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1

Topological Spaces

Basic mathematical notions useful in the rest of this book are given in this

chapter. For conciseness, the definitions and results are not always given in full.

They are restricted to the simplest version necessary to follow and understand

the results and proofs in this book.

1.1 Topological Spaces

This section lists a few basic notions and definitions from general topology.

Most of the topological objects encountered in this book are metric spaces

whose definition is also recalled.

Definition 1.1 (Topological space) A topology on a set X is a family O of

subsets of X that satisfies the three following conditions:

1. the empty set ∅ and X are elements of O,

2. any union of elements of O is an element of O,

3. any finite intersection of elements of O is an element of O.

The set X together with the family O, whose elements are called open sets, is

a topological space. A subset C of X is closed if its complement is an open set.

If Y ⊂ X is a subset of X, then the family OY = {O ∩ Y : O ∈ O} is a topology

on Y , called the induced topology.

Definition 1.2 (Closure, interior and boundary) Let S be a subset of a

topological space X. The closure S̄ of S is the smallest closed set containing S.

The interior S̊ of S is the largest open set contained in S. The boundary ∂S of

S is the set difference ∂S = S̄ \ S̊.

3
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4 Topological Spaces

Definition 1.3 (Metric space) A metric (or distance) on a set X is a map

d : X × X → [0, +∞) such that:

1. for any x, y ∈ X, d(x, y) = d(y, x),

2. for any x, y ∈ X, d(x, y) = 0 if and only if x = y,

3. for any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

The set X together with d is a metric space. The smallest topology containing

all the open balls B(x, r) = {y ∈ X : d(x, y) < r} is called the metric topology

on X induced by d.

Definition 1.4 (Continuous map) A map f : X → X′ between two

topological spaces X and X′ is continuous if and only if the pre-image

f −1(O′)= {x ∈ X : f (x) ∈ O′} of any open set O′ ⊂ X′ is an open set of X.

Equivalently, f is continuous if and only if the pre-image of any closed set in

X′ is a closed set in X.

Definition 1.5 (Compact space) A topological space X is a compact space

if any open cover of X admits a finite subcover, i.e. for any family {Ui}i∈I of

open sets such that X = ∪i∈IUi there exists a finite subset J ⊆ I of the index

set I such that X = ∪j∈JUj.

For metric spaces, compacity is characterized using sequences: a metric

space X is compact if and only if any sequence in X has a convergent

subsequence.

Definition 1.6 (Connected spaces) A topological space X is connected if it

is not the union of two disjoint open sets: if O1, O2 are two disjoint open sets

such that X = O1 ∪ O2 then O1 = ∅ or O2 = ∅.

A topological space X is path-connected if for any x, y ∈ X there exists a

continuous map γ : [0, 1] → X such that γ (0) = x and γ (1) = y.

A path-connected space is always connected, but the reverse is not true in

general. See Exercise 1.1.

Euclidean spaces. The space R
d, d ≥ 1 and its subsets are examples of

particular interest. Throughout the book, for x = (x1, · · · , xd) ∈ R
d

‖x‖ =

d
∑

i=1

x2
i

denotes the Euclidean norm on R
d. It induces the Euclidean metric on R

d :

d(x, y) = ‖x − y‖. The standard topology on R
d is the one induced by the

Euclidean metric.
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1.2 Comparing Topological Spaces 5

A subset K ⊂ R
d (endowed with the topology induced from the Euclidean

one) is compact if and only if it is closed and bounded (Heine–Borel theorem).

1.2 Comparing Topological Spaces

There are many ways of measuring how close two objects are. We distinguish

between topological and geometric criteria.

1.2.1 Homeomorphism, Isotopy and Homotopy Equivalence

In topology, two topological spaces are considered to be the same when they

are homeomorphic.

Definition 1.7 (Homeomorphism) Two topological spaces X and Y are

homeomorphic if there exists a continuous bijective map h : X → Y such that

its inverse h−1 is also continuous. The map h is called a homeomorphism.

As an example, a circle and a simple closed polygonal curve are home-

omorphic. By contrast, a circle and a segment are not homeomorphic. See

Exercise 1.6.

The continuity of the inverse map in the definition is automatic in some

cases. If U is an open subset of Rd and f : U → R
d is an injective continuous

map, then V = f (U) is open and f is a homeomorphism between U and

V by Brower’s invariance of domain.1 The domain invariance theorem may

be generalized to manifolds: If M and N are topological k-manifolds without

boundary and f : U → N is an injective continuous map from an open subset

of M to N, then f is open and is an homeomorphism between U and f (U).

If X is homeomorphic to the standard unit ball of R
d, X is called a

topological ball.

The notions of compacity and connexity are preserved by homeomorphism.

See Exercise 1.4.

Let h be a map between two topological spaces X and Y . If h is a

homeomorphism onto its image, it is called an embedding of X in Y .

When the spaces X and Y are subspaces of R
d, the notion of isotopy is

stronger than the notion of homeomorphism to distinguish between spaces.

Definition 1.8 (Ambient isotopy) An ambient isotopy between X ⊂ R
d and

Y ⊂ R
d is a map F : Rd × [0, 1] → R

d such that F(., 0) is the identity map on

R
d, F(X, 1) = Y and for any t ∈ [0, 1], F is a homeomorphism of Rd.

1
See T. Tao’s blog https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-

invariance-of-domain-theorems-and-hilberts-fifth-problem/
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6 Topological Spaces

Figure 1.1 Two surfaces embedded in R
3 homeomorphic to a torus that are not

isotopic.

Intuitively, the previous definition means that X can be continuously

deformed into Y without creating any self-intersection or topological changes.

The notion of isotopy is stronger than the notion of homeomorphism in the

sense that if X and Y are isotopic, then they are obviously homeomorphic.

Conversely, two subspaces of Rd that are homeomorphic may not be isotopic.

This is the case for a knotted and an unknotted torus embedded in R
3 as

the ones in Figure 1.1. Note that, although intuitively obvious, proving that

these two surfaces are not isotopic is a nonobvious exercise that requires some

background in algebraic topology.

In general, deciding whether two spaces are homeomorphic is a very difficult

task. It is sometimes more convenient to work with a weaker notion of

equivalence between spaces called homotopy equivalence.

Given two topological spaces X and Y , two maps f0, f1 : X → Y are

homotopic if there exists a continuous map H : [0, 1] × X → Y such that

for all x ∈ X, H(0, x) = f0(x) and H(1, x) = f1(x). Homotopy equivalence is

defined in the following way.

Definition 1.9 (Homotopy equivalence) Two topological spaces X and Y

have the same homotopy type (or are homotopy equivalent) if there exist two

continuous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to the

identity map in X and f ◦ g is homotopic to the identity map in Y .

As an example, the unit ball in a Euclidean space and a point are homotopy

equivalent but not homeomorphic. A circle and an annulus are also homotopy

equivalent: see Figure 1.2 and Exercise 1.8.

Definition 1.10 (Contractible space) A contractible space is a space that has

the same homotopy type as a single point.

For example, a segment or more generally any ball in a Euclidean space R
d

is contractible: see Exercise 1.7.
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1.2 Comparing Topological Spaces 7

Figure 1.2 An example of two maps that are homotopic (left) and examples of

spaces that are homotopy equivalent, but not homeomorphic (right).

It is often difficult to prove homotopy equivalence directly from the

definition. When Y is a subset of X, the following criterion is useful to prove

homotopy equivalence between X and Y .

Proposition 1.11 If Y ⊂ X and if there exists a continuous map H : [0, 1] ×

X → X such that:

1. ∀x ∈ X, H(0, x) = x,

2. ∀x ∈ X, H(1, x) ∈ Y,

3. ∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) ∈ Y,

then X and Y are homotopy equivalent.

Definition 1.12 (Deformation retract) If, in Proposition 1.11, the last

property of H is replaced by the following stronger one

∀y ∈ Y , ∀t ∈ [0, 1], H(t, y) = y,

then H is called a deformation retract of X to Y .

A classical way to characterize and quantify topological properties and

features of spaces is to consider their topological invariants. These are

mathematical objects (numbers, groups, polynomials, . . . ) associated to each

topological space that have the property of being the same for homeomorphic

spaces. The homotopy type is clearly a topological invariant: two homeomor-

phic spaces are homotopy equivalent. The converse is false: for example, a

point and a segment are homotopy equivalent but are not homeomorphic. See

Exercise 1.7. Moreover, most of the topological invariants considered in the

sequel are indeed homotopy invariants, i.e. they are the same for spaces that

are homotopy equivalent.
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8 Topological Spaces

1.2.2 Hausdorff Distance

The set of compact subsets of a metric space can be endowed with a metric,

called the Hausdorff distance, that allows to measure how two compact subsets

are from each other. We give the definition for compact subspaces of Rd here

but this immediately adapts to the compact subsets of any metric space.

Definition 1.13 (Offset) Given a compact set X of Rd, the tubular neighbor-

hood or offset Xε of X of radius ε, i.e., the set of all points at distance at most

ε from X:

Xε =

{

y ∈ R
d : inf

x∈X
‖x − y‖ ≤ ε} =

⋃

x∈X

B̄(x, ε)

}

where B̄(x, ε) denotes the closed ball {y ∈ R
d : ‖x − y‖ ≤ ε}.

Definition 1.14 The Hausdorff distance dH(X, Y) between two closed subsets

X and Y of Rd is the infimum of the ε ≥ 0 such that X ⊂ Yε and Y ⊂ Xε.

Equivalently,

dH(X, Y) = max

(

sup
y∈Y

( inf
x∈X

‖x − y‖), sup
x∈X

( inf
y∈Y

‖x − y‖)

)

.

The Hausdorff distance defines a distance on the space of compact subsets

of Rd. See Exercise 1.10.

1.3 Exercises

Exercise 1.1 Let X be a path connected space. Show that X is connected.

Let X ⊂ R
2 be the union of the vertical closed segment {0} × [−1, 1] and the

curve {(t, sin( 1
t
)) ∈ R

2 : t ∈ (0, 1]}. Show that X is compact and connected but

not path-connected.

Exercise 1.2 Let S be a subset of a metric space X. Show that:

1. x ∈ X ∈ S̄ if and only if for any r > 0, B(x, r) ∩ S �= ∅.

2. x ∈ X ∈ S̊ if and only if there exists r > 0 such that B(x, r) ⊂ S.

Exercise 1.3 Let X be a metric space. Given x ∈ X and r > 0, show that the

set B̄(x, r) = {y ∈ X : d(x, y) ≤ r} is a closed set which is indeed the closure

of the open ball B(x, r) = {y ∈ X : d(x, y) < r}.

Exercise 1.4 Let X, Y two homeomorphic topological spaces. Prove the

following equivalences:
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1. X is compact if and only if Y is compact.

2. X is connected (resp. path-connected) if and only if Y is connected (resp.

path-connected).

Exercise 1.5 Show that the Euclidean space is not compact (without using

the Heine–Borel theorem).

Exercise 1.6 A continuous polygonal curve P ⊂ R
2 with consecutive edges

e1 = [p1, p2], e2 = [p2, p3], . . . , en = [pn, pn+1] is simple and closed if and

only if ei ∩ ej = ∅ whenever 2 ≤ |i − j| mod (n), ei ∩ ei+1 = pi+1 for

i = 1, . . . , n − 1 and en ∩ e1 = p1. Show that P is homeomorphic to a circle.

Show that a circle and a segment are not homeomorphic.

Exercise 1.7 Let X be a segment (i.e., a space homeomorphic to [0, 1])

and let Y be a point. Prove that X and Y are homotopy equivalent but not

homeomorphic. More generally prove that any ball in R
d is contractible.

Exercise 1.8 Let X be the unit circle in R
2 and let Y ⊂ R

2 be the annulus of

inner radius 1 and outer radius 2. Prove that X and Y are homotopy equivalent.

Exercise 1.9 Let X and Y be two topological spaces that are homotopy

equivalent. Show that if X is path-connected, then Y is also path-connected.

Exercise 1.10 Show that the Hausdorff distance is a distance on the space

of compact subsets of Rd. Show that this is no longer true if we extend the

definition to noncompact sets (give an example of two different sets that are at

distance 0 from each other).

1.4 Bibliographical Notes

All the ideas introduced in this chapter are classical but fundamental, and

presented with many details in the classical mathematical literature. For more

details about basic topology, the reader may refer to any standard book on

general topology such as, e.g. [111]. The geometry of metric spaces is a wide

subject in mathematics. The reader interested in the topics may have a look at

[30]. More details and results about the notions of homotopy and homotopy

equivalence can be found in [86, pp. 171–172] or [110, p. 108].

www.cambridge.org/9781108419390
www.cambridge.org

