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Haar Measure on the Classical Compact

Matrix Groups

1.1 The Classical Compact Matrix Groups

The central objects of study in this book are randomly chosen elements of the

classical compact matrix groups: the orthogonal groupO (n), the unitary group

U (n), and the symplectic group Sp (2n). The groups are defined as follows.

Definition

1. An n× n matrix U over R is orthogonal if

UUT = UTU = In, (1.1)

where In denotes the n × n identity matrix, and UT is the transpose of U.

The set of n× n orthogonal matrices over R is denoted O (n).

2. An n× n matrix U over C is unitary if

UU∗ = U∗U = In, (1.2)

where U∗ denotes the conjugate transpose of U. The set of n × n unitary

matrices over C is denoted U (n).

3. A 2n× 2n matrix U over C is symplectic if U ∈ U (2n) and

UJUT = UTJU = J, (1.3)

where

J :=

[

0 In

−In 0

]

. (1.4)

The set of 2n× 2n symplectic matrices over C is denoted Sp (2n).

Alternatively, the symplectic group can be defined as the set of n × n

matrices U with quaternionic entries, such that UU∗ = In, where U
∗ is the

(quaternionic) conjugate transpose: for

H = {a+ bi + cj + dk : a, b, c, d ∈ R}
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2 Haar Measure on the Classical Compact Matrix Groups

the skew-field of quaternions, satisfying the relations

i2 = j2 = k2 = ijk = −1,

quaternionic conjugation is defined by

a+ bi + cj + dk = a− bi − cj − dk.

Quaternions can be represented as 2 × 2 matrices over C: the map

a+ bi + cj + dk �−→

[

a+ bi c+ di

−c+ di a− bi

]

is an isomorphism of H onto

{[

z w

−w z

]

: z,w ∈ C

}

.

More generally, if A,B,C,D ∈ Mn(R), then the matrix

M = A+ Bi + Cj + Dk ∈ Mn(H)

is associated to the matrix

MC = I2 ⊗ A+ iQ2 ⊗ B+ Q3 ⊗ C + iQ4 ⊗ D,

where

Q2 :=

[

1 0

0 −1

]

Q3 :=

[

0 1

−1 0

]

Q4 :=

[

0 1

1 0

]

and⊗ denotes the Kronecker product. Any matrixM ∈ M2n(C) of this form

has the property that

MJ = JM

for J = Q3 ⊗ In as above, and the condition UU∗ = In for U ∈ Mn(H) is

equivalent to UCU
∗
C

= In over C.

We will generally consider the symplectic group in its complex version, as a

subgroup of the (complex) unitary group, although certain geometric properties

of the group can be more cleanly characterized in the quaternionic form.

Note that it is immediate from the definitions thatU is orthogonal if and only

if UT is orthogonal, and U is unitary or symplectic if and only if U∗ is.

The algebraic definitions given above are nicely compact but may not make

the importance of these groups jump right out; the following lemma gives some

indication as to why they play such a central role in many areas of mathematics.
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1.1 The Classical Compact Matrix Groups 3

Lemma 1.1 1. Let M be an n× n matrix over R or C. Then M is orthogonal

or unitary if and only if the columns of M form an orthonormal basis of Rn,

resp. Cn.

2. For U an n×n matrix overR, U ∈ O (n) if and only if U acts as an isometry

on Rn; that is,

〈Uv,Uw〉 = 〈v,w〉

for all v,w ∈ R
n.

3. For U an n×n matrix overC, U ∈ U (n) if and only if U acts as an isometry

on Cn:

〈Uv,Uw〉 = 〈v,w〉

for all v,w ∈ C
n.

4. Consider C2n equipped with the skew-symmetric form

ω(v,w) = v1wn+1 + · · · + vnw2n − vn+1w1 − · · · − v2nwn =
∑

k,ℓ

Jklvkwℓ,

where

J =

[

0 In

−In 0

]

as above. For a 2n × 2n matrix U over C, U ∈ Sp (2n) if and only if U is

an isometry of C2n which preserves ω:

〈Uv,Uw〉 = 〈v,w〉 and ω(Uv,Uw) = ω(v,w)

for all v,w ∈ C
2n.

5. If U ∈ O (n) or U ∈ U (n), then | det(U)| = 1. If U ∈ Sp (2n), then

det(U) = 1.

Proof Note that the (i, j)th entry of UTU (if U has real entries) or U∗U (if U

has complex or quaternionic entries) is exactly the inner product of the ith and

jth columns of U. So UTU = In or U∗U = In is exactly the same thing as

saying the columns of U form an orthonormal basis of Rn or Cn.

For U ∈ Mn(R), 〈Uv,Uw〉 =
〈

UTUv,w
〉

, and so 〈Uv,Uw〉 = 〈v,w〉 for all v

and w if and only if UTU = I. The proofs of parts 3 and 4 are similar. For part

5, on any of the groups,

| det(U)|2 = det(U)det(U) = det(U) det(U∗) = det(UU∗) = det(In) = 1.

The easiest way to see that if U ∈ Sp (2n), then in fact det(U) = 1 is to use

the Pfaffian: for a skew-symmetric matrix A, the Pfaffian pf(A) is defined by a
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4 Haar Measure on the Classical Compact Matrix Groups

sum-over-permutations formula along the lines of the determinant, and has the

property that for 2n× 2n matrices A and B,

pf(BABT) = det(B) pf(A).

Applying this to the defining relation of Sp (2n),

pf(J) = pf(UJUT) = det(U) pf(J),

and so (using the easily verified fact that pf(J) 	= 0), det(U) = 1. �

We sometimes restrict attention to the “special” counterparts of the orthog-

onal and unitary groups, defined as follows.

Definition The set SO (n) ⊆ O (n) of special orthogonal matrices is

defined by

SO (n) := {U ∈ O (n) : det(U) = 1}.

The set SO− (n) ⊆ O (n) (the negative coset) is defined by

SO
− (n) := {U ∈ O (n) : det(U) = −1}.

The set SU (n) ⊆ U (n) of special unitary matrices is defined by

SU (n) := {U ∈ U (n) : det(U) = 1}.

Since the matrices of the classical compact groups all act as isometries of

C
n, all of their eigenvalues lie on the unit circle S1 ⊆ C. In the orthogonal and

symplectic cases, there are some built-in symmetries:

Exercise 1.2 Show that each matrix in SO (2n+ 1) has 1 as an eigenvalue,

each matrix in SO− (2n+ 1) has −1 as an eigenvalue, and each matrix in

SO
− (2n+ 2) has both −1 and 1 as eigenvalues.

The setsO (n),U (n), Sp (2n), SO (n), and SU (n) of matrices defined above

are compact Lie groups; that is, they are groups (with matrix multiplication as

the operation), and they are compact manifolds, such that the multiplication and

inverse maps are smooth. Moreover, these groups can naturally be viewed as

closed submanifolds of Euclidean space:O (n) and SO (n) are submanifolds of

R
n2 ; U (n) and SU (n) are submanifolds of Cn2 ; and Sp (2n) is a submanifold

of C(2n)2 . Rather than viewing these matrices as n2-dimensional vectors, it is

more natural to view them as elements of the Euclidean spaces Mn(R) (resp.

Mn(C)) of n×nmatrices over R (resp. C), where the Euclidean inner products

are written as

〈A,B〉HS := Tr(ABT)
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1.1 The Classical Compact Matrix Groups 5

for A,B ∈ Mn(R), and

〈A,B〉HS := Tr(AB∗)

for A,B ∈ Mn(C). These inner products are called theHilbert–Schmidt inner

products on matrix space.

The Hilbert–Schmidt inner product induces a norm on matrices; it is some-

times called the Frobenius norm or the Schatten 2-norm, or just the Euclidean

norm. This norm is unitarily invariant:

‖UBV‖HS = ‖B‖HS

whenU and V are unitary (as is easily seen from the definition). This implies in

particular that if U ∈ O (n) (resp. U (n)), then the map RU : Mn(R) → Mn(R)

(resp. RU : Mn(C) → Mn(C)) defined by

RU(M) = UM

is an isometry on Mn(R) (resp. Mn(C)) with respect to the Hilbert–Schmidt

inner product.

The Hilbert–Schmidt norm is also submultiplicative:

‖AB‖HS ≤ ‖A‖HS‖B‖HS.

In fact, this is true of all unitarily invariant norms (subject to the normalization

‖E11‖ = 1), but it is particularly easy to see for the Hilbert–Schmidt norm: letB

have columns b1, . . . , bn; then ‖B‖2HS =
∑n

j=1 |bj|
2, where | · | is the Euclidean

norm on Cn. Now, AB has columns Ab1, . . . ,Abn, and so

‖AB‖2HS =

n
∑

j=1

|Abj|
2 ≤ ‖A‖2op‖B‖2HS,

where ‖A‖op = sup|x|=1 |Ax| is the operator norm of A; i.e., the largest singular

value of A. Writing the singular value decomposition A = U�V and using the

unitary invariance of the Hilbert–Schmidt norm,

‖A‖2op = σ 2
1 ≤

n
∑

j=1

σ 2
j = ‖�‖2HS = ‖A‖2HS,

from which the submultiplicativity follows. Indeed, the sharper estimate

‖AB‖HS ≤ ‖A‖op‖B‖HS

is often useful.
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6 Haar Measure on the Classical Compact Matrix Groups

The discussion above gives two notions of distance on the classical compact

matrix groups: first, the Hilbert–Schmidt inner product can be used to define

the distance between two matrices A and B by

dHS(A,B) := ‖A− B‖HS :=
√

〈A− B,A− B〉HS =

√

Tr
[

(A− B)(A− B)∗
]

.

(1.5)

Alternatively, since, for example, A,B ∈ U (n) can be thought of as living in a

submanifold of Euclidean spaceMn(C), one can consider the geodesic distance

dg(A,B) between A and B; that is, the length, as measured by the Hilbert–

Schmidt metric, of the shortest path lying entirely in U (n) between A and B.

In the case of U (1), this is arc-length distance, whereas the Hilbert–Schmidt

distance defined in Equation (1.5) is the straight-line distance between two

points on the circle. Ultimately, the choice of metric is not terribly important:

Lemma 1.3 Let A,B ∈ U (n). Then

dHS(A,B) ≤ dg(A,B) ≤
π

2
dHS(A,B).

That is, the two notions of distance are equivalent in a dimension-free way.

Proof The inequality dHS(A,B) ≤ dg(A,B) follows trivially from the fact that

the Hilbert–Schmidt distance is the geodesic distance in Euclidean space.

For the other inequality, first note that dg(A,B) ≤ π
2
dHS(A,B) for A,B ∈

U (1); that is, that arc-length on the circle is bounded above by π
2

times

Euclidean distance.

Next, observe that both dHS(·, ·) and dg(·, ·) are translation-invariant; that is,

if U ∈ U (n), then

dHS(UA,UB) = dHS(A,B) and dg(UA,UB) = dg(A,B).

In the case of the Hilbert–Schmidt distance, this is immediate from the fact

that the Hilbert–Schmidt norm is unitarily invariant. For the geodesic distance,

translation invariance follows from the fact that, since any matrix U ∈ U (n)

acts as an isometry of Euclidean space, every path between A and B lying in

U (n) corresponds to a path between UA and UB of the same length, also lying

in U (n).

Now fix A,B ∈ U (n) and let A−1B = U�U∗ be the spectral decomposition

of A−1B. Then for either distance,

d(A,B) = d(In,A
−1B) = d(In,U�U∗) = d(U∗U,�) = d(In,�),

and so it suffices to assume that A = In and B is diagonal.
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1.2 Haar Measure 7

Write B = diag(eiθ1 , . . . , eiθn). Then the length of the path in U (n) from A

to B given by U(t) := diag(eitθ1 , . . . , eitθn), for 0 ≤ t ≤ 1 is

∫ 1

0

∥

∥U′(t)
∥

∥

HS
dt =

∫ 1

0

∥

∥

∥
diag(iθ1e

itθ1 , . . . , iθne
itθn)

∥

∥

∥

HS
dt

=

∫ 1

0

√

θ21 + · · · + θ2n dt

≤
π

2

∫ 1

0

√

|1 − eiθ1 |2 + · · · + |1 − eiθn |2dt

=
π

2

∥

∥

∥In − diag(eiθ1 , . . . , eiθn)

∥

∥

∥

HS
,

using the fact that

θ2 = dg(1, e
iθ )2 ≤

π2

4
dHS(1, e

iθ ),

as noted above. �

1.2 Haar Measure

The main goal of this book is to answer the broad general question: What is

a random orthogonal, unitary, or symplectic matrix like? To do this, a natural

probability measure on each of these groups is needed.

Just as the most natural probability measure (i.e., uniform measure) on the

circle is defined by rotation invariance, if G is one of the matrix groups defined

in the last section, a “uniform random element” ofG should be a randomU ∈ G

whose distribution is translation-invariant; that is, ifM ∈ G is any fixedmatrix,

then the equality in distribution

MU
d
= UM

d
= U

should be satisfied. Phrased slightly differently, the distribution of a uniform

random element of G should be a translation-invariant probability measure μ

on G: for any measurable subset A ⊆ G and any fixedM ∈ G,

μ(MA) = μ(AM) = μ(A),

whereMA := {MU : U ∈ A} and AM := {UM : U ∈ A}.

It is a theorem due to A. Haar that there is one, and only one, way to do this.

Theorem 1.4 Let G be any of O (n), SO (n), U (n), SU (n), or Sp (2n).

Then there is a unique translation-invariant probability measure (called Haar

measure) on G.
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8 Haar Measure on the Classical Compact Matrix Groups

The theorem is true in much more generality (in particular, any compact Lie

group has a Haar probability measure). In the most general case the property

of left-invariance is not equivalent to that of right-invariance, but in the case

of compact Lie groups, left-invariance implies right-invariance and vice versa,

so the phrase “translation invariance” will be used in what follows, and will be

assumed to include both left- and right-invariance.

Exercise 1.5

1. Prove that a translation-invariant probability measure on O (n) is invariant

under transposition: if U is Haar-distributed, so is UT .

2. Prove that a translation-invariant probability measure on U (n) is invariant

under transposition and under conjugation: if U is Haar-distributed, so are

both UT and U∗.

Theorem 1.4 is an existence theorem that does not itself provide a description

of Haar measure in specific cases. In the case of the circle, i.e., U (1), it is

clear that Haar measure is just (normalized) arc-length. The remainder of this

section gives six different constructions of Haar measure on O (n), with some

comments about adapting the constructions to the other groups. For most of the

constructions, the resulting measure is only shown to be invariant one one side;

the invariance on the other side then follows from the general fact mentioned

above that on compact Lie groups, one-sided invariance implies invariance on

both sides.

The Riemannian Perspective

It has already been noted that O (n) ⊆ Mn(R) and that it is a compact sub-

manifold. It has two connected components: SO (n) and SO
− (n), the set of

orthogonal matrices U with det(U) = −1. At each point U of O (n), there

is a tangent space TU(O (n)), consisting of all the tangent vectors to O (n)

based at U.

A map between manifolds induces a map between tangent spaces as follows.

LetM1,M2 be manifolds and ϕ : M1 → M2. If x ∈ TpM1, then there is a curve

γ : [0, 1] → M1 such that γ (0) = p and γ ′(0) = x. Then ϕ ◦ γ is a curve in

M2 with ϕ ◦ γ (0) = ϕ(p), and (ϕ ◦ γ )′(0) is a tangent vector to M2 at ϕ(p).

We take this to be the definition of ϕ∗(x) (it must of course be checked that this

gives a well-defined linear map on TpM1 for each p).

A Riemannian metric g on a manifold M is a family of inner products, one

on the tangent space TpM to M at each point p ∈ M. The submanifold O (n)

inherits such a metric from Mn(R), since at each point U in O (n), TU(O (n))

is a subspace of TU(Mn(R)) ∼= Mn(R). Because multiplication by a fixed
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1.2 Haar Measure 9

orthogonal matrix V is an isometry of Mn(R), the induced map on tangent

spaces is also an isometry: if U ∈ O (n) with X1,X2 ∈ TU(O (n)) tangent

vectors to O (n) at U, and RV : O (n) → O (n) denotes multiplication by a

fixed V ∈ O (n), then

gVU((RV)∗X1, (RV)∗X2) = gU(X1,X2).

On any Riemannian manifold, the Riemannian metric uniquely defines a

notion of volume. Since the metric is translation-invariant, the normalized vol-

ume form on O (n) is a translation-invariant probability measure; that is, it is

Haar measure.

Since each of the classical compact matrix groups is canonically embedded

in Euclidean space, this construction works the same way in all cases.

An Explicit Geometric Construction

Recall that U ∈ O (n) if and only if its columns are orthonormal. One way to

construct Haar measure onO (n) is to add entries to an empty matrix column by

column (or row by row), as follows. First choose a random vector u1 uniformly

from the sphere S
n−1 ⊆ R

n (that is, according to the probability measure

defined by normalized surface area). Take u1 as the first column of the matrix;

by construction, ‖u1‖ = 1. Now choose u2 randomly according to surface area

measure on

(

u⊥
1

)

∩ S
n−1 =

{

x ∈ R
n : ‖x‖ = 1, 〈x, u1〉 = 0

}

and let this be the second column of the matrix. Continue in this way; each

column is chosen uniformly from the unit sphere of vectors that are orthogonal

to each of the preceding columns. The resulting matrix

⎡

⎣

| |

u1 . . . un

| |

⎤

⎦

is obviously orthogonal; the proof that its distribution is translation-invariant is

as follows.

Observe that if M is a fixed orthogonal matrix, then since

M

⎡

⎣

| |

u1 . . . un

| |

⎤

⎦ =

⎡

⎣

| |

Mu1 . . . Mun

| |

⎤

⎦ ,
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10 Haar Measure on the Classical Compact Matrix Groups

the first column ofM

⎡

⎣

| |

u1 . . . un

| |

⎤

⎦ is constructed by choosing u1 uniformly

from S
n−1 and then multiplying by M. But M ∈ O (n) means that M acts as a

linear isometry ofRn, so it preserves surface area measure on Sn−1. That is, the

distribution ofMu1 is exactly uniform on Sn−1.

Now, sinceM is an isometry, 〈Mu2,Mu1〉 = 0, and becauseM is an isometry

of Rn, it follows that Mu2 is uniformly distributed on

(Mu1)
⊥ ∩ S

n−1 :=
{

x ∈ R
n : |x| = 1, 〈Mu1, x〉 = 0

}

.

So the second column ofM
[

u1 . . . un
]

is distributed uniformly in the unit sphere

of the orthogonal complement of the first column.

Continuing the argument, the distribution ofM
[

u1 . . . un
]

is exactly the same

as the distribution of
[

u1 . . . un
]

; i.e., the construction is left-invariant. It follows

by uniqueness that it produces Haar measure on O (n).

To construct Haar measure on U (n), one need only draw the columns uni-

formly from complex spheres in C
n. To get a random matrix in SO (n), the

construction is identical except that there is no choice about the last column;

the same is true for SU (n).

The analogous construction on the representation of elements of Sp (2n) by

2n × 2n unitary matrices works as follows. For U to be in Sp (2n), its first

column u1 must lie in the set

{x ∈ C
2n : ‖x‖ = 1, 〈x, Jx〉 = 0},

where J is the matrix defined in (1.4). This condition 〈x, Jx〉 = 0 defines a

hyperboloid in C
n (J is unitarily diagonalizable and has eigenvalues i and −i,

each with multiplicity n). The set above is thus the intersection of the sphere

with this hyperboloid; it is an (n − 2)-dimensional submanifold of Cn from

which we can choose a point uniformly: this is how we choose u1. If n > 1,

one then chooses the second column uniformly from the set

{x ∈ C
2n : ‖x‖ = 1, 〈x, u1〉 = 0, 〈x, Jx〉 = 0, 〈x, Ju1〉 = 0};

for n = 1, one chooses the second column uniformly from

{x ∈ C
2 : ‖x‖ = 1, 〈x, u1〉 = 0, 〈x, Jx〉 = 0 〈x, Ju1〉 = −1}.

The construction continues: the kth column uk is chosen uniformly from the

intersection of the unit sphere, the hyperboloid {x : 〈x, Jx〉 = 0}, and the (affine)

subspaces given by the conditions 〈x, Juℓ〉 = 0 for 1 ≤ ℓ ≤ min{k − 1, n} and

〈x, Juℓ〉 = −1 for n + 1 ≤ ℓ < k (if k ≥ n + 2). The argument that this

www.cambridge.org/9781108419529
www.cambridge.org

