

Electrified Aircraft Propulsion

What are the benefits of electrified propulsion for large aircraft? What technology advancements are required to realize these benefits? How can the aerospace industry transition from today's technologies to state-of-the-art electrified systems? Learn the answers with this multidisciplinary text, combining expertise from leading researchers in electrified aircraft propulsion. The book includes broad coverage of electrification technologies – spanning power systems and power electronics, materials science, superconductivity and cryogenics, thermal management, battery chemistry, system design, and system optimization – and a clear-cut road map identifying remaining gaps between the current state-of-the-art and future performance technologies. Providing expert guidance on areas for future research and investment and an ideal introduction to cutting-edge advances and outstanding challenges in large electric aircraft design, this is a perfect resource for graduate students, researchers, electrical and aeronautical engineers, policymakers, and management professionals interested in next-generation commercial flight technologies.

Kiruba Haran is Professor of Electrical and Computer Engineering at the University of Illinois at Urbana–Champaign, where he is also Director of the Grainger Center for Electric Machinery and Electromechanics. He is a fellow of the IEEE.

Nateri Madavan is Deputy Director for the Transformative Aeronautics Concepts Program, NASA Aeronautics Mission Directorate, NASA.

Tim C. O'Connell is Senior Lead Engineer for P. C. Krause & Associates and Adjunct Research Assistant Professor of Electrical and Computer Engineering at the University of Illinois at Urbana–Champaign.

Electrified Aircraft Propulsion

Powering the Future of Air Transportation

Edited by

KIRUBA HARAN

University of Illinois at Urbana-Champaign

NATERI MADAVAN

NASA Aeronautics Mission Directorate, NASA

TIM C. O'CONNELL

P. C. Krause & Associates

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108419345

DOI: 10.1017/9781108297684

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Haran, Kiruba, editor.

Title: Electrified aircraft propulsion : powering the future of air transportation / edited by Kiruba Haran, University of Illinois at Urbana-Champaign, Nateri Madavan, NASA Aeronautics Mission Directorate, NASA, Tim C. O'Connell, P.C. Krause & Associates.

Description: Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2021. I Includes bibliographical references and index.

Identifiers: LCCN 2021012177 (print) | LCCN 2021012178 (ebook) | ISBN 9781108419345 (hardback) | ISBN 9781108297684 (epub)

Subjects: LCSH: Electric airplanes. | BISAC: TECHNOLOGY & ENGINEERING / Engineering (General) | TECHNOLOGY & ENGINEERING / Engineering (General)

Classification: LCC TL683.3 .E44 2021 (print) | LCC TL683.3 (ebook) | DDC 629.134/35-dc23

LC record available at https://lccn.loc.gov/2021012177

LC ebook record available at https://lccn.loc.gov/2021012178

ISBN 978-1-108-41934-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To all scientists and engineers working to make electrified aircraft propulsion a reality

Contents

		of Contributors	page xiii	
	Pref	ace	XV	
1	Bene	1		
	Rodge	Rodger Dyson, Ralph Jansen, and Nateri Madavan		
	1.1	Benefits and Costs of Electrified Aircraft Propulsion	2	
		1.1.1 Benefits of Electrified Aircraft Propulsion	2	
		1.1.2 Costs of Electrified Aircraft Propulsion	3	
		1.1.3 Aircraft Concepts with Electrified Propulsion	3	
	1.2	Breakeven Analysis	5	
		1.2.1 Key Performance Parameters and Key Assumptions	5	
		1.2.2 Electrified Aircraft Propulsion System Definitions	6	
		1.2.3 Breakeven on Range	8	
		1.2.4 Breakeven on Input Energy	9	
		1.2.5 Relationship among Aircraft Component Weights	10	
	1.3	Breakeven Results	11	
		1.3.1 Fully Turboelectric Aircraft (TE)	11	
		1.3.2 Partially Turboelectric Aircraft (PE)	15	
		1.3.3 Parallel Hybrid Electric Aircraft (HE)	17	
	1.4	Summary	25	
2		raft Electric Power System Design, Control, and Protection t Bayles	29	
	2.1	Certification Authority	29	
	2.2	Power Generation and Distribution	30	
		2.2.1 Equipment, Systems, and Installations (14 CFR Part		
		25.1309)	30	
		2.2.2 General (14 CFR Part 25.1351)	30	
		2.2.3 Electrical Equipment and Installations (14 CFR Part		
		25.1353)	30	

vii

viii Contents

	2.2.4 Distribution System (14 CFR Part 25.1355)	31
	2.2.5 Circuit Protective Devices (14 CFR Part 25.1357)	31
	2.2.6 Electrical Wiring Interconnection System (EWIS)	2.1
	(14 CFR Parts 25.1701–1733)	31
	2.3 Reliability	31
	2.4 Controllability	34
	2.5 Common Cause Analysis	35
	2.6 Power Quality	35
	2.7 Voltage and Frequency	36
	2.7.1 Variable Frequency ac	38
	2.7.2 High-Voltage dc	39
	2.7.3 Future Trends	39
	2.8 Power Transfer Approaches	40
	2.9 Power Switching Devices	42
	2.10 Control and Protection Methods	44
	2.11 Load Management	45
	2.12 Summary	46
3	Megawatt-Scale Electric Machines for Electrified Aircraft Propulsion	49
	Tim C. O'Connell and Xiaolong Zhang	
	3.1 The Electrified Propulsion Machine Design Challenge	50
	3.1.1 Discussion	50
	3.1.2 Design Drivers	51
	3.2 Powertrains for Electrified Propulsion	52
	3.2.1 Hybrid Powertrains	53
	3.2.2 Turboelectric Powertrains	54
	3.2.3 All-Electric Powertrains	55
	3.2.4 Summary	55
	3.3 Motor and Generator Systems	55
	3.3.1 Aerospace Electric Machine Classification	55
	3.3.2 Propulsion Motors	57
	3.3.3 High-Speed Generators	58
	3.3.4 Electrified Aircraft Propulsion Powertrain	
	Design Considerations	58
	3.4 Design Principles	59
	3.4.1 Electromagnetic Design and the Sizing Equation	60
	3.4.2 Frequency and Pole Count	61
	3.4.3 Machine Diameter and Tip Speed	62
	3.4.4 Current Density	62
	3.4.5 Thermal Limitations and Cooling Systems	63
	3.4.6 High-Speed Operation	64
	3.4.7 Power Scaling	66
	3.4.8 Discussion	68
		50

		Contents	ί
	3.5	8 4	68
		3.5.1 Permanent Magnet Synchronous Machines	69
		3.5.2 Induction Machines	71
		3.5.3 Switched Reluctance Machines	72
		3.5.4 Wound-Field Synchronous Machines	72
	3.6	•	72
		3.6.1 Subsystem Masses of Electric Vehicle Motors	73
		3.6.2 High-Specific-Power Machines	73
	3.7		79
	3.8	Summary	80
4		erconducting Machines and Cables	88
	Thana	atheepan Balachandran, Timothy Haugan, and Kiruba Haran	
	4.1	Superconductors	89
		4.1.1 Basic Physics	90
		4.1.2 The Critical Surface	91
	4.2	Sources of ac Loss in Superconducting Wires	92
		4.2.1 Hysteresis	93
		4.2.2 Eddy Currents and Coupling	94
		4.2.3 Alternating Currents	94
		4.2.4 Multifilament Wires	95
	4.3	Superconducting Machines: Design Considerations	101
		4.3.1 Cryogenic Cooling	101
		4.3.2 Mechanical Design	106
		4.3.3 Quench Protection	107
		4.3.4 Short Circuit Protection	108
		4.3.5 Cost	108
	4.4	Superconducting Machine Topologies	108
		4.4.1 Fully Superconducting Machines	109
		4.4.2 Partially Superconducting Wound-Field	
		Synchronous Machines	110
		4.4.3 Alternating Current Homopolar Superconducting Machines	112
		4.4.4 Asynchronous Superconducting Machines	113
		4.4.5 Direct Current Homopolar Machines	114
	4.5	State-of-the-Art Superconducting Machines	116
	4.6	Superconducting Cables	117
	4.7	Technology Trends	121
	4.8	Summary	126
5		ventional Power Electronics for Electrified Aircraft Propulsion	130
	5.1	Fundamental Concepts	130
	5.2	Target Metrics and Integration Techniques	131
	٠.ــ		101

x Contents

		5.2.1 Power Density	132
		5.2.2 Influence of Power System Voltages	134
		5.2.3 Application-Oriented Integration	134
		5.2.4 Power Density Targets	135
	5.3	Power Converter Topologies	135
		5.3.1 dc–ac Converters	136
		5.3.2 ac–ac Converters	139
		5.3.3 ac–dc Converters	141
		5.3.4 Power Converters for Multiphase Electrical	
		Machine Designs	143
		5.3.5 Power Converter Topologies with Fault Tolerance	144
	5.4	Semiconductor Devices and Materials	145
		5.4.1 Metal Oxide Semiconductor Field Effect Transistor	
		(MOSFET)	145
		5.4.2 Insulated Gate Bipolar Transistor (IGBT)	146
		5.4.3 Switching Losses	146
		5.4.4 Semiconductor Device Materials	147
	5.5	Summary	148
6	Crvo	genic Power Electronics	150
-	_	z Zhang, Fei (Fred) Wang, Ruirui Chen, and Handong Gui	
	6.1	Benefits of Cryogenic Power Electronics	150
	6.2	Component Characterization at Cryogenic Temperature	152
		6.2.1 Power Devices	152
		6.2.2 Magnetic Devices	160
	6.3	Power Stage Design Considerations at Cryogenic Temperature	166
		6.3.1 Power Device Selection	166
		6.3.2 Gate Drive Design Considerations	169
	6.4	Filter Design Considerations at Cryogenic Temperature	174
		6.4.1 Inductor	174
		6.4.2 Capacitor	176
	6.5	Example Cryogenic Power Electronic System	176
		6.5.1 Cryogenic Cooling System and Integration	178
		6.5.2 Safety Consideration and Mitigation Plan	180
		6.5.3 Experimental Demonstration	182
	6.6	Summary	182
7	Elec t Ajay 1	trochemical Energy Storage and Conversion for Electrified Aircraft	190
			400
	7.1	Battery State of the Art (SOA)	190
	7.2	Battery Requirements for Electrified Aircraft	192
		7.2.1 All-Electric, Electrified Vertical Takeoff and	
		Landing (eVTOL)	192

		Contents	xi
		7.2.2 Conventional Takeoff and Landing (CTOL) Aircraft7.2.3 Summary of Electrified Aircraft Missions Enabled	195
		by Batteries	197
	7.3	•	198
		7.3.1 Incremental Improvements to the SOA Li-Ion Battery	198
		7.3.2 Battery Chemistries beyond Li-Ion	198
		7.3.3 Progression of Battery Technology Development	203
	7.4	Other Battery Concepts	204
		7.4.1 Flow Batteries	204
		7.4.2 Aluminum-Air (Al-Air) Batteries	207
		7.4.3 Batteries Incorporating Molten Materials	208
	7.5	Fuel Cells	208
		7.5.1 Application of Proton Exchange Membrane Fuel Cell	209
		7.5.2 Application of Solid Oxide Fuel Cell	211
		7.5.3 Supercapacitors	212
		7.5.4 Multifunctional Energy Storage Structure	213
	7.6	Summary	216
В	The	rmal Management of Electrified Propulsion Systems	224
	Charl	es E. Lents	
	8.1	Electric Drivetrain Heat Sources and Aircraft Heat Sinks	224
		8.1.1 Heat Sources	225
		8.1.2 Heat Sinks	226
	8.2	Thermal Management of Electric Drivetrains	227
		8.2.1 Electric Drivetrain Weight	228
		8.2.2 Thermal Management System Weight and Power	229
		8.2.3 Thermal Management System Functions	229
		8.2.4 Aircraft Performance Impacts	229
	8.3		230
	8.4	Thermal Management System Architectures	230
		8.4.1 Direct-Air Cooling	231
		8.4.2 Liquid Cooling	231
		8.4.3 Liquid versus Air Cooling	232
		8.4.4 Heat Pumps	232
	0.5	8.4.5 Thermal Storage	234
	8.5	A Reference Thermal Management System	236
	0.6	8.5.1 System Design Point	238
	8.6	Heat Transport Systems: Pumps, Plumbing, and Fans	239
		8.6.1 Pumps	239
		8.6.2 Plumbing	241 243
	8.7	8.6.3 Fans Heat Rejection: Heat Exchangers	243 243
	0.7	8.7.1 Air Oil Cooler Design	243
		0.7.1 All Oli Coolei Design	243

xii Contents

		8.7.2 Geometry Design: The Plate-Fin Cross-Flow	
		Heat Exchanger	246
		8.7.3 Performance Prediction	248
	8.8		248
		8.8.1 Oil Loop	249
		8.8.2 Coolant Loop	250
		8.8.3 Optimization	251
	8.9	Summary	252
9		ormance Assessment of Electrified Aircraft than C. Gladin	256
	9.1	Electric Aircraft Architecture Assessment Overview	256
		Define the Baseline Aircraft	259
	7.2	9.2.1 Aircraft Requirements	260
		9.2.2 Climb Rate Capability	261
		9.2.3 One-Engine Inoperative Operation	261
	9.3	Define the Entry-into-Service Date	262
		Define the Concept Electric Architecture	263
		9.4.1 Electrified Propulsion Concept Potential Benefits	264
		9.4.2 Electrified Propulsion Concept Architecture Considerations	265
		9.4.3 Summary of Architectures and Selection Criteria	268
		9.4.4 Concept of Operations	269
	9.5	Baseline Technology Projection	270
		9.5.1 Turbine Engine Technology Progression	271
		9.5.2 Future Technologies and Technology Readiness Level	274
	9.6	Electric Technology Selection	275
		9.6.1 Engine	276
		9.6.2 Battery	276
		9.6.3 Capacitor	278
		9.6.4 Electric Machine	278
		9.6.5 Power Electronics	279
		9.6.6 Propulsive Device	279
	9.7	Electrified Propulsion-Based Aircraft Design Process	281
		9.7.1 Preliminary Trade Studies	282
		9.7.2 Vehicle Sizing and Synthesis	282
	9.8	Metrics for Electrified Propulsion Architecture Evaluation	284
		9.8.1 Performance Metrics	284
		9.8.2 Environmental Metrics and Indices	286
		9.8.3 Economic Metrics	289
	9.9	Summary	289
	Inde	x	294

Contributors

Thanatheepan Balachandran

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Robert Bayles

Collins Aerospace, Rockford, IL

Ruirui Chen

University of Tennessee-Knoxville, Knoxville, TN

Rodger Dyson

NASA Glenn Research Center, Cleveland, OH

Jonathan C. Gladin

Georgia Tech University, Marietta, GA

Handong Gui

University of Tennessee-Knoxville, Knoxville, TN

Kiruba Haran

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Timothy Haugan

Air Force Research Laboratory, Wright-Patterson AFB, OH

Ralph Jansen

NASA Glenn Research Center, Cleveland, OH

Charles E. Lents

Raytheon Technologies Research Center, Amston, CT

Nateri Madavan

NASA Ames Research Center, Moffett Field, CA

Xiii

xiv List of Contributors

Ajay Misra

NASA Glenn Research Center, Cleveland, OH

Tim C. O'Connell

PC Krause & Associates, Inc., Savoy, IL

Fei (Fred) Wang

University of Tennessee-Knoxville, Knoxville, TN

Patrick Wheeler

Department of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham

Xiaolong Zhang

University of Illinois at Urbana-Champaign, Urbana, IL 61801

Zheyu Zhang

Clemson University, Charleston, SC

Preface

The genesis of this book was two special sessions on electrified aircraft propulsion (EAP) at the Institute of Electrical and Electronics Engineers (IEEE) Energy Conversion Conference and Exhibition (ECCE), held in Montreal, Canada, in September 2015. At that time, small two- to four-passenger electric aircraft were being developed, and the circumnavigation by the solar-powered, single-seat, allelectric Solar Impulse 2 was underway, catching the imagination of the public. Although small electric planes could operate using 2015 technology, the consensus was that disruptive, breakthrough technologies in several areas would be required to enable electrified propulsion for the vast fleet of large commercial transport aircraft that accounted for most of the aviation industry's carbon emissions. To spark innovation, the US National Aeronautics and Space Administration (NASA) Aeronautics division, through its Advanced Air Transport Technology Project (AATT), had recently launched several significant NASA Research Agreements (NRAs) to develop technologies enabling megawatt-class electric propulsion systems. The ECCE sessions were organized to bring together technology experts and raise awareness of the significant challenges addressed by these NRAs. They were well attended and well received, revealing great enthusiasm in the technical community to overcome the challenges ahead.

The success at ECCE 2015 spawned numerous similar sessions at related conferences, and in April 2016, a technology road map for large electrical machines was drafted at a workshop hosted at the University of Illinois at Urbana–Champaign by the Grainger Center for Electric Machinery and Electromechanics and NASA. Joint workshops between the American Institute of Aeronautics and Astronautics (AIAA) and IEEE were then held, fostering stronger collaboration between the electrical engineering and aerospace communities and culminating in the creation of the annual Electric Aircraft Technologies Symposium (EATS), collocated with the popular AIAA Propulsion and Energy Forum. Seeing the momentum building in this burgeoning field, Cambridge University Press approached Nateri Madavan and Kiruba Haran to distill the important concepts discussed at these events into an edited book. Contributions were solicited from a large team of diverse technology experts to create a compendium of the emerging field. Tim O'Connell then joined the team of editors to perform detailed copyediting of the contributed works and help push the book across the finish line.

Electrified Aircraft Propulsion: Powering the Future of Air Transportation is intended for engineers, scientists, advanced undergraduate or graduate students,

xvi **Preface**

management professionals in aerospace-related fields, and policymakers who want to understand the numerous obstacles to electrifying the propulsion systems of large, passenger-class (or similar-sized) aircraft. As these obstacles are many, the book necessarily spans a wide range of topics, including power systems and electronics, materials science, superconductivity/cryogenics, thermal management, battery chemistry, system design, and optimization. Rather than "deep-diving" into any one area, it contains general concepts, tools, and information, providing the reader with a solid top-level understanding of the material. Thus, while it may be used as a textbook for a university-level survey course, this book's primary function is as a desk reference and launching point to deeper study.

In nine comprehensive chapters, this book addresses three main questions:

- (1) What are the benefits of electrified propulsion for large aircraft?
- (2) What technology advancements are required to realize these benefits?
- (3) How can the aerospace industry transition from today's state of the art to these advanced technologies?

To address these in a logical way, the book has been arranged to create a natural progression through its wide range of topics. While every attempt has been made to ensure the consistent use of notation, variables, acronyms, etc., because each chapter has been written by a separate technology area expert (or group of experts), there may be some discrepancies. For example, for practical or historical reasons, it is common to find the same engineering concept taught and used slightly differently across disciplines, each with its own unique notations, equations, variables, etc. In such cases, no attempt has been made to unify the notations. Rather, it is the editors' belief that each subject area should be presented in its "native" format so that the reader will more easily be able to apply the knowledge gained herein to other related sources.

Further, because this field is rapidly evolving, some of its key identifying terms and definitions have undergone several iterations over the years. For example, when this book was first proposed, its working title was Hybrid Electric Aircraft Propulsion. The term "hybrid" was originally used in the community to describe systems that used any combination of traditional and nontraditional propulsion. When these concepts were new, hybrids were a natural stepping stone between traditional turbofan propulsion and fully electric propulsion. Over the years, as propulsion systems have become more fully electrified, terms such as "electric/electrified aircraft," "electric propulsion," and "propulsion electrification" have become more prevalent. At the time of this writing, a consensus seems to have been reached for the all-encompassing term "electrified propulsion," which can include architectures that derive some or all of their propulsion energy from electricity. This includes those architectures previously called "hybrid." The book's final published title reflects this consensus. While we have made every attempt at a consistency of notation throughout, the legacy of diverse terminology lives on, and there are likely a few cases where alternative terms are used. In the context of this text, the reader can safely assume that all of these terms are essentially synonymous with each other.

Preface

XVİİ

Back to the three main questions: in Chapter 1, "Benefits of Electrified Propulsion for Large Aircraft," Rodger Dyson, Ralph Jansen, and Nateri Madavan address the first one, making the case for EAP through numerous trade studies and the analysis of several concept vehicles. Because it introduces the architectures that are the focus of the text and lays the groundwork for the chapters that follow, Chapter 1 is recommended as a prerequisite to the other chapters. Beyond this, the chapters largely stand alone and can be studied in any order that suits the reader.

The subsequent eight chapters, while remaining focused on question 1, collectively address questions 2 and 3 in technical detail. In Chapter 2, "Aircraft Electric Power System Design, Control, and Protection," Robert Bayles presents a modern aircraft electric power system (EPS), summarizing its design, control, and protection functions. Several key EPS components and features are described, which provide context to the rest of the book.

Electric machines (EMs) are the topic of Chapters 3 and 4. In Chapter 3, "Megawatt-Scale Electric Machines for Electrified Aircraft Propulsion," Tim C. O'Connell and Xiaolong Zhang focus on the large, conventional (i.e., non-cryogenic), megawatt-scale EMs that are required to facilitate electric propulsion in large passenger-class aircraft. The material provides a comprehensive overview, with a focus on methods for mass reduction and specific power improvement. In Chapter 4, "Superconducting Machines and Cables," Thanatheepan Balachandran, Timothy Haugan, and Kiruba Haran propose options for drastically increasing machine specific power and efficiency based on superconducting (SC) technology. The authors present several SC machine topologies being pursued by different research groups, followed by the physics and advantages of SC cables, and a look forward based on current SC technology trends.

Chapters 5 and 6 focus on power electronic circuits. In Chapter 5, "Conventional Power Electronics for Electrified Aircraft Propulsion," Patrick Wheeler introduces the basic concepts of power electronics, focusing on those circuits and devices that are crucial for EAP. As with EMs, the push for ever-higher specific power requires power circuits capable of power levels and efficiencies well beyond the current state of the art. This motivates Chapter 6, "Cryogenic Power Electronics," by Zheyu Zhang, Fei (Fred) Wang, Ruirui Chen, and Handong Gui. In it, the authors describe the development of cryogenic power electronics, from the component up to the converter level, highlighting their massive potential for high specific power.

In Chapter 7, "Electrochemical Energy Storage and Conversion for Electrified Aircraft," Ajay Misra provides an overview of the electrochemical energy storage and conversion systems for electrified aircraft, including batteries, fuel cells, supercapacitors, and multifunctional structures with energy storage capability. He highlights the extremely high energy storage requirements of fully electric passenger-class aircraft and points to some promising technologies on the horizon that may help us get there.

Electric drivetrains for EAP have unique thermal management requirements. Charles E. Lents addresses these in Chapter 8, "Thermal Management of Electrified Propulsion Systems," in which he walks through the fundamental equations and calculations for designing a notional TMS that includes both a liquid- and oil-cooling loop and multiple heat exchangers.

xviii

Preface

The book concludes with Chapter 9, "Performance Assessment of Electrified Aircraft," in which Jonathan C. Gladin ties the material together by presenting a systematic performance assessment process for EAP concept architectures. Gladin calls upon concepts and conclusions from earlier chapters to present this comprehensive method for electric aircraft design.

This book represents years of work by a diverse community of engineers and scientists who are dedicated to making electrified propulsion a reality. As with any compendium of state-of-the-art technology, it provides a snapshot of a quickly evolving field and makes projections using the best knowledge available today. It is our hope that it will provide inspiration and stimulate continued research and rapid innovation. Paradoxically, this book will have successfully done its job if the material herein becomes dated quickly, meriting a second edition. We hope that you will enjoy reading and using it as much as we have enjoyed producing it.

Finally, we would like to thank all of our authors for taking time out of their busy schedules to contribute their knowledge to this collection, and Thanatheepan Balachandran for preparing many of the high-quality figures for production.