plasmas include

the Atomic Data and Analysis Structure (ADAS), (see, for example, Guzman et al.

[41]) the FLYCHK code [18], the Astrophysical Plasma Emission Code (APEC)

[101], and the National Institute of Standards and Technology (NIST) Atomic

Spectra [63].

An understanding of the atomic physics of plasmas is needed for plasma

simulation. The emission and absorption of light in a plasma can affect the plasma

dynamics by, for example, transporting energy. However, as well as affecting

plasma dynamics, the atomic and radiation physics of plasmas enables simulations

of plasma density to be ‘closed’. Fluid codes require a relationship between

material density and pressure which, in turn, requires a knowledge of the degree

of ionisation. Simulation particle codes similarly need a measure of the degree of

ionisation for closure. This requirement for closure is explored in Section 1.1. We

also show how atomic physics affects the velocity of sound in a plasma. This first

chapter then presents an introduction to some radiation and atomic physics which

is important in plasmas. The equilibrium relationship for ionisation (the Saha–

Boltzmann equation), the distribution of speeds and energies of the particles (the

Maxwellian distribution) and the Bohr model for atomic and ionic energy levels

are introduced.

1.1 Plasma Physics

Some fundamental aspects of plasma physics are encapsulated in the definition of a

plasma given above: ‘A plasma is a collection of ions and free electrons where the
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4 Plasma and Atomic Physics

charged ions and electrons produce collective responses to electric and magnetic

fields with the net charge density over longer-length scales averaging to zero.’ The

concept of a collective response and the idea of the charge density averaging to zero

lead to the concept of the plasma frequency and Debye length.

Plasma Frequency

Consider a uniform plasma of free electrons and ions which is neutrally charged

and occupying a defined space. An imposed electric field can cause the centre of

mass of the lighter electrons to be displaced by a distance x relative to the more

massive ions. To deduce the necessary electric field, we can use the integral form

of Gauss’ law (see Appendix A.2) given by

∫

S

E · dA =
1

ǫ0

∫

V

ρcdV .

Assume a cubic volume V extends into the plasma with one surface of area A

perpendicular to the electric field and parallel to the plane of the plasma edge. The

total charge enclosed by the volume is −nee Ax, where ne is the electron number

density and −e is the charge of the electron. The electric field across the area is then

E = −
nee x

ǫ0

(1.1)

after cancelling the area A from both sides of the expression for Gauss’s law. If

the imposed electric field is switched off, there is a force eE on the electrons in

the opposite direction to the force arising from the imposed electric field and an

equation of motion of the electrons such that

m0

d2x

dt2
= eE = −

nee
2

ǫ0

x (1.2)

where m0 is the mass of an electron. Solutions of this equation are of form

x(t) = x(0) exp(−iωpt)

where, upon substitution into Equation 1.2, we have

ω2
p =

nee
2

m0ǫ0

. (1.3)

The frequency ωp is known as the plasma frequency. It represents the natural,

collective oscillation frequency of the electrons relative to the ions and, we shall

later see, defines a minimum frequency of light that can propagate in a plasma in

the absence of a magnetic field.
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1.1 Plasma Physics 5

The Debye Length

The characteristic distance for charge neutrality in a plasma can be found by consid-

ering a situation with two parallel plates separated in the x-direction by a distance

2a. The plates are assumed to be at earth potential with electrons of density ne filling

the space between the plates. The electrostatic potential VP is related to charge

density ρ at positions x by Poisson’s equation (see Appendix A.2). We have

∇
2VP =

d2VP

dx2
= −

ρe

ǫ0

=
nee

ǫ0

.

At the midway point between the plates (distance x = a), the potential is given by

VP =
neea2

2ǫ0

and the energy required to move another electron to the midway point between

the plates is VPe = nee
2a2/(2ǫ0). In one direction, the average kinetic energy of

an electron at temperature Te is (1/2)kBTe (see Exercise 1.2). We can equate this

kinetic energy to the energy required to move an electron to the midway distance

between the two plates:

1

2
kBTe =

nee
2a2

2ǫ0

.

The distance a, where the electron kinetic energy is equal to the energy required

to move an electron to the midway points between the plates, is the distance over

which the ground potential of the plates stops influencing the ‘average’ electron.

The distance is given by

a = λD =

(

ǫ0kBTe

nee2

)1/2

. (1.4)

This distance is known as the Debye length λD.

The number of electrons in a sphere of radius λD reflects the number of electrons

likely to move ‘collectively’ together during, for example, light scattering from a

plasma. We can write for the number of electrons in a Debye sphere

ND = ne

4

3
πλ3

D =

(

4

3

)

π

(

ǫ0kBT

nee2

)3/2

ne. (1.5)

Plasma Pressure and the Speed of Sound in a Plasma

In a plasma, pressure P is related to the mass density ρ and temperature T by adding

up the electron, ion and atom pressure given by Boyle’s law. We can write for a

plasma where all particles have the same temperature and behave as ideal gases that
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6 Plasma and Atomic Physics

P = nikBTi + nekBTe =
ρ(1 + Zav)kBT

Amp

(1.6)

where A is the average atomic mass, mp is the mass of the proton and the average

degree of ionisation Zav = ne/ni, where ne is the electron density and ni is the ion-

plus-atom density. The electron temperature Te and ion temperature Ti are assumed

equal to T for the last equality. Equation 1.6 is an example of an equation of state

relationship between state variables in thermodynamic equilibrium.

Changes of mass density ρ and the velocity u of a plasma fluid can be related

by the continuity equation (representing conservation of mass) and the equation of

motion (representing a fluid version of Newton’s law that force is equal to mass

times acceleration). The equation of motion for a fluid is also known as the Navier-

Stokes equation. We can use standard fluid treatments (e.g. [84]) and write for these

two equations respectively

∂ρ

∂t
+ ∇.ρu = 0, (1.7)

ρ

(

∂u

∂t
+ (u.∇)u

)

= −∇P. (1.8)

The fluid equation of continuity and the equation of motion can be used to simulate

plasmas if the pressure P and the density ρ can be related to each other by a known

closure relationship, for example, Equation 1.6. This is not always straightforward.

For example, the pressure/density relationship is affected strongly by the value of

the degree of ionisation Zav and it is often necessary to evaluate separate tempera-

tures for the different ion, atomic and electron components of the plasma.

For variations in mass density, velocity and pressure in one dimension z, the

continuity equation and equation of motion can be written such that

∂ρ

∂t
+

∂ρu

∂z
= 0,

ρ

(

∂u

∂t
+ u

∂u

∂z

)

= −
∂P

∂z
.

Assuming a small time-varying deviation of density ρ = ρ0 + ρ1, velocity

u = u0 + u1 and pressure P = P0 + P1 from steady-state values ρ0, u0 and P0, it

is possible to show that to a good approximation the one-dimensional continuity

equations combine to give an equation for the propagation of the deviation of

density such that

∂2ρ1

∂z2
+

1

(∂P/∂ρ)

∂2ρ1

∂t2
= 0.
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1.1 Plasma Physics 7

This equation has the form of a wave equation where the speed cs of the wave is

given by

c2
s =

(

∂P

∂ρ

)

. (1.9)

The propagation of a disturbance in density is usually known as a sound wave, so

this equation shows that the sound speed is given by the square root of the rate of

change of pressure with density changes. (The partial derivative here means that

other parameters such as entropy and energy density are held constant.) The sound

speed determines the rate of expansion of a freely expanding plasma and the speed

of shock waves and other disturbances propagating in plasmas.

Statistical mechanics tells us that for a gas (or other system) characterised by a

temperature T , the average energy per degree of freedom per particle is equal to

(1/2)kBT (see Exercise 1.2). A degree of freedom can be represented by transla-

tional motion in one direction (giving three degrees of freedom for a monatomic

gas or a plasma species such as the electrons), but can also include, for example,

vibrational degrees of freedom for polyatomic gases.

Rather than consider degrees of freedom in a plasma, it is often more convenient

to define a parameter γeos using the relationship between pressure and energy den-

sity. We introduce the energy density per unit mass (ǫm) and write for the energy

density per unit volume U = ρǫm that

U = ρǫm =
P

γeos − 1
(1.10)

which then defines γeos. Equation 1.10 illustrates that the pressure P and energy

density per unit volume U are essentially the same thing, as for an ideal gas with nd

degrees of freedom, we can write that

γeos = 1 +
2

nd

. (1.11)

The energy density per unit volume of the electrons or ions is then given by

Ue,i =
nd

2
ne,ikBT (1.12)

where ne,i represents the electron or ion number density. The energy density per

unit mass is consequently given by

ǫm =
3

4

(1 + Zav)kBT

Amp

(1.13)

upon substituting into Equation 1.10 using our Boyle’s law expression for the pres-

sure (Equation 1.6) and setting nd = 3. A particle such as an electron or ion has

nd = 3 degrees of freedom as there are three directions for the components of
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8 Plasma and Atomic Physics

velocity. This energy per unit mass expression is equivalent to the one that can be

obtained by counting (1/2)kBT energy per degree of freedom assuming that there

are three degrees of freedom for both the electrons and ions.

Differentiating the equation that defines γeos (Equation 1.10), we get

∂P

∂ρ
= (γeos − 1)

(

ǫ + ρ
∂ǫm

∂ρ

)

. (1.14)

The change of energy content 	ǫm per unit mass of a gas is given by the summation

of energy added (	q), minus the work done by the gas due to volume changes

(−P	V), a statement often known as the first law of thermodynamics. We can

write that

	ǫ = 	q − P	

(

1

ρ

)

(1.15)

as the volume change 	V is equal to the change of 1/ρ. As

d(1/ρ)

dρ
= −

1

ρ2
,

the partial derivative of the energy content per unit mass with respect to density can

now be evaluated from Equation 1.15. We use a partial derivative, which means that

quantities other than density are held constant (so the heat flow 	q = 0) and obtain

∂ǫm

∂ρ
=

P

ρ2
.

Substituting into Equation 1.14 and using Equation 1.10 gives another expression

for the sound speed

c2
s =

∂P

∂ρ
=

γeosP

ρ
. (1.16)

Interestingly, we see that any factor that affects the relationship between energy

density and pressure (Equation 1.10) will affect the speed of sound in the plasma.

For example, the degree of ionisation in a plasma affects this relationship, so we

have the seemingly perverse result that different ionisation can cause changes in

the speed of sound in a plasma. The speed of sound determines the velocity of

propagation of shock waves and rarefaction waves and the speed of expansion of

an unconstrained plasma [5].

1.1.1 Adiabatic Condition

An adiabatic process is one that occurs without transfer of heat or matter between a

thermodynamic system and its surroundings. The adiabatic condition for a plasma

element means that no external energy is added so that any change in the internal
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1.2 Free Electron Speed and Energy Distributions 9

energy per unit volume dUe,i of the electrons or ions is balanced by the work Pe,idV

associated with a volume change dV . As the electron or ion pressure Pe,i = ne,ikBT

(see Equation 1.6), using Equation 1.12 we have

dUe,i =
nd

2
(Pe,idV + VdPe,i). (1.17)

Equating dUe,i and −PdV gives

nd

2
(Pe,idV + VdPe,i) = −Pe,idV .

Rearranging, we have

dPe,i

Pe,i

= −

(

1 +
2

nd

)

dV

V
= −γeos

dV

V

using Equation 1.11. Integrating the pressure from P0 to Pe,i and volume from V0

to V gives

ln

(

Pe,i

P0

)

= −γeos ln

(

V

V0

)

.

We can write that

Pe,iV
γeos = P0V

γeos

0 . (1.18)

Equation 1.18 means that for an adiabatic element of plasma, Pe,iV
γeos is constant.

Another way of stating this adiabatic condition for a plasma is found by recog-

nising that the volume V of a plasma element is proportional to the inverse of the

number density 1/ne,i and that Pe,i = ne,ikBT . For a perfect gas, γeos = 5/3, so that

the constant Pe,iV
γeos is equivalent to a constant ne,i/(kBT)3/2. A freely expanding

plasma volume element is often adiabatic with constant value of ne,i/(kBT)3/2.

1.2 Free Electron Speed and Energy Distributions

We discuss the division of particles into fermions and bosons in Section 8.1, but

we can utilise here the main result of that discussion: that only one fermion can

occupy a quantum state. For particles in a thermodynamic equilbrium, the proba-

bility P(E) of occupancy by a particle of a quantum state of energy E is given by

the proportionality

P(E) ∝ exp

(

N(μ − E)

kBT

)

(1.19)

where N is the number of particles occupying the state with energy E, μ is the

chemical potential and T is the temperature. The chemical potential is the energy

required to add one more particle to the ‘gas’ of particles. If the state is not occupied

by a particle P(E) ∝ 1 as N = 0. As electrons are fermions, a state can only
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10 Plasma and Atomic Physics

be occupied by one electron, or it can be unoccupied. If occupied, the probability

relationship is P(E) ∝ exp((μ − E)/kBT). The proportionality constants to turn

the probabilities into absolute probabilities are the same for both occupied and not-

occupied states, so the average occupancy n(E) of a state of energy E is given by

the ratio of the probabilities here for Poccupied/(Poccupied + Pnotoccupied) giving

n(E) =
exp ((μ − E)/kBT)

exp ((μ − E)/kBT) + 1
=

1

1 + exp ((E − μ)/kBT)
. (1.20)

This average occupancy of a quantum state can be immediately utilised to obtain

an expression for the distribution of speeds of electrons. The number of electrons

per unit volume fv(v)dv with speeds between v and v + dv is given by the

proportionality

fv(v)dv ∝ 4πv2n(E)dv

where E = (1/2)m0v2 is the electron energy for electron mass m0. The factor

4πv2dv is the velocity space volume corresponding to the speed range v to v + dv

given by the volume of a shell of radius v and thickness dv. The expression for the

electron distribution of speeds can then be written as

fv(v)dv ∝ 4πv2 dv

1 + exp(((1/2)m0v2 − μ)/kBT)
.

To convert the proportionality constant here to an absolute value of the distribution

of speeds requires normalisation. We choose to require that integrating over all

possible speeds gives the total electron number density ne per unit volume. We then

have that

∞
∫

0

fv(v)dv = ne.

The probability distribution function with this normalisation gives the number

of electrons per unit volume with speeds between v and v + dv. An alternative

normalisation with
∞
∫

0

f̂ v(v)dv = 1 would give the probability of finding an electron

with a speed in the range v to v + dv (not the number of electrons) and is used

in Chapter 12. Unfortunately, the integrations to do the normalisation are not

straightforward, except in the limiting case where the chemical potential is large

and negative corresponding to the thermodynamic state of a lower-density electron

gas where the electron quantum states are not close to being fully occupied. We

consider the chemical potential in Chapter 13. In the case of a lower-density gas,

we have the Maxwellian distribution of speeds with

fv(v)dv = ne

(

m0

2πkBT

)3/2

4πv2 exp

(

−
m0v2

2kBT

)

dv. (1.21)
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